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ABSTRACT
Trust and capability transfer between tasks and environments is
common in human-human interactions. For human-robot interac-
tions it is unclear how a robot’s performance of a task in one envi-
ronment affects humans predictions about the robot’s performance
of another related or unrelated task in a different environment.
When making assessments about a robot’s task capabilities, three
main sources of information are pertinent: the human’s “default
mental model” of robots, the robot’s appearance, and the robot’s
performance.We hypothesized that past task performance would be
the most salient information source, and that participants who saw
the robot perform tasks in one environment would transfer their as-
sumptions about the robot’s capability to a new environment with
new tasks. However, the results of our first study did not support
this hypothesis. We then performed a second study to exclude the
possibility that because the robot worked well in the first environ-
ment, it did not supply any salient, different information from the
participants’ default mental model of robots (that robots are func-
tional, etc.). If this hypothesis was correct, a faulty robot in the first
environment would be rated significantly lower at the tasks in the
second environment. However, the results did not support the sec-
ond hypothesis either. We then conducted a third study investigat-
ing whether the tasks themselves or the environment had a stronger
effect on trust assessments. The results showed that because indi-
vidual judgments varied dramatically no systematic trust and task
transfer result can be obtained. The upshot for HRI is that trust and
task transfer are solely dependent on the individual’s background
and judgment rather than on task or environmental properties.
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1 INTRODUCTION
When we think about human capabilities, we make numerous im-
plicit assumptions about how capability at one task transfers into
capability at another task. We do not need to observe a person
perform a specific task to trust that they will be able to at least
passably perform a different but related task. However, it is unclear
whether such task transfer assumptions apply to robots as well. In
most human-robot interaction (HRI) experiments, participants only
interact with the robot in one environment and are only asked about
its ability to do one specific set of tasks relevant to that environment.
What happens then if the person is taken to a second environment
with the same robot after having interacted with it elsewhere and
asked about a different set of tasks? Will assumptions about the
robot’s capability and task performance formed during the inter-
action be transferred into a new environment and onto new tasks?
These questions motivated the three studies presented in this paper.

It is well-established that people judge robot behavior and ca-
pability in multiple ways: based on default expectations or mental
models [8, 31], appearance [10, 21], as well as performance [4, 9].
When people see a robot act, the robot’s actions can correct or
“override” the initial appearance impression or default model as-
sumption [16] (e.g., if a robot does not look like it can talk, but then
it talks, people will accept that and remember it in a different set-
ting). It is to be expected that this effect should be at least as strong
for interaction participants (i.e., when people perform a task with
the robot) compared to passive observers of an interaction. We thus
hypothesize that after seeing a robot perform various tasks well in
one environment, subjects will remember what they observed and
apply that knowledge to their assessment of the robot’s capabilities
in a different environment with new tasks, where some actions
as part of those tasks are related to previously observed actions.
We predict that this “task transfer” established through experience
with the robot’s performance will result in higher ratings of trust
in the robot and perceptions of the robot’s capability in the new
task as compared to participants who have to base their judgments
about task transfer and trust solely on the robot’s appearance or
their default mental model of robots.

2 BACKGROUND
We start by briefly reviewing main findings on trust transfer and ap-
pearance versus performance-based judgments of robot capabilities,
both of which informed the present investigation.
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2.1 Trust transfer in HRI
Understanding how much to trust a robot to perform certain tasks
is an essential part of successfully interacting with robots. Over-
trusting the robot can lead to unwarranted over-reliance on the sys-
temwhere it would not be able to live up to expectations, and under-
trusting the robot could result in under-utilization in times when
the robot could be truly helpful [12]. Most trust studies in HRI only
look at trust for one set of tasks in one environment (e.g., see [9, 17,
18, 26] for examples). Few studies have looked at how trust transfers
across different tasks after seeing the robot perform one task. Soh et
al., in a series of papers [28–30] studied this type of question. Using
two distinct domains to establish robustness, they looked at how
much participants trusted a robot to perform tasks that were more
or less similar to and more or less difficult than a task they had al-
ready seen it perform either successfully or poorly. They found that
trust transfer was modulated by similarity and difficulty of the tasks.
Tasks that were considered similar were rated with the same level
of trust. Additionally, when the task was performed successfully,
participants also trusted the robot to perform tasks that were easier
than the one that they had observed. While these findings providing
important evidence for task transfer within the same environment,
they are silent about task transfer across different environments.

2.2 Appearance versus performance
To assess robot capability, people can rely both on the robot’s ap-
pearance and its actual behavior. Haring et al. [14] postulated a
theory called the Form Function Attribution Bias which argues that
humans use visual perception as a cognitive shortcut for assess-
ing functionality. This results in people often misunderstanding a
robot’s functions because they judge it based on its form. Kwon
et al. [16] showed that people develop mental models of robots
that have different capabilities based only on the robot’s appear-
ance. They then showed participants a video of a robot lacking a
capability that its morphology would suggest it should have. They
found that people were willing to modify their expectations when
presented with performance-based information about the robot’s
capabilities. Haring et al. [13], in another study, found that the
robot’s appearance affected perceptions of, among other things, the
robot’s capability to experience situations such as pain or pleasure
and its capability of agency. The capability to experience was also
significantly affected by actually interacting with the robot and
seeing it perform as opposed to judging it just based on appear-
ance. Finally, Abubshait et al. [1] investigated how appearance of
an agent, whether human-like or robot-like, and behavior of the
agent’s gaze affected judgments of whether the agent had a mind
and whether participants’ gaze following behavior was affected.
They found that robot behavior affected participant behavior, and
robot appearance affected subjective judgement. All of these find-
ings provide converging evidence that both robot appearance and
performance affect the way people interact with robots and per-
ceive robots’ capabilities, and that in some cases performance-based
assumptions can trump appearance-based assumptions.

2.3 Task environments and HRI experiments
In HRI, a variety of tools, varying in realism, are used for studying
task-based interactions: text-based vignettes [3, 17], videos [19, 34],

VR [7, 33], in-lab [15, 27] and in-the-wild studies [5, 24]. While all
of these tools have benefits and drawbacks, we chose an VR for
studying task transfer because: a) we could design completely novel
environments (e.g., spaceship) that participants would be less likely
to have any knowledge about; b) participants could be immersed
in the environment; c) the experience of the environment could be
tightly controlled and measured; and d) we had access to a large
pool of environments that are hard to access in real life.

3 STUDY 1
Study 1 was intended to investigate whether participants who saw
a robot perform tasks in one environment would transfer their ex-
perience to a new environment in a way that would result in them
rating the robot as more capable and trustworthy than people who
had not seen it perform tasks in the first environment. We explored
this transfer by way of asking people to assign new tasks in the new
environment to the robot with the expectation that tasks similar
to the ones observed in the first environment would be more likely
chosen and elicit higher levels of trust in subjects with prior inter-
action experience in the first environment as compared to subjects
without such experience who only saw the robot in the second
environment. We thus used two different virtual reality (VR) envi-
ronments in two experimental conditions. In the first, participants
actually performed a task that relied on interacting with a robot
teammate before being sent to the second environment where they
had to assess the robot on different tasks. In the second condition,
participants only assessed the robot on the tasks presented in the
second environment without having seen the first environment or
interacted with the robot at all. We predicted that the participants
who interacted with the robot would rate it higher on trust ques-
tions than those who did not, particularly on tasks in the second en-
vironment that were similar to ones the robot performed in the first
environment. All studies were approved by our institution’s IRB.

3.1 Methods
3.1.1 Participants. A total of 63 participants who were over 18 and
spoke English participated in the study. Participants were recruited
from a pool of undergraduate and graduate students, staff at the
university and members of the local community non-affiliated with
the researchers’ university. The data of 12 participants was unus-
able, resulting in a total of 51 participants’ data being analyzed.
Data was considered unusable if there were technical issues, if the
participant was too confused or nauseous to complete the tasks,
or if they had participated in a similar study from the authors’ lab
before. Participants were between 18 and 65 years old (M=23.64,
SD=9.21 years). The gender distribution for the sample was: male
45%, female 52% and non-binary 3%. Compensation was $10USD.

3.1.2 Materials. We employed two VR environments shown Fig. 1.
The VIVE Pro VR headset was used for the virtual reality equip-
ment, and the domains were created using the Unity game engine.
The robot seen in the scenes was modeled after the Willow Garage
PR2 robot, where it differed only in the addition of a welder that
would emerge from its torso.
Spaceship environment. The spaceship consists of a main room
with three wings extending outwards every 120 degrees. The main
room contained a coordinate-based map station which participants
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Figure 1: Images from the two different VR environments. (A)-(C) are from the spaceship domain; (D)-(F) are from the warehouse
domain. (A): View of the main room with coordinate-based map and hallways Gamma and Beta. (B): Participant turning off a
damaged tube. (C): Robot using its welder to fix a damaged tube. (D): Robot in the warehouse. (E): Two task-relevant objects that
will trigger a task prompt box when the participants approaches them. (F): Task prompt box for the task “fix broken equipment.”

had to use to mark down locations of rocks and radiation zones
that a rover on the planet circled by the spaceship communicated
to them (see Fig. 1A). Announcements about rocks and radiation
zones from the rover came over loudspeakers. Each wing contained
a left and right hallway, with a room containing 24 “radioactive”
tubes in two rows of 12 in the middle of the corridor. Each tube
could be identified by the corridor, hallway, and tube number (for
example, “Alpha Right 1”). These tubes occasionally became dam-
aged, as announced verbally by the spaceship, and the participant
needed to work with the robot to fix them. Participants were able
to verbally communicate with the robot to give it commands to go
to and then fix certain tubes.
Warehouse environment. The warehouse environment was mod-
elled after a large industrial warehouse, containing various objects
such as open and closed boxes, barrels, and crates. Additionally,
there were human avatars present in the warehouse. Ten of the
objects in the warehouse had large red exclamation marks floating
over them (see Fig. 1E), indicating that subjects had to perform an
activity there. As participants got closer to those objects, a box con-
taining the description of a task and three prompts related to that
task, would pop up (Fig. 1F). After participants finished answering
the prompts, the exclamation mark changed to a symbol relevant to
their answers so that participants could keep track of which tasks
they had finished rating.

We chose the spaceship as the first environment because it was a
completely novel environment where participants would not have
a priori assumptions about what the robot would be able to do. The
warehouse environment, on the other hand, was chosen because
participants would likely be more familiar with, and have assump-
tions about, this space and the tasks involved in it. We wanted to
see if experience with the robot in the spaceship could then mod-
ulate baseline assumptions people might have about robots in the
warehouse space.

3.1.3 Procedure. Participants were divided into two conditions:
Control (𝑛 = 25) and Functioning robot (𝑛 = 26). For both condi-
tions, as participants came into the study room, the experimenter
would provide them with hand sanitizer and then sanitize their
own hands and put on rubber gloves to comply with COVID-
19 protocol. After providing informed consent, the experimenter
would explain how the VR equipment worked, before helping
them put it on and calibrating their eyes to the machine so that
eye gaze could be recorded. They were then sent to the space-
ship environment, and the experimenter explained how to move
around and interact with objects. Due to COVID-19 safety proto-
cols, participants were required to wear masks; we thus opted for
a speech wizarding approach. “Speech wizards” are often used in
HRI to avoid speech recognition errors biasing and dominating
the results; the human, in that case, serves only the function of
an “architecture component,” the Automatic Speech Recognizer,
and does not replace the rest of the architecture as is typically the
case with WoZ studies (e.g., the wizard fully teleoperates the ro-
bot).
Control condition. In the Control condition, participants were
then sent to the warehouse environment and never saw the robot
in the spaceship and never performed any tasks in the spaceship.
Once in the warehouse, the researcher explained that the partici-
pant was a warehouse worker in a warehouse that packaged and
shipped out products. They were told that they had a robot team-
mate that could help them with these tasks, and were shown the
PR2 robot (Fig. 1D), which was standing statically in the middle of
the warehouse. Participants were told that all the tasks had to be
completed, but that they could choose if they wanted to complete
each task themselves, or if they wanted to assign it to the robot
to do. The experimenter then explained how to trigger the task
prompt boxes, and the participant was asked to answer all of the
prompts for each box. Even though participants were lead to believe
that they would actually need to complete the described tasks, the
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experiment actually ended when they had finished answering all
the prompts. The experimenter then debriefed and compensated
them.

Functioning robot condition. In the experimental condition, after
learning how to move and interact with objects, participants stayed
in the spaceship environment and the experimenter explained that
they were on a spaceship orbiting Mars and had two missions that
needed to be completed. In the first mission, participants needed to
mark rocks and radiation zones that the rover reported it had found
on Mars. Information was relayed over the loudspeakers, and par-
ticipants would mark the relevant objects on the map in the center
of the main room. Their second task involved fixing “radioactive”
tubes that had become damaged. To do this, participants needed
to turn off the tube (requiring them to leave the map station and
go to the damaged tube to click the Off button, see Fig. 1B) and
communicate with their robot in order to fix the tubes. Participants
were told that because of the dangerous radiation levels, only the
robot could enter the hallway with the tubes, so the participant
needed to instruct the robot on which tube to go to. Once it was at
the tube and the tube was turned off, participants could instruct the
robot to fix the tube (Fig. 1C). Participants practiced going through
an instance of a tube breaking, turning it off, and instructing the
robot to go to and then fix the tube. Participants were under the
impression that the robot was autonomously responding to their
voice commands; in reality, the robot was being speech-wizarded
by a researcher in an adjacent room. Participants were told that the
rock and radiation sorting was their priority, but they also needed
to work with the robot to fix tubes as they broke. After making
sure that participants understood all of the tasks, the experiment
began. Rocks and radiation events often overlapped with tubes
breaking, so participants needed to choose what to spend time on.
All participants were in this environment for three minutes once the
experiment began. After the three minutes had passed, they were
transported to the warehouse environment, where the procedure
continued in the same way as the Control condition.

3.1.4 Measures. Each task in the warehouse had a virtual box that
contained the prompts used to assess participants’ trust in the robot
for the respective task. Each task prompt box contained a descrip-
tion of the task, the words “Capability” and “Trust” each next to a
five point Likert scale, and the word “Assign?” next to the options
“yes” and “no.” Participants were told that the questions referred
to their perception about the robot in relation to the task; i.e., for
the task “stack boxes,” the questions would be “how capable do you
think the robot is at stacking boxes?,” “how much do you trust the
robot to stack boxes?,” and “do you want to assign this task to the
robot?” Participants were told that if they answered “yes” to this fi-
nal question, the task would be assigned to the robot teammate, and
if they answered “no” then they would have to complete the task
themselves. This question was used as another proxy for trust, with
the assumption being that participants would not assign the robot to
a task that they did not actually trust it to do. Because we were inter-
ested in task-specific trust, instead of using generic validated ques-
tionnaires we crafted the measures ourselves using the following
criteria: a) the same question could be asked about individual tasks
(as opposed to overall impression), and b) they were short and could

be asked repeatedly without interfering much with the immersion.
Other studies focused on trust in specific interactions have used a
similar approach of creating study-specific questions (e.g., Rossi et
al., 2018 [23]). The three prompts elicited from participants: 1) their
impressions of the robot’s capability; 2) their own inclination to
trust the robot with a particular task, whichmay cover other aspects
of trust (e.g., perceived relational factors [20, 32]); and 3) a costly be-
havioral choice, assigning the task to the robot or themselves. While
we recognize that trust may not be the only factor influencing as-
signment decisions (e.g., consider personal preference), ultimately,
trust in HRI is important because of its influence on behavior.

The tasks themselves were categorized as either having an anal-
ogous task in the spaceship that the robot performed, an analogous
task that the human performed, or had no analogy to anything in
the spaceship. The robot precedented tasks were: patrol the ware-
house to check for open boxes (spaceship analog: patrol for broken
tubes), fix broken equipment (spaceship analog: fix broken tubes),
close boxes with a drill (spaceship analog: tool use). The non-robot
precedented tasks were: identify broken products (spaceship analog:
ship identifies broken tubes), sort products by category (spaceship
analog: human sorts rocks and radiation), communicate product
information (spaceship analog: rover communicates rock and radia-
tion information, ship communicates tube information). Tasks that
had no precedent were: place products in box, welcome delivery
people to warehouse, stack boxes, and discard broken products.

In addition to these subjective measures, we also tracked par-
ticipants’ eye gaze. Gaze behavior can tell us what objects in an
environment a person is interested in and attending to [2]. The
amount of time that participants spend looking at objects of inter-
est could therefore inform us about how much those objects were
contributing to that person’s mental model of the experience. In par-
ticular, we were interested in the amount of time participants spent
looking at the robot and other task-relevant objects while in the
warehouse; this may act as a proxy for how much the appearance
of these objects mattered to the participants’ ratings.

3.2 Results
3.2.1 Ratings. A Shapiro-Wilk test indicated that the data from
the Functioning robot condition was not drawn from a normal dis-
tribution for the average capability ratings (𝑝 = .009) or the average
trust ratings (𝑝 = .01). Therefore, Kruskal-Wallis tests were used in
place of t-tests or ANOVAs.

We first tested whether there was an effect of condition on peo-
ple’s average ratings of the robot’s capability across all tasks. A
Kruskal-Wallis test showed no significant difference (𝜒2 = .34,𝑝 =
.56). We next tested whether there was an effect of condition on peo-
ple’s average ratings of trust in the robot across all tasks. A Kruskal-
Wallis test showed no significant difference (𝜒2 = 2.11, 𝑝 = .15)
(Fig. 2). We next tested whether there was an effect of condition
on people’s average decision of whether or not to assign a given
task to a robot. Chi-squared tests looking at whether there was
a difference between conditions for the total number of tasks as-
signed to the robot (𝜒2 (8)=13.68,𝑝 = .09) or assigned to the human
(𝜒2 (8)=15.33,𝑝 = .053) found no difference.

In addition to comparing conditions for averages across all tasks,
we were particularly interested in the perception of robots for the
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Figure 2: Study 1 box plots for (A) average capability ratings
across all tasks (Functioning median = 3.60; Control median
= 3.55); (B) average trust ratings across all tasks (Functioning
median = 3.40; Control median = 3.30).

tasks that had robot precedented spaceship analogous tasks. We
therefore ran Kruskal-Wallis tests for “close boxes with a drill” for
capability (𝜒2= .05,𝑝 = .83) and trust (𝜒2= .35,𝑝 = .56), “patrol ware-
house to check for open boxes” for capability (𝜒2= .13,𝑝 = .72) and
trust (𝜒2 = .97,𝑝 = .33), and “fix broken equipment” for capability
(𝜒2 = 2.73,𝑝 = .10) and trust (𝜒2 = 7.67,𝑝 = .006). Only this last test
turned out significant, with participants in the Functioning robot
condition (median=3.5) trusting the robot to fix broken equipment
more than those in the Control condition (median=2).

3.2.2 Participant performance. We wanted to see if a given par-
ticipant’s performance in the spaceship environment predicted
anything about how they would rate the warehouse tasks. A partic-
ipant’s performance was measured by how many tubes they were
able to fix in the three minutes of the task. We ran linear regression
models to assess whether the number of tubes predicted average
capability ratings across tasks (𝐵=−.11,𝑝 = .26) or average trust rat-
ings across tasks (𝐵=−.07,𝑝 = .43) Neither of these were significant.

3.2.3 Eye gaze. Finally, we looked at eye gaze behavior between
conditions. Because the eye tracking equipment did not work for
every participant, we had a sample size of 𝑁 =24 for the Function-
ing robot condition and a sample size of 𝑁 = 18 for the Control
condition. We were interested in whether the amount of time that
participants spent looking at the robot in the warehouse, as well
as other warehouse objects of interest (i.e., objects that were rele-
vant to the tasks), were different between conditions. A one-way
ANOVA showed a significant difference, 𝐹 (1,40) = 19.13,𝑝 < .001,
between conditions, with participants in the Control condition
(𝑚𝑒𝑎𝑛 = .095, 𝑆𝐷 = .039) spending a greater proportion of time
looking at task-relevant objects of interest than participants in the
Functioning robot condition (𝑚𝑒𝑎𝑛= .052,𝑆𝐷 = .024).

3.3 Discussion
Our hypothesis that seeing the robot perform in one environment
would lead to heightened ratings of capability and trust, as well as a
greater proportion of tasks assigned to it, was not supported by the
results. Seeing the robot behave in the spaceship first only affected
participants’ perceptions of how much they trusted the robot to fix
broken equipment. It is possible that this change occurred because
in the spaceship, participants could see that the robot has a welder
that would extend from its body and was used to fix the tubes. The
welder is not obvious when just looking at the robot the way the par-
ticipants in the warehouse did; therefore, the increased trust could

just be based on the knowledge that the welder existed and could
be used to fix things. The eye gaze finding that participants in the
Control condition looked at task-relevant objects for a greater pro-
portion of time than those in the Functioning robot condition could
indicate that they used more environmental cues to make their deci-
sions since they did not have as much information about the robot.

The surprising result of our hypothesis not being supported led
us to generate two possible explanations as to why that may have
happened: (1) the transfer model coincides with a participant’s
default mental model of robots: since the robot worked well in
the spaceship environment, the Functioning robot participants as-
sumed it would work well in the warehouse, while for the Control
participants, their general expectation was that robots work well.
Hence, expectations of participants in the Control condition and the
Functioning robot condition matched up, but for different reasons;
(2) the default model of the robot capabilities for new tasks, i.e.,
that robots are generally capable at tasks, “trumps” any potential
transfer effects. Our results are consistent with explanation (1), but
our experiment was not set up in such a way that we could rule
out explanation (2) which we addressed in the subsequent study.

4 STUDY 2
In this study, we were testing which of the two above explanations
is more likely to be true. To test this, we added a new condition—the
Faulty robot condition—in which the robot purposefully committed
errors in the spaceship task tutorial. If explanation (1) above is cor-
rect, we would expect the Faulty robot condition to result in lower
capability, trust, and assignment ratings from both the Control
condition and the Functioning robot condition. If the Functioning
robot and Control conditions resulted in the same rating because
they both coincided with people’s default mental model that robots
work properly, the Faulty robot condition should present evidence
to the contrary and people would be prompted to adjust their men-
tal model (of at least this particular robot) as they went into the new
environment. If, on the other hand, explanation (2) above is true,
we would expect to see no difference between any of the conditions,
because the participants would return to their default mental model
when presented with new tasks in a new environment, regardless
of the robot’s performance in the spaceship, thus overriding any
information they learned about the robot in the prior environment.

4.1 Methods
4.1.1 Participants. A total of 33 new participants who were over
18 and spoke English participated in this second study. Participants
were recruited from a pool of undergraduate and graduate stu-
dents, staff at the university and members of the local community
non-affiliated with the researchers’ university. The data of four
participants was unusable, resulting in a total of 29 additional par-
ticipants’ data being analyzed. Data was considered unusable if
there were technical issues or if the participant was too confused
or nauseous to complete the tasks. Participants were between 18
and 54 years old (𝑀 =25.91,𝑆𝐷 =8.81 years). The gender distribu-
tion for the sample was: male 55%, female 42% and non-binary 3%.
Compensation was $10USD.

4.1.2 Materials. The materials were the same as in Study 1.
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4.1.3 Procedures. The procedures were largely the same as they
were in Study 1 for the Functioning robot condition. However, five
distinct moments were used to indicate that the robot had faults.
First, when the researcher first introduced the idea of the robot
teammate, they described it by saying there was an “on-board robot
prototype assistant” that would helpwith the repairs. Describing the
robot as a prototype introduced the idea that the robot may not per-
form perfectly. After this, during the part of the tutorial in which the
participant learned how to repair a broken tube, the robot exhibited
four different errors. The first was a communication error; when the
participant practiced telling the robot “go to tube Gamma left four,”
the robot responded by saying “okay I am going to Beta.” The partic-
ipant was told by the researcher to repeat the command, and the ro-
bot then behaved successfully. Next, when the participant practiced
telling the robot “fix tube Gamma left four,” the robot demonstrated
an identification error. It told the participant “I cannot fix the tube
because the tube is not damaged.” The participant was again told by
the researcher to repeat the command. The robot next responded
with “my welder is stuck. Please hold until it is fixed,” indicating a
tool error. The robot did nothing for about three seconds after say-
ing this, then properly fixed the tube. Finally, as the researcher sum-
marized the instructions to the participant, the robot interrupted
and said “repairing tube” about the tube that it had just repaired.
This indicated a memory error. Besides the addition of these errors,
the procedure was the same as the Functioning robot condition.

4.1.4 Measures. Themeasures were the same as in Study 1. For this
study, the eye tracking equipment malfunctioned with too many
participants to be able to run any analyses for this data subset.

4.2 Results
4.2.1 Ratings. For this study, we ran the same analyses as we did in
Study 1, but with the Faulty robot condition added. Kruskal-Wallis
tests for average ratings of the robot’s capability (𝜒2 (2)=1.18,𝑝 =
.55) and participants’ trust in the robot (𝜒2 (2)=2.08,𝑝 = .35) across
all tasks showed no significant difference (Fig. 3).Chi-squared tests
looking at whether there was a difference between conditions for
the total number of tasks assigned to the robot (𝜒2 (16)=16.63,𝑝 =
.41) or assigned to the human (𝜒2 (16) = 18.24,𝑝 = .31) found no
difference.

Figure 3: Study 2 box plots for (A) average capability ratings
across all tasks (Control median = 3.55; Faulty median =
3.55; Functioning median = 3.60); (B) average trust ratings
across all tasks (Control median = 3.30; Faulty median = 3.35;
Functioning median = 3.40).

We again focused in on tasks that had robot precedented space-
ship analogous tasks.We therefore ran another set of Kruskal-Wallis

tests for “close boxes with a drill” for capability (𝜒2 = .38,𝑝 = .83)
and trust (𝜒2 = .83,𝑝 = .66), “patrol warehouse to check for open
boxes” for capability (𝜒2=1.76,𝑝 = .41) and trust (𝜒2=1.11,𝑝 = .58),
and for “fix broken equipment” for capability (𝜒2 = 3.93,𝑝 = .14)
and trust (𝜒2 =8.37,𝑝 = .015). Again, only this last test turned out
significant, with participants in both the Functioning robot condi-
tion (median=3.5) and Faulty robot condition (median=3) trusting
the robot to fix broken equipment more than those in the Control
condition (median=2).

4.2.2 Participant performance. Finally, we again tested if a given
participant’s performance in the spaceship environment predicted
anything about how they would rate the warehouse tasks. We ran
linear regression models to assess whether number of tubes pre-
dicted average capability ratings across tasks (𝐵 = −.15,𝑝 = .02),
average trust ratings across tasks (𝐵 =−0.10,𝑝 = .14), and average
task assignment (𝐵 =−.01,𝑝 = .53). Number of tubes fixed signifi-
cantly predicted participants’ capability ratings, with participants
who fixed fewer tubes rating the robot’s capability as higher.

4.3 Discussion
The fact that we did not see any difference in capability, trust, and as-
signment ratings thus eliminates the hypothesis (from Experiment
1) that the transfer model coincides with a participant’s default
mental model of robots, because the faulty robot should have let
subjects to trust it less in the new environment if they had updated
their mental model of the robot. This was again a surprising and
unexpected finding, one that seems in conflict with past findings
showing that a faulty robot significantly affects people’s percep-
tion of the robot’s reliability (e.g., [6, 25]). These results, therefore,
warranted further consideration of what might be at play when we
study how people transfer knowledge about robot task capabilities
across environments.

To ground our explanations, we turned to Hancock et al.’s [11]
recent meta-analysis about three relevant factors that affect human-
robot trust: the robot, the human, and the contextual environment.
In following this format, we can see four different possibilities for
factors that may have contributed to the outcome of our experi-
ments: robot factors, human factors, task factors, and environmental
factors. We separated Hancock et al.’s “contextual” factors into “task
factors” and “environment factors” to get at the nuances in our ex-
periments between how the actual environments versus the tasks
themselves may have affected participants’ views. Our previous
study tackled the robot factor, and we found that the robot’s behav-
ior and task performance do not seem to influence perceptions of
trust. Considering the task factors and the environmental factors
presents us with two conflicting hypotheses.

In the task-based hypothesis, the actual tasks themselves, and
what completing them would entail, may have been a factor in peo-
ple’s decisions in our experiment. This would be in line with Soh
et al.’s findings that task similarity is correlated with trust [28–30].
We had assumed that people would make the same connections be-
tween tasks across the warehouse and spaceship environments that
we had made a priori; however, they may have different clusters of
tasks that subjects considered similar. Transfer thus may have hap-
pened across these similar task clusters that we had not anticipated.
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In the environment-based hypothesis, seeing the robot situated
in a specific environment may have notable effects on what the
person believes about the robot. While humans have the agency to
move about freely and enter environments in which they may not
have the necessary skills to be useful, robots are generally created
for specific purposes, and placed deliberately in spots where they
will be able to fulfill those purposes. Therefore, people may assess
robots from a strongly teleological viewpoint in which they assume
that the robot’s capabilities are appropriate for the environment
and that the robot will be able to successfully complete all tasks in
that environment. There is some evidence to show that even when
a robot malfunctions at one task in an environment, people still
trust its authority at a different task in the environment (e.g., [22]).
Being situated in a specific environment could therefore have a
much bigger impact on the assumption of capability and perceived
trustworthiness of a robot than it would on a human.

Finally, it is possible that there are notable individual differences
among the participants that we failed to identify that may have
played a role that contribute to the human factor of Hancock’s trust
factors. We compare the two above hypotheses, while considering
the possibility of individual differences, in the following study.

5 STUDY 3
The third study was intended to test whether task factors or envi-
ronmental factors were more likely to affect trust transfer across
tasks. We hypothesized that if people’s trust in the robot and as-
sumptions about its capabilities are based on the tasks that the
robot does, then transfer will happen between tasks that are consid-
ered similar to each other. We predict that there will be a positive
correlation between task similarity ratings and trust ratings. How-
ever, if people’s trust in the robot and the assumptions about its
capabilities are instead based on the assumption that the robot is
situated in a particular environment and therefore should be able
to do any task within that environment, then transfer will happen
across all tasks in the environment equally. With this hypothesis
in mind, we predict, based on our previous results, that there will
be no correlation between task similarity and trust. The following
online study was run to address these two hypotheses.

5.1 Methods
5.1.1 Participants. A total of 52 new participants who were over
18 and spoke English participated in this third study online through
Prolific. Participantswere between 19 and 73 years old (𝑀 =36.67,𝑆𝐷 =

13.39 years). The gender distribution for the sample was: male
51.92%, female 48.08%. The ethnic distribution for the sample was:
White 76.92%, Black or African American 9.62%, Asian 11.54%, His-
panic 9.62%, American Indian or Alaska Native 3.85%. Compensa-
tion was $2.50USD.

5.1.2 Materials. The studywas created in Qualtrics and distributed
using the platform Prolific. The videos of the robot performing the
tasks were taken in the same Unity virtual warehouse as used in
Studies 1 and 2, and the robot was the same virtual PR2.

5.1.3 Procedures. After providing informed consent and confirm-
ing that autoplayed videos worked on their computers, participants
saw a video of the robot completing one of the warehouse tasks

Watched video of Answered trust questions about
Welcome delivery people Communicate product information

to the warehouse with delivery people
Fix broken equipment Close boxes with a drill

Identify broken products Stack boxes
Place products in boxes Label items
Table 1: Pairs of tasks that participants saw in Study 3.

(Task X). The video began playing automatically, and a “proceed”
button did not appear until the video ended. After responding to
an attention check question, they were asked to evaluate a different
warehouse task (Task Y) which they did not see performed in a
video. Participants answered questions about capability, trust, and
task assignment. This pattern was repeated with four total different
X & Y task pairs. After answering these questions for all four pairs,
participants rated how similar they found tasks X & Y to be for
every pair of tasks. The task pairs that were analyzed are presented
in Table 1. Participants answered a final attention check question,
a short demographics questionnaire, and then were compensated.

5.1.4 Measures. The trust and capability questions were the same
as the ones used in Studies 1 and 2. For the task similarity ratings,
participants saw one of the 12 task pairing combinations at a time
and rated their similarity on a 6-point “Very dissimilar” to “Very
similar” Likert scale.

5.2 Results
To check if the level of similarity between a task that the partici-
pant had seen the robot complete and a task that they had not seen
the robot complete affected perceptions of capability and trust for
the unseen task, we ran linear regressions. Results indicated that
there was no overall effect of similarity ratings on either capability
perceptions (𝐹 (1,206)=1.495,𝑝 = .2228, adjusted 𝑅2= .0024) or trust
(𝐹 (1,206)=2.103,𝑝 = .1485, adjusted 𝑅2= .0053). There was no effect
of either gender (𝑝 = .0627) or age (𝑝 = .628). Overall, the results
support the environmental factors hypothesis. However, to check
whether this lack of correlation was due to individual differences
in participants, we made scatterplots for each participant of their
trust and similarity scores. Of our 52 participants, 12 had a positive
correlation between task similarity and trust, 23 had a negative
correlation, and 17 had no correlation (see Fig. 4 for representative
plots for each of these types of correlations).

Figure 4: Representative examples of participants who
had a negative correlation (Participant 8), no correlation
(Participant 42), and a positive correlation (Participant 41)
between task similarity and trust.
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5.3 Discussion
While there was overall no correlation between task similarity
ratings and trust scores, the lack of an effect was the result of sig-
nificant individual differences, rather than being representative of
most of the participants’ scores. The wide spread of individual dif-
ferences indicates that there is no common factor that explains how
individuals make trust (and capability) judgments across tasks. For
people with a positive correlation, the task factors hypothesis—that
transfer happens across tasks that are similar—would explain the
results. For those with no correlation, the environmental factors
hypothesis—that transfer happens evenly across all tasks done in
the same environment—would be accurate. It is not clear what kind
of reasoning people with a negative correlation may be employing
(e.g., perhaps they believe robots have that only do similar tasks
have a narrow skill set and are generally less capable).

6 GENERAL DISCUSSION
In summary, wewere initially motivated by understanding “what as-
sumptions about a robot’s capability and trust in the robot transfer
from one environment to another after having seen the robot be-
have and perform tasks in the first environment”. We hypothesized
that participants who interacted with the robot in one environment
would perceive the robot as more capable and trust it more in a sec-
ond environment; they would remember what they observed in the
first environment, and would apply that knowledge to assessments
in the second. However, this did not turn out to be the case.

We proposed two alternative explanations: that the robot per-
forming well in the first environment aligned with people’s default
models that robots are generally capable and work well, and there-
fore information further confirming this did not change baseline
assumptions; or, alternatively, that the default model of the robot
working well outweighs actual experience with the robot. We tested
these hypotheses by adding a third experimental condition in which
the robot’s behavior was faulty in the first task.We predicted that, in
line with the first explanation, this would go against people’s default
models of robots working well, and would result in lowered assess-
ments of capability and trust in similar tasks as compared to the Con-
trol condition. However, the results did support this hypothesis, as
participants in the Faulty condition rated the robot the same nearly
across the board as those in the Functioning and Control condition.

We then ran a third study to disentangle whether task factors
or environmental factors were more likely to affect trust transfer
across tasks. We found no significant effects due to significant indi-
vidual differences, with some participants’ ratings in line with Soh
et al.’s findings that increased task similarity led to increased trust
[28–30]. For others, the fact that the robot is situated in a particular
environment may lend credence to its capability at all tasks in the
environment, as is perhaps supported by Robinette et al.’s work [22].

These individual differences indicate that there may not be a
single factor (or even small set of factors) that robot designers
can utilize to prompt all interactants to make the appropriate task
transfer inferences and trust robots with new tasks in new envi-
ronments. This is a critical insight for future HRI research, for it is
highly desirable for many HRI contexts that people be able to make
the right kinds of assumptions about what tasks robot may be able
to perform, and how well, in different situations based on what they

know about the robot from their experience with it For example,
think of firefighters employing robots in search and rescue missions
in new environments, or even household robots that are taken to
different apartments with different kitchenware, appliances, etc.

In a next step, it would then be important to determine addi-
tional individual human factors such as the subjects’ knowledge
about robots, their past interactions with different types of robots,
their overall dispositions towards robots (e.g., where and when
they thought robots should be employed), and others. Those factors
would then serve as co-variates in the above and similar studies,
ideally helping to find systematic correlations with the different
trust rating trends. And it would be important to then also vary
the robot’s appearance to exclude the possibility that the PR2 robot
employed in all of our studies is somehow peculiar and that the
same effects would not have been obtained with different robot
types. Finally, while VR-based interaction studies are immersive
and allow for HRI in otherwise unattainable environments (or with
unattainable robots), it would be important to confirm that the em-
ployed experimental paradigm also holds true with physical robots
co-located with subjects in physical environments.

7 CONCLUSION
We set out to explore how people’s experiences with a robot in
one environment affects their perceptions of it in a different envi-
ronment; specifically, we were interested in whether people would
transfer any assumptions they had made about the robot’s capabil-
ity and their trust in it from the first environment into the second
environment. In our first study, we found no difference in people’s
perceptions of capability and trust in the robot whether they had
prior experience with the robot in one environment before moving
on to a second environment or not. We then hypothesized that this
was because a robot working well in the first environment fits peo-
ple’s default model of robots generally working well; however, this
hypothesis was refuted in our second study where we found that in-
teracting with a faulty robot still resulted in the same capability and
trust ratings. We then tested two different hypotheses, that people’s
perceptions were either generally affected by task-related factors
and transfer would happen across similar tasks, or environmental-
related factors and transfer would happen evenly across all tasks in
one environment. While we found overall support for the environ-
mental hypothesis, we also found strong individual differences in
task similarity and trust dynamics among our participants. Taken
together, the three studies thus establish that trust transfer across
tasks and environments is not uniform across subjects, but seems to
depend essentially on individual factors that are currently unknown.
Hence, the findings point to an urgent need to isolate what under-
lies the significant individual difference we observed, for making
appropriate task transfer inferences across tasks and environment
is a critical factor in many envisioned robotic applications.
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