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Abstract

The challenge of training AI systems to perform responsibly
and beneficially has inspired different approaches for teach-
ing a system what people want and how it is acceptable to
attain that in the world. In this paper we compare work in
reinforcement learning, in particular inverse reinforcement
learning, with our norm inference approach. We test those
two systems and present results. Using the idea of the “in-
tentional stance”, we explain how a norm inference approach
can work even when another agent is acting strictly accord-
ing to reward functions. In this way norm inference presents
itself as a promising, more explicitly accountable approach
with which to design AI systems from the start.

Introduction
The scope of AI ethics has spread into an interdisciplinary
network of policy areas. Instead of viewing AI as a monolith
that will either doom or save humanity, this broader view
considers a richer landscape of challenges in how AI sys-
tems are designed, implemented, and evaluated (AI Now In-
stitute 2017). Even so, the challenge of rendering systems
that are “aligned” with human interests and values requires
serious attention to computational architecture.

This challenge is particularly prevalent in social interac-
tion, where robots and other artificial agents are being de-
signed and sought for interactive, accountable roles. Be-
cause moral and social norms are important in such domains,
it is often thought that artificial agents will need to be able to
reason about and use these norms (Malle and Scheutz 2014;
Scheutz and Malle 2014).

Moral and social norms are, however, viewed by some
as too hard to represent stably. Because human values may
change over time, and are far too complex to manually pro-
gram into robotic architectures, what seems more statisti-
cally secure is value alignment– whatever we people decide
we want, the system will be aligned with our preferences.
This relies on learning human values as the centerpiece of
computational approaches to ethical performance.

Inverse reinforcement learning (IRL) has been considered
as an approach to the problem of learning in value alignment
(Russell, Dewey, and Tegmark 2016). IRL allows agents to
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observe the behavior of (human or artificial) agents and de-
duce a reward function that may explain those behaviors. In
this way, human values can be inferred by observing humans
rather than pre-specified by the agent designer.

IRL relies on the Markov assumption: that the next state
of the world depends only on the previous state of the world
and the action that the agent takes from that state, rather than
on the agent’s entire history.

One alternative to reward-based approaches to value
alignment is to explicitly specify norms in some logical lan-
guage. This has the advantage of greater interpretability and
generalizability, and such norms need not satisfy the Markov
assumption. Recent work (Kasenberg and Scheutz 2017) has
begun to address the problem of how such norms might be
learned from behavior. In what follows, we refer to the pro-
cess of learning explicitly represented norms by observing
behavior as norm inference.

In this paper, we seek to directly compare norm infer-
ence with IRL for the task of value alignment. In partic-
ular, we argue that norm inference roughly corresponds to
what (Dennett 1989) refers to as the “intentional stance:”
a predictive strategy based on imputing some level of be-
liefs, desires, and concepts to an observed agent. As such
norm inference shows interesting results as such a heuristic,
even when the demonstrator agent is not explicitly governed
by norms. In contrast, IRL by itself lacks sufficient repre-
sentational power to represent the behavior of some norm-
governed agents.

Preliminaries
The challenge of machine ethics has always been to balance
adaptive, dynamic learning about values and behavior with
enough stability to uphold ethical standards across contexts.
Since a rule-based or law-based system seems to demand
a level of exhaustive detail that threatens tractability, some
have proposed variations on reinforcement learning. What
has been proposed from this perspective are systems that
learn the proper reward function for action in the world. In
the case of inverse reinforcement learning (IRL), this means
inferring that reward function (and hence preferences) from
an agent’s behavior.

Another kind of approach holds that explicitly represent-
ing rules, norms, or other ethical principles is essential for
a system that will socially interact and act in concert with



other agents. Sometimes this can take the form of an ethi-
cal “governor” to provide guidance to human beings them-
selves (Shim and Arkin 2017). In previous work we have
argued that competent social robots will need some rep-
resentation of norms in their architecture (Arnold, Kasen-
berg, and Scheutz 2017). Here we extend this basic idea into
the sphere of learning. Sometimes machine ethics can pit
“bottom-up” learning (esp. with the growth of deep learning
approaches) against “hand-coding” rules. It is assumed that
the latter cannot provide enough flexibility and tractability
for apprenticeship learning or learning from demonstration.
We contend that a norm-based approach can learn adaptively
in an open-ended environment. Here we propose a norm in-
ference approach that seeks to grasp the action of another
agent or agents. In looking for a norm one could say it is
something of a normative “intentional” stance, where a cog-
nizable norm is ascribed to the agent (Dennett 1989). While
that may not be explicitly represented by the agent itself
(say, through natural language), it is nonetheless gleaned and
then used as a guide for the system’s own behavior.

Further, we want to ask if a norm-based approach might
even work acceptably well when the demonstrator is not
themselves normatively guided; that is, if even when the
demonstrator is in fact maximizing a reward function, the
norm-seeking apprentice can well approximate the demon-
strator’s behavior.

Toward this end we attempt to base a test on what learn-
ing the appropriate behavior in a morally charged context
necessitates. We explore a scenario of basic care, a plausible
setting for showing how temporally complex, norm-based
behavior is so crucial for autonomous systems to follow.
This serves two main purposes. The first is to illustrate what
apprenticeship learning will need to acquire in more care-
oriented contexts, where the modeled behavior contains tem-
poral and communicative complexity (e.g. consent). Second,
it provides an initial test case for comparing how norm in-
ference and IRL learn from behavior.

Markov Decision Processes
We focus on the problem of inferring moral and social norms
by observing agent behavior in stochastic environments. In
particular, we shall assume that these environments are mod-
eled by Markov Decision Processes (MDPs).

Formally, we shall define a Markov Decision Process as a
tuple 〈S,A, P, γ, s0, R〉 where

• S is a finite set of states;

• A is a finite set of actions;

• P : S × A× S → [0, 1] is the transition function (where
P (s, a, s′) is the probability of transitioning to state s′
given that the agent is in state s and performs action a);

• γ ∈ [0, 1) is a discount factor;

• s0 ∈ S is an initial state; and

• R : S × A × S → R is a reward function specifying a
reward for each transition (s, a, s′).

At each time step t, the agent begins in some state s,
performs some action a, and then transitions to a new

state s′ according to P (s, a, ·), receiving reward R(s, a, s′)
in the process. The goal of the agent is to pick a se-
quence of actions such that the discount sum of all rewards,
∞∑
t=0

γtR(st, at, st+1), is maximized.

Note that the probability of transitioning to a new state
st+1 at time t + 1 depends only on the agent’s current state
st and action at. This is referred to as the Markov property.
We also say that the reward function satisfies the Markov
property because the reward received at time t + 1 depends
only on the most recent transition (st, at, st+1).

Due to the Markov property, the “best action” to take at
any time t depends only on the current state st. The problem
of planning in MDPs thus is reduced to the problem of find-
ing the optimal policy π : S × A → [0, 1], where π(s, a) is
the probability of the agent performing action a at state s.

Inverse Reinforcement Learning
We define an MDP\R as an MDP that is missing its reward
function (in other words, a tuple 〈S,A, P, γ, s0〉).

We define a (finite) behavior trajectory τ as a sequence of
state-action pairs, followed by a final state:

τ := (s0, a0), (s1, a1), · · · , (sT , aT ), sT+1 (1)

Inverse reinforcement learning (IRL) is thus the problem of
determining a reward function R given an MDP\R and a set
of trajectories τ (1), · · · , τ (m). The reward function should
“explain” the observed behavior in some way (typically, the
observed behavior should be close to optimal for the inferred
reward function R).

There are a wide variety of IRL algorithms, based on a
wide variety of principles. A detailed description of these
algorithms is beyond the scope of this paper. While we will
focus on the original algorithm by Ng and Russell (Ng and
Russell 2000), our arguments are general (we will discuss
possible exceptions in the discussion section).

Norm inference
The general task of learning moral and social norms is some-
times referred to as norm learning. Because this term may
refer to learning norms in a variety of ways (e.g., through
natural language (Dzifcak et al. 2009)), we will instead use
the term norm inference to describe the task of learning
moral and social norms from behavior.

In particular, we define norm inference as the problem of
determining a logical statement φ from some (given) log-
ical language, given an MDP(\R) and set of trajectories
τ (1), · · · , τ (m). As in the case of IRL, the logical statement
should “explain” the observed trajectories in that these tra-
jectories should approximate the behavior of an agent at-
tempting to satisfy φ.

Under this definition, norm inference is fundamentally
tied to the norm planning problem: given an MDP(\R) and
some logical statement φ, attempt to satisfy φ “as well as
possible”. This may involve some notion of “better” and
“worse” violations encoded in a violation cost function, in
which case the norm planning agent attempts to minimize



the expected violation cost. The same notion of violation
cost can then be leveraged by norm inference algorithms.

The approach that we will consider for norm inference is
that of (Kasenberg and Scheutz 2017). This approach repre-
sents norms in linear temporal logic (LTL) (Pnueli 1977), a
propositional logic representing time linearly:

φ ::= > | ⊥ | p | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 → φ2

| Xφ1| Gφ1 | Fφ1 | φ1 U φ2

where p belongs to some set Π of atomic propositions. Here
Xφ1 means “at the next time step, φ1”; Gφ1 means “now
and at all future time steps, φ1”; Fφ1 means “now or at some
future time step, φ1”, and φ1 U φ2 means “eventually φ2 will
hold, and φ1 will hold until then”.

The truth of each statement φ in LTL is evaluated over an
infinite sequence of valuations σ0, σ1, · · · , where each σi ⊆
Π represents the set of atomic propositions which are true
at time step t. By augmenting an MDP(\R) with a “labeling
function” L : S → 2Π where L(s) is the set of propositions
in Π that are true in state s, we can thus evaluate the truth or
falsehood of φ over infinite sequences of states s0, s1, · · · .

This process is typically done by means of a deterministic
Rabin automaton (DRA), a finite state machine over infinite
strings. In this case, the input alphabet is the set 2Π of valua-
tions. The DRA can be combined with the MDP to produce
a product MDP with an augmented state space. This prod-
uct space keeps track of as much of the agent’s history as
is needed to know whether the agent has satisfied the norm.
The concept of the product MDP is crucial to the efficacy of
norm inference, and we will discuss it throughout this paper.

We can also construct a notion of violation cost, which
roughly defines the “severity” of a violation. This particu-
lar violation cost assumes that violating φ “for a long time”
is worse than violating φ “for a short time”. In particular,
we assume that the agent can “remove” certain timesteps
from its infinite sequence s0, s1, · · · of states. That is, re-
moving time steps 1 and 3 would result in the sequence
s0, s2, s4, s5, · · · . The violation cost of an infinite sequence
is thus the minimum number of such “skipped” states re-
quired for the resulting infinite sequence to entail φ (dis-
counted by γ so as to remain finite):

Viol(s0, s1, · · · ) = min
N⊆N

s0,s1,···\N�φ

∞∑
t=0

γt1t∈N (2)

This notion of violation costs can also be extended to poli-
cies (in the product space) . The policy that optimizes the vi-
olation cost is in general nonstationary on the original MDP
M (that is, it depends on the agent’s entire history), but it is
a stationary policy on the product MDP. That is, the prod-
uct MDP contains all the extra information about the agent’s
history that is necessary to minimize the violation cost.

Norm inference then is formulated as a multi-objective
optimization problem over the space of all LTL formulas.
The objective functions in question are (1) formula complex-
ity, measured simply by the length `(φ) of the formula φ in
symbols, and (2) an objective function based on the violation
cost. This objective function is computed by

Table 1: An argument in favor of norm inference

Apprentice Reward-driven
demonstrator

Norm-governed
demonstrator

IRL �
Cannot represent

temporally
complex norms

Norm inference Can uncover
behavior properties �

• constructing the product MDP for the candidate norm φ;

• constructing a product space policy π⊗ out of the ob-
served behavior trajectories τ (1), · · · , τ (m);

• evaluating

ObjViol(φ) = Violφ(π⊗)−Violφ(πrand) (3)

where Violφ(π) is the violation cost of the (product-
space) policy π and πrand is the random policy.

The intuition is that a good norm φ is such that the observed
trajectories will conform much more closely to φ than will
random behavior, and thus the difference between their ob-
jective costs should be very negative. This encourages norms
that both are (more or less) satisfied by the observed trajec-
tories, and which are difficult to satisfy without attempting
to (as measured by the violation cost of the random policy).
The actual optimization over LTL is done in (Kasenberg and
Scheutz 2017) by genetic programming.

“Normative wager”
Having defined IRL and norm inference, we now turn to the
task of comparing them. We aim to demonstrate by this com-
parison that norm inference is a promising approach to learn-
ing moral and social norms. While there is much work still
to be done towards the norm inference problem, we never-
theless aim to show some concrete advantages over IRL.

IRL with reward-driven demonstrators
We will accept without argument that IRL is effective at
learning behavior from demonstration where the demonstra-
tor is driven by rewards. Note that this relies on the “true”
reward function satisfying the Markov property. If not, IRL
is not guaranteed to approximate the correct behavior.

IRL with norm-governed demonstrators
Previous work (Arnold, Kasenberg, and Scheutz 2017)
showed a toy MDP in which a logical specification described
a desired pattern of agent behavior on an MDP that could
not be captured by a (Markovian) reward function, and thus
could not be reproduced by IRL. We now describe a prob-
lem with similar, though not identical, properties. Although
this is still something of a toy problem and makes a few
unrealistic assumptions, it is grounded in the notion of con-
sent and framed in the context of a care-providing robot. We
demonstrate IRL’s inadequacy for this problem by running
an IRL algorithm on the given MDP and showing its inabil-
ity to capture the relevant behavior.



Consider a caregiving robot responsible for assisting an
ailing human. The robot is responsible for giving care if and
only if the person desires it. The person will not constantly
express their desire or lack of desire for care, however, and
will only ask for the robot to care or not to care at discrete
points in time. Thus, the person will periodically give signals
that they desire or do not desire care, and the robot must
remember their current preference.

In order to convert this into a simple Markov Decision
Progress, we make a number of simplifying assumptions.
We assume that the current state consists of the values of
three propositions: whether the robot provided care for the
human at the previous time step (careGiven), whether the
human gave the robot consent to care (consentGiven), and
whether the consent was withdrawn (consentWithdrawn).
We further assume that the robot has two actions, care and
nocare. At each time step, careGiven is set according to
the robot’s last action. The signals consentWithdrawn and
consentGiven are each given with probability ε, and are
mutually exclusive. We assume that the human’s preference
will not change without signaling, so that the last signal en-
codes the human’s current preference. Notably, the human’s
current preference is not included in the state space (we will
discuss the obvious objections to this shortly).

The agent’s goal is simply to perform the action care if
and only if the human’s last signal was consentGiven. This
can be represented by a norm in temporal logic as follows:

φ := G((consentGiven→
((XcareGiven) U consentWithdrawn))

∧ (consentWithdrawn→
((¬XcareGiven) U consentGiven))) (4)

The desired behavior is non-Markovian: the optimal course
of action depends on which signal (consentGiven or
consentWithdrawn) the agent has last seen, information
not contained in the current state (except during those time
steps in which the signal occurs). Because for any reward
function that can be inferred by IRL (at least in its standard
formulation) the reward-maximizing policy is Markovian,
IRL will be inadequate for learning to obey the norm.

Indeed, this is borne out in simulation. We implemented
this simulation in BURLAP (MacGlashan 2014), with ε =
0.1. We used BURLAP’s standard implementation of IRL.

In each trial, we used our norm planner with the norm (4)
to demonstrate the desired behavior in 30 trajectories of 30
time steps each. We used IRL to infer a reward function and
a corresponding policy from the observed trajectories, and
then demonstrated the learned behaviors in 30 trajectories
of 30 time steps each. For IRL, we considered each state as
its own feature; this resulted in 6 features total.

Figure 1 shows the results of IRL in this domain over 500
trials. Note that the IRL agent performed the wrong action
(providing care without consent, or neglecting care when
care was required) 30% to 70% of time steps in every trial.

Objection 1: “Add it to the state space” IRL advocates
will likely be unconvinced by the preceding argument. The
obvious counter-argument is that the state space in the above

Figure 1: Histogram of the performance of IRL-induced pol-
icy over 500 trials. IRL performs the incorrect action (care
when nocare is required, and vice versa) between 30% and
70% of the time.

example can easily be augmented with the information about
the agent’s current consent/lack of consent. This is true, but
in an important respect it misses the point: an agent that is
attempting to learn moral and social norms will not know a
priori what extra information needs to be added to the state
space in order to maintain the Markov property, and neither
will the system’s designers.

In the IRL framework, for every moral/social norm that an
agent wishes to learn, the agent’s current state must contain
all information about the agent’s history necessary in order
to satisfy the norm. Perhaps in narrow domains, agent de-
signers can include all of this information in the state space.

Those who believe IRL sufficient for learning norms will
likely make at least one of the following assumptions:

(a) Agent designers will have sufficient foresight to include
all morally relevant facts about the agent’s history within
the state space. In general domains requiring social inter-
action, this assumption is almost certainly false. Knowing
a priori what aspects of the agent’s history will be rele-
vant to an as-yet-unknown norm is virtually equivalent to
knowing the norm, which would render IRL unnecessary.

(b) All information about the agent’s history that could pos-
sibly be relevant to the norms that will eventually be
learned will be included in the agent’s state space. The
only upper bound on possibly-relevant information about
the agent’s history that is known before runtime is the
agent’s entire trajectory. Operating in “trajectory space”,
or treating entire agent trajectories as states, is obviously
intractible (the agent will never be in the same state in tra-
jectory space twice, and the state space will be infinite (or,
in continuous state spaces, the dimensionality of the state
space will increase every time step).

(c) Along with IRL, agents will have a mechanism to dynam-
ically alter the state space so as to “fix” the Markov as-
sumption. When learning a new norm/reward function,
this mechanism would alter the state space so that it stores
precisely the history required for the new norm/reward
function to be Markovian. Note that this is precisely what
norm inference does. In the case of LTL, the DRA stores
exactly the information needed about the agent’s prior his-
tory in order to make the problem Markovian. Norm in-
ference has the added advantage of interpretability (which



is not the primary focus of this paper, but is emphasized
in (Arnold, Kasenberg, and Scheutz 2017)), but in prin-
ciple other mechanisms that co-learn a state space aug-
mentation and a reward function may overcome the tem-
poral complexity problem. (In practice, this augmentation
could perhaps be accomplished using the hidden states of
recurrent neural networks to store the relevant informa-
tion, although the lack of interpretability of this approach
may make it unsuitable for ethics.)

Objection 2: “What about propositions?” In response to
our preceding argument, critics may argue that while norm
inference (or at least the implementation of it described in
this paper) may help to fix problems with agent memory, it
does so at the cost of relying on some set of propositions
in the state space that encode morally relevant signals. This
point is well-taken: we recognize that this assumption may
not be well-founded in reality. However, IRL algorithms also
tend to rely on the existence of a set of state (or state-action)
features from which the reward function can be computed.

In practice, agents in the real world will need to map
sensory information onto these features/percepts. Recent
work in deep inverse reinforcement learning (Wulfmeier,
Ondruska, and Posner 2015, for example) allows the sys-
tem to map raw sensory data onto features from which a re-
ward function can be computed. It is possible that similar ap-
proaches may help to identify a set of relevant propositions
for norm inference from sensory data (though this may un-
dermine the interpretability of the system), especially when
combined with natural language instruction.

Norm inference with norm-governed
demonstrators
When the demonstrator is norm-governed (where we use
“norm-governed” to mean “consistent with some normative
principle that may be complex, but can be articulated ex-
plicitly”), it is valuable to attempt to deduce that principle
explicitly in a way that can be reasoned about, understood,
and easily corrected. Our work in (Kasenberg and Scheutz
2017), in which we introduced our norm inference algo-
rithm, showed encouraging early results in this capacity.

While IRL is unable to produce the correct behavior in the
aforementioned consent domain, the behavior can be repre-
sented in temporal logic (indeed, the demonstrator is a norm
planner using the norm (4))), and so in principle norm infer-
ence will be able to find it. (In practice, the complexity of
the norm means that norm inference will take a long time to
find it - see the discussion section for more details.)

Norm inference with reward-driven demonstrators
Finally, we evaluate the results of using norm inference to
attempt to infer norms where none exist: where the demon-
strator is driven by a (random) reward function.

We employed these experiments in a 4×4 GridWorld do-
main. Each state corresponds to the agent being in one of
the grid’s 16 cells. Available to the agent are the four actions
north, south, east, and west. The dynamics are stochas-
tic: with probability 1 − ε, the agent moves one cell in the

Figure 2: Average reward per episode (30 time steps) for
an apprentice using norm inference, vs the average reward
per episode of the reward-driven demonstrator. Each data
point represents the average over 30 episodes. The dashed
line represents the identity function.

intended direction; with probability ε the agent moves ran-
domly in one of the three other directions. In this case we set
ε = 0.2. If an action would cause the agent to collide with
the wall, the agent instead remains in the same cell.

In each trial, a reward function was generated by select-
ing the reward for each individual cell independently from
N (0, 1), the normal distribution with zero mean and unit
variance. After using value iteration to determine the opti-
mal policy, the agent demonstrated that policy using 30 tra-
jectories of 30 time steps each.

Norm inference was then applied to the generated trajec-
tories (where a proposition Ci,j corresponding to each cell
was assumed) to determine a the Pareto-efficient candidate
norms. The agent then performed norm planning for each of
the Pareto-efficient norms to determine an optimal (product-
space) policy, and executed this policy for 30 trajectories of
30 time steps each. We performed a total of 50 trials.

Figure 2 shows the average reward per 30 time steps of
the policy found by norm inference vs that of the reward-
driven demonstrator. Whenever multiple norms were Pareto-
efficient in norm inference, data points corresponding to
each recovered norm are plotted. The line corresponds to
the identity function: if a data point is on the line, the pol-
icy constructed by norm inference maximizes reward as well
as the demonstrator’s behavior (the apprentice may achieve
more reward than the demonstrator, but this is because of
stochasticity rather than a superior policy). In many cases,
norm inference well approximated the reward-optimal pol-
icy, as is evident from the number of points close to this line.

Norms and the intentional stance
Dennett (Dennett 1989) describes three “stances” that serve
as strategies for an observer attempting to describe and
predict an object’s behavior. The first stance, the physical
stance, considers the object as a set of atoms and molecules.
The second stance, the design stance, considers the object
as if it were designed for a purpose, and considers form
and function in accordance with that supposed purpose. The
third stance, the intentional stance, considers the object as
an agent with beliefs, desires, and intentions of its own. Im-



portantly, Dennett notes that the intentional stance can be a
useful abstraction for predicting an object’s behavior, even
when the object in question may not in fact have beliefs, de-
sires, or intentions.

We argue that learning explicit rules associated with an
agent’s behavior (e.g., using norm inference) can be thought
of as adopting an intentional stance toward that agent. To
assume that there is some norm that a demonstrator is at-
tempting to satisfy is to ascribe to that demonstrator an ob-
jective that can be reasoned and communicated about. Fur-
ther, the temporal complexity of behaviors described by LTL
formulas in particular imply that the agent has at least a
rudimentary notion of memory beyond that supplied by the
MDP state space. While agents maximizing Markovian re-
ward functions can be argued to ”desire” reward, such agents
lack (1) an explicit objective and (2) memory beyond that
already encoded in their environment. Like the intentional
stance, the assumption that agents possess explicit, tempo-
rally complex objectives and norms forms a predictive strat-
egy that can be useful, even if it is not always true (as in the
case of the agents in GridWorlds with random reward).

The norm inference form of an“intentional stance” thus
shows some promise as a means of mapping even non-
normative behavior. One practical issue to pursue further is
what tradeoffs come with deciding (at least within a certain
context) to approach behavior with norm inference (and not
infer an agent’s actual reward function) as opposed to us-
ing IRL when there is actually a norm guiding the observed
behavior.

Discussion and future work
Our proposal to learn an agent’s behavior by inferring
norms, not rewards, has shown suggestive and promising re-
sults. It can capture temporally complex rules that can guide
behavior, thereby showing features of context and memory
that usual descriptions of state space do not consider. For
ethically charged contexts like that of personal care, with an
interactive dimension like consent, these subtleties may be
crucial to represent and explain a system’s behavior.

That said, a great deal of work is left to be done. While our
norm inference algorithm is capable in principle of captur-
ing temporally complex norms, in practice optimizing over
statements in a formal language is slow. Recent work on in-
ferring formal specifications from demonstration (Vazquez-
Chanlatte et al. 2017) searches over the space of specifica-
tions more efficiently, but this relies on specifications whose
truth can be evaluated in some bounded number of time
steps. The general problem of efficiently inferring logical
norms from behavior remains open.

It is also important to note that IRL and norm inference
may be able to work together to tackle certain problems–
what remains is to spell where the comparative advantage
lies. Aside from its strengths relative to IRL, norm infer-
ence work will also need to incorporate efforts to map which
norms are most critical (especially for human and artificial
agents (Malle, Scheutz, and Austerweil 2017)), in order to
address how conflicting norms can best be managed.

The norm inference approach should also feed back into
larger spheres of AI discussions of learning, and what counts

as machine learning. Though deep learning reigns as the pre-
sumed growing edge of promising AI, commentators have
begun to point out how fairly simple statistical mechanisms
(e.g. perturbation methods) can cause drastic errors in deep
learning approaches (Perez 2017). Marcus has also pointed
out that some top-down concepts are needed to guide truly
adaptive learning in an environment (Marcus 2017). For ma-
chine ethics, norms are a strong candidate, both in how an
agent can learn and interpret action and in how accessible,
accountable direction can be given to that agent by initial
design and subsequent instruction.

On a general level, it is critical to keep computational ar-
chitecture within the spotlight of algorithmic ethics. Current
critiques of AI systems have understandably begun to center
on the data on which the algorithms train, and the applica-
tions wherein the algorithms lead to consequential decisions
(e.g. job applications, loan approval, sentencing). The ques-
tion remains, however: what should algorithms themselves
look like? Even with fair, socially justifiable data, what kinds
of algorithms would best support human flourishing and, in
Dignum’s terms, uphold accountability, transparency, and
our own responsibility (Dignum 2017)? The comparative
evaluation of IRL (and related RL models), norm inference,
and other approaches of machine ethics should not over-
shadow their important joint commitment: to make algo-
rithms themselves as ethically beneficial and accountable as
possible.

Conclusion
In this paper we argued in favor of the norm inference over
reward-driven approaches to learning morality. While norm
inference can uncover useful properties of agent behavior
even when the demonstrator is explicitly not norm-governed,
IRL can have great difficulty adapting when the reward func-
tion is non-Markovian.

Continuing to test and find new tests for the ethical per-
formance of machine learning will be essential for machine
ethics to serve the larger landscape of ethics and policy dis-
cussions for AI. Diplomatically generated slogans about AI
can mask serious disagreement (Boddington 2017). Surfac-
ing that disagreement respectfully and honestly is a duty for
those genuinely committed to holding artificial intelligence
to account. By putting algorithms and architectures to a bet-
ter test, we can more ably chart what AI ethics should look
like in (and beside) the flesh.
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