
A Framework for Neurosymbolic Goal-Conditioned Continual Learning
in Open World Environments

Pierrick Lorang1,2, Shivam Goel1, Yash Shukla1, Patrik Zips2, and Matthias Scheutz1

Abstract— In dynamic open-world environments, agents con-
tinually face new challenges due to sudden and unpredictable
novelties, hindering Task and Motion Planning (TAMP) in
autonomous systems. We introduce a novel TAMP architecture
that integrates symbolic planning with reinforcement learn-
ing to enable autonomous adaptation in such environments,
operating without human guidance. Our approach employs
symbolic goal representation within a goal-oriented learning
framework, coupled with planner-guided goal identification,
effectively managing abrupt changes where traditional rein-
forcement learning, re-planning, and hybrid methods fall short.
Through sequential novelty injections in our experiments, we
assess our method’s adaptability to continual learning scenarios.
Extensive simulations conducted in a robotics domain corrob-
orate the superiority of our approach, demonstrating faster
convergence to higher performance compared to traditional
methods. The success of our framework in navigating diverse
novelty scenarios within a continuous domain underscores its
potential for critical real-world applications.

I. INTRODUCTION

Recent advancements in Task and Motion Planning
(TAMP) have significantly improved the integration of high-
level task reasoning with low-level motion planning in
robotics. These methods enable solutions to complex, long-
horizon tasks by assuming access to task structures and
environmental configurations, typically represented through
planning domains like PDDL [1], coupled with low-level
controllers like motion planners. The process results in an
ordered list of operators from a task plan, which the robot
executes using its knowledge base.

Despite these advancements, challenges remain, particu-
larly in scenarios where obtaining comprehensive and accu-
rate high-level information demands substantial engineering
efforts. This limitation often leads to suboptimal task perfor-
mance, especially if the available information is flawed or
incomplete. To address this, recent studies have combined
TAMP with Reinforcement Learning (RL), allowing the
system to learn policies for low-level controllers, thereby
reducing reliance on hard-to-engineer information [2].

However, a notable limitation of these combined ap-
proaches is their assumption of complete access to task dis-
tributions. They struggle in ‘open-world’ scenarios character-
ized by sudden, unpredictable changes in environmental dy-
namics, task goals, or the agent’s capabilities. In these ‘open-
world’ situations, agents encounter ‘novelties’ that chal-
lenge their existing world knowledge and decision-making

1Tufts University, 419 Boston Ave, Medford, 02155, MA, USA
first.last@tufts.edu

2AIT Austrian Institute of Technology GmbH, Center for Vision, Au-
tomation & Control, Vienna, Austria first.last@ait.ac.at

Hybrid Planning and Goal-oriented Learning

Planner
Learner

Goal-conditioned

Reduced learning search

Symbolically represented goal space

Symbolically conditioned policy

Transferable policy

Abstracted Domain

Discrete Space
MDP Environment

Continuous Space

Plannable goals

conditioning

while learning

Fig. 1. Our method leverages symbolically conditioned learning.

strategies. This inadequacy of symbolic knowledge in novel
scenarios renders traditional purely symbolic approaches [3]
ineffective. To overcome these challenges, agents must be
capable of adapting to sudden changes, necessitating ex-
ploration and learning to acquire the skills necessary for
addressing new tasks. Recent work [4] addresses novelty
accommodation by employing a hybrid TAMP and RL
approach. However, this method is highly sample-inefficient,
requiring the agent to learn a new RL policy from scratch
for each encountered novelty, even for similar situations. As
an example, consider a robot that does not have operators
to perform the novel Pick(Apple) and Pick(Orange) actions.
Such an approach will learn two separate RL policies for
these novelties even though one policy could intuitively be
reused to learn the second. Our approach introduces a multi-
goal continual learning framework to overcome this ineffi-
ciency, see Fig.1. By leveraging a symbolic goal-oriented
RL protocol with transfer learning we abstract and reuse
previously learned knowledge to efficiently handle multiple
novelties in continual learning scenarios, ensuring robust
recovery in dynamic environments. Our contributions are:

(1) Our methodology augments a hybrid planning and
learning architecture with a novel symbolic goal-oriented
learning mechanism. In the face of novelties, our approach
activates an exploration protocol that adeptly navigates the
continuous environment using symbolic representations of
goals, establishing neural connections between planning and
learning. (2) To improve sample efficiency, we utilize the
planner inside the learning protocol to discover symbolic
shortcuts as new goals. We also employ transfer learning
to efficiently reuse previously acquired policy knowledge.

We conducted evaluations within a continuous robotics

domain, using the Mujoco simulator. Our analysis included
comparisons with both traditional RL algorithms and ad-
vanced hybrid agents, especially in scenarios requiring ongo-
ing adaptation to novel situations. The results provide strong
evidence of the superiority of our approach, demonstrating
notable advancements over existing methods in handling
dynamic and unpredictable environments.

II. RELATED WORK

Many hybrid approaches for TAMP problems have demon-
strated leveraging high-level planner representations along-
side low-level policy-based learning approaches like RL
[5], [6], [7], [8], [9], [10]. These approaches often rely
on planning systems built under closed-world assumptions,
rendering them ill-equipped for unforeseen situations in
open-world settings.

Developing integrated architectures for open-world nov-
elty accommodation is fairly recent [11], [12], [13]. Prior
research in “life-long learning” with deep RL variants faced
catastrophic forgetting and adaptability challenges in abrupt
changes [14]. “Meta Experience Replay” [15] and “pow-
erplay” [16] required extensive retraining. In contrast, RL-
based learning of planning operators as higher-level abstrac-
tions simplifies reuse and storage, addressing catastrophic
forgetting as RL policies are retained post-training [17]. This
approach, however, has limitations in discrete environments
and single novelty adaptations. While hybrid methods help
in recovery, they encounter issues with data inefficiency and
extended learning times, especially in continuous spaces.

Recovering from planning failures using Reinforcement
Learning (RL) remains challenging due to expensive data re-
quirements, while novelty handling demands responsiveness
with limited data. Recent research on accommodating dy-
namic environments has focused on scenarios where agents
encounter informed, gradual, or plan-level changes [2], [18],
[19], [20], [21]. Some works prioritize solving tasks within a
single trial, sacrificing robustness [22], while others explore
leveraging human guidance [4]. Previous works have delved
into goal-oriented RL within hybrid frameworks [23], [24]
to help the data efficiency, yet none have fully exploited the
integration of symbolic representation and reasoning as a
goal selector to expedite exploration. Despite advancements,
enhancing learning efficiency in uninformed and abrupt
open-world settings remains an ongoing challenge.

III. PRELIMINARIES

A. Symbolic Planning

Symbolic planning typically builds upon a domain ren-
dered in a formal language such as PDDL [1]. Let
σ = ⟨E ,F ,S,O⟩ be a domain description, where E ={
ε1, . . . , ε|E|

}
is a set of entities within the environment.

F =
{
f1(⊙), . . . , f|F|(⊙)

}
,⊙ ⊂ E is a set of boolean

or numerical predicates. S =
{
s1 . . . , s|S|

}
is the set of

symbolic states in the environment. O represents the set
of known action operators, defined as O =

{
o1, . . . , o|O|

}
.

Each operator oi is characterized by a set of preconditions
and effects denoted ψi, ωi ∈ F . The preconditions ψi and

effects ωi of oi represents the predicates that must hold (or
must not hold) before and after executing oi, respectively.
A planning task is typically described as a STRIPS task
which we denote as T = (E ,F ,O, s0, sg), where s0 ⊂ S
represents the set of initial states and sg ⊂ S represents the
set of desired goal states. The solution to this planning task
T is presented as an ordered sequence of operators, denoted
as plan P =

[
o1, . . . o|P]

]
.

B. Goal-oriented Reinforcement Learning (RL)

We formalize the environment in which the agent acts as
a Markov Decision Process (MDP) M = ⟨S̃,A, R, τ, γ⟩,
where S̃ represents sub-symbolic states, A actions, R :
S̃ ×A → R the reward function, τ the probability transition
function τ(s̃t+1|s̃t, at), and γ ∈ (0, 1] the discount factor. A
policy for M is defined as a probability distribution πM (a|s̃)
that an agent chooses action a in state s̃. We abbreviate πM
as π in this paper. An RL algorithm aims to find a policy
that maximizes the expected sum of discounted rewards,
Gt =

∑∞
k=0 γ

kRt+k+1, over time t. The value of each state-
action pair under a policy π is defined as the expected return
when starting in s̃ and following π afterwards, Qπ(s̃, a) =
Eπ[Gt|S̃t = s̃;At = a]. An optimal policy is defined as any
policy π∗ so that Qπ∗

(s̃, a) ≥ Q∗(s̃, a), the optimal value
function, for every possible state, action, and policy. The
value of each state-action pair under policy π is denoted by
Qπ(s̃, a), representing the expected return starting in state
s̃ and following policy π. Q∗(s̃, a) denotes the maximum
expected return achievable for any policy from state s̃ and
action a. An optimal policy π∗ ensures Qπ∗

(s̃, a) ≥ Q∗(s̃, a)
for all states and actions.

Schaul et al. [25] extend the RL framework with Unified
Value Function Approximation (UVFA), that generalizes
over both states S̃ and goals G. UVFA enables representing
a set of RL value functions with one unified function
approximation. In UVFA, the agent acts upon the current
state and the goal g ∈ G, defining the policy as π(a|s̃, g).
The resulting reward is also goal-dependent rt = r(s̃t, at, g)
and the corresponding Q-function involves a goal in addition
to the state-action pair Qπ(s̃t, at, g) = E[Rt|s̃t, at, g]. Ex-
periments in the LavaWorld environment [26] demonstrated
UVFA’s capability to generalize across various state-goal
pairs, given adequate training data. UVFA’s flexibility allows
for its integration with off-policy algorithms such as Deep
Q-Networks (DQNs) [27] and Soft Actor-Critic (SAC) [28].

In addition, UVFA has been combined with Hindsight
Experience Replay (HER) [29], for sample-efficient learning
from sparse and binary rewards. HER alters the RL sam-
pling process by replaying experiences with various arbitrary
goals, enabling the agent to derive learning values from sub-
optimal outcomes. Specifically, for each transition (s̃t →
s̃t+1) within an experienced episode (s̃0, s̃1, ..., s̃T), HER
stores the original goal from the episode and a selection
of goals from prior episodes. This method of “experience
replay” with an arbitrary goal, conducted via an off-policy
RL algorithm, allows HER to imagine trajectories with

different goals, thereby enabling the learning of multiple task
variations from a single experience.

C. Hybrid Plan & Learn for Novelty Accommodation

In open-world scenarios, agents may face novelties that
create impasses in task completion T . Sarathy et al. [17]
addressed this by proposing an Integrated Planning Task
(IPT) framework, which integrates planning and learning.
An IPT T = ⟨T,M, d, e⟩ is comprised of a STRIPS task
T , an MDP M , a detection function d : S̃ → S (mapping
sub-symbolic states S̃ in M to high-level planning states
S in σ, where d is surjective), and an execution function
e : O → XM (mapping each planning operator oi ∈ O to
an executor in MDP). An executor x = ⟨I, π, β⟩ consists
of an initiation indicator I(s̃), a policy π(s̃) → A, and
a termination indicator β(s̃). This executor framework, an
extension of the options framework by Sutton et al. [30],
allows inferring initiation and termination conditions from
the agent’s observations or reasoning. A solution to an
IPT T is an executor, and a planning solution is a plan
P =

[
o1, . . . o|P]

]
. If all operators are accurate, executing

the corresponding executors e(o1), ..., e(o|P]) in MDP M in
sequence results in a final state s̃ ⊆ sg . An IPT T is solvable
if a solution exists and plannable if a planning solution
exists. A plannable state is a state in which following the
plan P can achieve the task goal sg .

IV. METHOD

A. Problem Statement

In our work, a novelty is a new encounter that impacts
the known dynamics τ , or the state representation S̃ of the
environment M , or does not belong to the agent’s domain
knowledge σ. A novelty is detected via an operator in the
plan that, at execution time, cannot be executed or does not
produce the expected effects and fails; we call this a failed
operator. We focus on novelties that obstruct action execution
and where no symbolic solution can be inferred.

Such a challenge is called the executor discovery problem.
When an agent is deemed unable to successfully infer a
solution to a task T because of a novelty, it needs to discover
a recovery executor x capable of supplying the missing infor-
mation. To solve this problem, the agent must generate on-
the-fly a “Stretch-IPT” denoted as T̃ = ⟨T,M ′, d, e′⟩, where
M ′ = ⟨S̃ ′,A, R, τ ′, γ⟩, S̃ ′ being the new environment’s
state space and τ ′ the new transition function, both possibly
impacted by the novelty occurrence.

An executor xrecovery solution to a particular Stretch-
IPT either captures a new path in the subjacent MDP to
achieve a known operator transition (i.e., for an operator of
that failed, e′(of) = xrecovery), or captures a completely new
operator (onew /∈ O, e′(onew) = xrecovery) which provides a
functioning symbolic path in σ to the task goal. T̃ is then
said to be Solvable if a path (symbolic and continuous) exists
from s0 to sg . Our aim in this paper is to propose an approach
capable of benefiting from previous recovery executors to
increase the agent’s adaptability over time on continual and
uninformed learning scenarios.

B. Methodology Overview

Our proposed methodology builds upon a hybrid planning
and learning agent architecture that utilizes domain knowl-
edge to generate plans for tasks. When an impasse occurs
due to environmental novelty, the agent creates a Stretch-
IPT on-the-fly for executor discovery. In our work, executor
discovery integrates goal-conditioned learning, where execu-
tors are conditioned on symbolic goals, allowing the agent
to generalize strategies across various task instances. The
agent utilizes the planner to continually discover relevant
goals to condition the policies, see Fig 2 right, and search
for shortcuts see Fig 3, facilitating adaptation to novelty.

C. Hybrid Architecture Extension

A hybrid architecture typically consists of a dual-layer
design: a symbolic planning layer and a continuous execution
layer. In the symbolic layer, a planner is utilized to generate
a plan starting from s0 to the task goal state sg using the
domain knowledge (described in PDDL). In the execution
layer, the executors mapped to each operator in the plan get
executed in the MDP environment one operator at a time.

We extend the hybrid planning and learning architecture
to accommodate continual learning scenarios by associating
multiple executors with the same operator. Formally, we
define this mapping as e(o) = Xo = {x1, x2, ...}, see Fig 2
left. For each novelty that leads to an operator failure (of), we
add a recovery executor to the set Xf mapped to of through
the executor function e : O → X . In particular, the agent
executes each operator oi in the plan, gathering Xi = e(oi)
with chronological ordering delineated. Executors in Xi are
prioritized based on the indicator function, which outputs
1 for executors deemed suitable for the current state. The
success of an executor is verified by confirming whether the
agent reaches a state satisfying the expected effects of the
corresponding operator oi.

The execution protocol is then detailed in Alg. 1. The
agent iterates over the plan until a novelty in the environment,
modifying M to M ′, causes an execution impasse1, and in
turn causes an operator of to fail. An execution impasse
means that either all executors in Xf failed. i.e., the operator
failed, or that |Xf | = ∅, thus no symbolic solution can be
inferred from the current agent knowledge. To solve such
an impasse, we instantiate a Stretch-IPT T̃ based on M ′

to discover a recovery executor (xrecovery). We set the reset
condition for the executor discovery based on the I indicator
derived from sf , the state where of failed (Eq. 1), and
initialize the termination condition using the β indicator
computed from ωof (Eq. 2 with Gp initialized to {ωof }).
Upon successfully learning, the agent either maps xrecovery

to the failed operator (adding it to Xf) or abstracts a new
operator and executes it to overcome the impasse caused
by the novelty. In the event of failure to learn a recovery
executor, the framework returns false.

1It is beyond the scope of this work to discern whether a failure stems
from the introduction of novel elements or due to the agent’s shortcomings.

Fig. 2. Overview diagram of the framework. Dual layers (planning & execution) with different space representations. Typical Hybrid approaches achieve
the dual layer execution and restrict the search space for learning using the symbolic domain. In addition, our framework enables multiple executors
mapping per operator and establishes learning connections between symbolic and continuous layers.

D. Executor Discovery using Goal-conditioned Learning
In goal-oriented RL, a goal space G ⊆ S̃ is commonly

considered. In our approach, we adopt symbolic representa-
tions for goal spaces in RL, i.e., G ⊆ S, enabling broader
task perspectives beyond sensor-level data. By conditioning
executors on symbolic propositions, the agent gains insight
on the higher symbolic structure of the continuous environ-
ment, which facilitates faster executor discovery. Because
S is an abstraction of S̃, we still have G ⊆ S̃. Any goal
g ∈ G can thus be expressed as a set of grounded predicates
(g = {f1(⊙), f2(⊙), . . .}) and the transcription from S̃ to G
is also facilitated by the detection function d.

We expand the definition of the executor x ∈ X to
incorporate the goal space in the policy definition: πg :

S̃ × G → A, as well as in the termination indicator
βg(s̃). Notably, such executor is symbolically conditioned,
i.e., πg : S̃ × S → A, because G ⊆ S . We refer to
such executors as ”symbolic goal-conditioned” executors,
denoted as x = ⟨I, πg, βg⟩. Specifically, for a new MDP
M ′, we initialize an executor x′ with an initiation indicator I ′

computed from the current operator’s failed state, a symbolic
goal-conditioned policy πg′ and a termination indicator βg′

initially computed from the grounded predicates of the failed
operator’s expected effects.

When executing an executor mapped to the operator oi,
we set the goal g = ωoi . We then sample actions from
the symbolic goal-conditioned policy: a ∼ πg(·|s̃, ωoi). The
executor is terminated when βg outputs 1, indicating that
the agent reached g. From this state, the agent can re-plan a
functioning path to the task goal sg .

By integrating HER, the agent learns numerous versions
of a task through experience replay, utilizing arbitrary goals
derived from a symbolic space. As a consequence of the
inherent generalization capabilities across state-goal pairs,
our agent has the ability to generalize policy strategies for op-
erators across various groundings. For instance, our agent can
generalize knowledge from executing Pick(‘‘Mug’’) to
Pick(‘‘Dish’’), employing the same symbolic goal-
conditioned policy for Pick(·). It can also generalize the
information that the predicate open(‘‘Door’’) evaluated
as True is relevant for any navigation task, for example.

A

B

C

D

Failed State Task GoalInitial State Expected Effects

Plannable State

Symbolic Transition (Operator)

Failed Operator

Learnable Executor

Fig. 3. We discover goals and shortcuts by utilizing the planner during
learning. Green dots represent plannable states. Classical hybrid approaches
typically pursue paths A or occasionally B. We aim to find shortcuts like
paths C and D, which are more cost-effective to learn.

To adapt to new situations quickly, an agent leverages its
existing knowledge by integrating transfer learning within
our framework. When facing a novelty that requires a new
executor, the agent transfers the weights from the most
recently used policy of the failed operator instead of starting
anew. For a failed operator of , we select the latest executor
x = ⟨I, πg, βg⟩ from e(of), trained in environment M . The
policy’s parameterizing function, πg , serves as the foundation
for π′

g , the policy for xrecovery in a new setting, M ′. However,
to prevent the agent from learning from outdated information,
we do not reuse old replay buffers.

Over time, the agent amasses experiences across diverse
symbolic states while operating at a continuous level, estab-
lishing links between the abstract domain and the MDP.

E. Goal-conditioning & Search for Shortcuts

Finding relevant goals to condition a policy that swiftly
accommodates a novelty is essential. In our architecture, we
integrate the planner into the learning process to expedite the
search for pertinent goals. Notably, we leverage the planner
to explore ”Shortcuts” (as depicted in Fig. 3)—symbolic
states for which a plan to sg already exists. Upon identifying
a Shortcut state, we validate whether the symbolic plan
execution from this state to sg is viable in M ′. If the
execution proves successful and the agent reaches sg , the

Algorithm 1 Execution (T , adapt=true)
Require: T = ⟨T,M, d, e⟩ ▷ Integrated Planning Task
Require: T = ⟨E,F ,O, so, sg⟩
1: P ← Plan(T) ▷ P = ⟨o1, o2, ..., o|P|⟩
2: if P is ∅ then return false ▷ Abort
3: end if
4: for oi ∈ P do
5: success ← false ▷ Operator success
6: Xi ← e(oi)
7: for x in Prioritized(Xi) do ▷ Executors Prioritization
8: s̃← Execute(x)
9: s← d(s̃)

10: success ← check(ωoi ⊆ s) ▷ Check if ωoi hold in s
11: if success then
12: break for ▷ Operator success. Continue with P
13: end if
14: end for
15: if ¬success ∧¬adapt then
16: return false ▷ If all x ∈ Xi failed ∧¬adapt, abort
17: end if
18: if ¬success ∧adapt then ▷ Else if adapt, proceed to Recovery
19: s̃f , sf , of ,Xf ← s̃, s, oi,Xi ▷ Failure information
20: T̃ = ⟨T,M′, d, e′⟩ ▷ Stretch IPT
21: xrecovery ← Adapt(T̃ , of , s̃f)
22: s̃← Execute(xrecovery) ▷ Execute Learned Executor
23: s← d(s̃)
24: P ← Plan(T ,s) ▷ Check if T has a plan from s
25: success ← ¬(P is ∅)
26: if success then
27: if ωof ⊆ s then ▷ New executor mapping
28: e′(of)← Xf∪{xrecovery}
29: else ▷ New operator abstraction
30: onew ← ⟨ψnew = sf , ωnew = s− sf ⟩
31: O′, e′(onew)← O ∪ {onew}, {xrecovery}
32: end if
33: break for ▷ Operator success. Continue with P
34: else
35: return false ▷ Abort if still ¬success
36: end if
37: end if
38: end for
39: return true ▷ T solved successfully

Shortcut becomes a viable goal for xrecovery to pursue.
The goal-conditioning and discovery of recovery executors

is explained through Alg.2. The policy πg is goal conditioned
and can be trained on any goal in S. In our framework, a
desired goal g is a functioning plannable state, i.e., whose
plan execution from g to that task goal sg is successful
in the modified MDP M ′. We proceed to such verification
by invoking Alg.1 Execution(·) on the modified task T ′

with initial state s′0 = g, and adapt deactivated. Multiple
such goals can exist and we call the set of desired goals
GP = {g1, g2, g3, ...}. More formally, if we consider s′0 = s
as initial state in the modified task T ′ = ⟨E ,F ,O, s′0, sg⟩
embodied in T̃ ′ = ⟨T ′,M ′, d, e⟩, the set of desired goals
is GP = {s| T̃ ′ is Solvable}. During the learning process,
we initialize GP set using the expected effects of the failed
operator of , i.e., any state in which ωof is satisfied. GP then
expands as the agent discovers functioning plannable states
through random exploration.

GP is employed to compute the reward function, now
denoted as Rg , as shown in Eq.3. GP is also utilized to
compute the termination function, now referred as βg in Eq.2.
We treat the indicator functions as test functions:

Algorithm 2 Adapt (T̃ , of , s̃f) → xrecovery

Require: an off-policy RL algorithm A
Require: hyper-parameters H
Require: Neps ▷ Maximum number of episodes
Require: nsteps ▷ Maximum number of steps per episodes
Require: η ▷ A success rate threshold
Require: transfer ▷ Boolean parameter for transfer learning
1: G ←Compute Space(E,F) ▷ Goal Space
2: GP ← {g ∈ G|ωof ⊆ g} ▷ Goal set
3: SP∅ ← {sf} ▷ States without symbolic solution to T.sg
4: I ← test(d(s̃) is sf) ▷ Initiation indicator
5: βg ← test(d(s̃) ∈ GP) ▷ Termination indicator
6: Rg ←Compute Reward(GP) ▷ Symbolic Goal-conditioned Reward
7: if transfer then
8: xsource ← Prioritized(Xf)
9: πg←xsource.πg ▷ Symbolic Goal-conditioned Policy

10: else
11: Initialize πg
12: end if
13: for Neps episodes do
14: s̃← Sample state(M ′, I) ▷ Reset the MDP s.t. I(s̃) is 1
15: g ← Sample goal(GP)
16: done ← false
17: while ¬done do
18: s← d(s̃)
19: a ∼ πg(·|s̃, g)
20: s̃′ ∼ τ(·|s̃, a) ▷ Environment step
21: s′ ← d(s̃′)
22: if (¬(s′ is s) ∧ s′ /∈ GP ∧ s′ /∈ SP∅) then
23: T ′ ← ⟨E,F ,O, s′, sg⟩
24: T̃ ′ ← ⟨T ′,M ′, d, e′⟩
25: if Execution(T̃ ′, false) is true then
26: GP ← GP∪{s′} ▷ s’ is a functioning plannable state
27: else
28: SP∅ ← SP∅∪{s′} ▷ s’ has no solution to reach sg
29: end if
30: end if
31: πg ←Train with HER(s̃, a, s̃′, Rg)
32: if (βg(s̃′) is 1) ∨ reached(nsteps) then
33: done ← true
34: end if
35: s̃← s̃′

36: end while
37: if success(πg , T̃) > η then
38: xrecovery←⟨I, πg , βg⟩ return xrecovery
39: end if
40: end for
41: xrecovery←⟨I, πg , βg⟩
42: return xrecovery

I =

{
1, if d(s̃) = sf ,

0, otherwise.
(1)

βg =

{
1, if d(s̃) ∈ GP ,

0, otherwise.
(2)

The agent builds a sparse reward function Rg which, in
case the agent reaches a goal state st ∈ GP , provides a fixed
positive reward r; otherwise, a −1 penalty per time step in
the MDP. Formally:

Rg (s̃t, at,GP) =

{
r, if d(s̃t) ∈ GP
−1, otherwise. (3)

This approach revises the conventional HER reward function,
which typically accounts for a single goal per episode. Here,
the reward function considers a set of goals (GP) instead.
In our method, each goal g ∈ GP is assigned an equivalent
reward value, yet each step within the MDP M entails a cost.

Fig. 4. Left: the original Pick&Place environment and the task of picking
and placing a can (the red ball indicates the light-switch location). Right:
the Obstacle novelty, a pole obstructs the path to the drop-off area (bin
on the right).

Consequently, our agent is designed to identify and prioritize
the goal g∗ that enables reaching a functioning plannable
state in the fewest possible steps. This strategy effectively
creates an efficient route for adapting to novelties, thereby
reducing the computational demands of learning. Notably,
the planner is not engaged at every step of the MDP during
the learning phase. Instead, its use is optimized and occurs
only when the agent progresses from one symbolic state to
another, and the current symbolic state has not been verified
through Alg.1 before. If xrecovery learns to achieve g∗ when
of fails such that ωof ⊈ g∗, then we abstract a new operator
onew /∈ O. In such case, ψnew = sf , ωnew = g∗, and
e′(onew) = {xrecovery}.

V. EXPERIMENT

A. Environment

We evaluate our approach using the continuous Robo-
Suite [31] collection. Our primary focus was on the Pick
and Place Can environment featuring a robotic arm, highly
relevant to real-world robotics. The task involves picking
and placing a can in a bin, a seemingly simple yet complex
task for an RL agent, as indicated by benchmarks [32]. The
observation space includes the robotic arm joints state and
data on observable objects, i.e., position and orientation of
objects. The action space encompasses a 3D displacement of
the arm’s end effector (using a position-based controller) and
the gripper aperture (distance between right and left finger).

B. Experimental Scenario

We introduce novelties sequentially, one at a time, in
the environment, causing them to obstruct at least one
indispensable operator for task achievement. We did not treat
simultaneous injection of multiple novelties. The novelties in
the experiments are induced by changes in the dynamics of
the environment, which results in plan execution failures.
We categorize the novelties as being either a Shift, where
objects are shifted in space and can still be sensed easily, or
as a Disruption, which implies an abrupt, binary, and firm
boundary mechanism. We focus on five novelties that affect
the Reach(·) operator in a domain where three operators
exist: Pick(·), Reach(·), Place(·). We describe the
five novelties in Table I. The environment always returns the
same binary reward function: positive if success, negative
otherwise independently of the novelties.

TABLE I
DESCRIPTION OF THE FIVE NOVELTY SCENARIOS.

Novelty scenarios

Hole
(Shift)

A wooden plate, usually away from the task area, is now
positioned above the drop-off bin, blocking it. The agent must

navigate the can through a hole in the plate to complete the drop.

Elevated
(Shift)

The drop-off bin has been elevated by 15 cm, requiring the agent
to adapt by dropping the object from a greater height than

previously necessary.

Obstacle
(Shift)

A pole typically situated at the outer edge of the pick-up bin is
moved between the two bins. This repositioning obstructs the

agent’s usual path for dropping off the can.

Locked
Door

(Disrup-
tion)

A door, initially unobstructive, now blocks the path between two
bins. The agent needs to unlock it using a motion sensor active in

a specific zone. After unlocking, the agent can push the door
open to continue with the can placement task.

Light Off
(Disrup-

tion)

The light turns off, affecting the robotic arm’s LiDAR-like
sensors with false readings, except for the accurate distance to the

light switch. The agent must turn the light on to regain LiDAR
accuracy for placing the can.

C. Detection function

The detection function d takes the sensor-level observation
from the environment as input and generates predicates or
their negations based on the available information. While
most predicates are boolean (for instance locked(door)),
some can also be numerical (as distance(gripper, area) which
outputs an integer). The collection of these predicates defines
the symbolic state in which the agent currently resides. In
instances where the observation does not correspond to any
symbolic state, the agent maintains its previous detected state
as its belief state, meaning it does not update it. Although the
detection function might not recognize novelties, meaning
that the symbolic goal space may not include them, the
lower-level state-space in the MDP still possesses the ability
to sense through lower-level sensing capabilities. Such capa-
bilities enable it to detect environmental changes or novelties,
ensuring the preservation of the Markov property.

D. Evaluations and Metrics

Our approach is called “Hybrid Goal-Oriented Adaptive
Learning”(“HyGOAL Framework”). We employ HER atop
SAC as the RL algorithm to train the goal-conditioned
reinforcement learning policies. We use metricFF [33] as the
symbolic planner (as it can handle numerical fluents).

We compare our method to two Hybrid Symbolic and
Learning baselines. The first is “RapidLearn” [4], a Hybrid
planning and knowledge-guided learning approach, extended
for continual learning. For RapidLearn, we used SAC as the
RL algorithm and metricFF as the planner. The second base-
line is a reward machine-based method utilizing low-level
goal-oriented learning [23], extended for novelty accommo-
dation and termed “LTL&GO.” It employs Linear Temporal
Logic (LTL) with planning domain for reward machine
generation and utilizes goal-oriented learning (SAC+HER,
with a sensor level goal space) for lower-level policies. Each
agent was provided with a starting set of executors X , a
detection function d, and an execution function e ensuring
equal performance on the original task/domain. We also

TABLE II
RESULTS AVERAGED ACROSS 10 SEEDS PER AGENT.

↓ SIGNIFIES LOWER IS BETTER, ↑ SIGNIFIES HIGHER IS BETTER.

Novelty Agent Tadapt ↓ (×104) SRpost-training ↑

Hole HyGOAL 39.8 ± 13.7 0.41 ± 0.50
(Shift) RapidLearn 47.8 ± 6.96 0.18 ± 0.35

LTL& GoalOriented 41.6 ± 16.2 0.21 ± 0.34
SAC 50.0 ± 0.00 0.00 ± 0.00
HyGOAL TL 34.0 ± 17.9 0.61 ± 0.44

TL RapidLearn TL 18.0 ± 8.43 0.86 ± 0.14
LTL&GO TL 4.60 ± 1.75 1.00 ± 0.00

SAC TL 50.0 ± 0.00 0.03 ± 0.06

Elevated HyGOAL 16.6 ± 13.0 0.91 ± 0.30
(Shift) RapidLearn 21.4 ± 12.4 0.84 ± 0.30

LTL&GO 16.2 ± 18.0 0.76 ± 0.37
SAC 50.0 ± 0.00 0.00 ± 0.00
HyGOAL TL 23.4 ± 22.9 0.51 ± 0.45

TL RapidLearn TL 21.2 ± 16.6 0.72 ± 0.33
LTL&GO TL 9.00 ± 14.5 0.86 ± 0.32

SAC TL 50.0 ± 0.00 0.02 ± 0.03

Obstacle HyGOAL 39.0 ± 16.0 0.38 ± 0.48
(Shift) RapidLearn 36.2 ± 13.6 0.66 ± 0.40

LTL&GO 50.0 ± 0.00 0.04 ± 0.10
SAC 50.0 ± 0.00 0.00 ± 0.00
HyGOAL TL 36.2 ± 18.3 0.34 ± 0.47

TL RapidLearn TL 45.8 ± 8.0 0.24 ± 0.35
LTL&GO TL 37.2 ± 20.7 0.29 ± 0.47
SAC TL 50.0 ± 0.00 0.00 ± 0.00

Locked HyGOAL 13.8 ± 5.00 0.90 ± 0.28
Door RapidLearn 29.4 ± 15.8 0.72 ± 0.38
(Disruption) LTL&GO 39.6 ± 17.3 0.21 ± 0.30

SAC 50.0 ± 0.00 0.00 ± 0.00
HyGOAL TL 28.2 ± 23.1 0.51 ± 0.51

TL RapidLearn TL 50.0 ± 0.00 0.11 ± 0.23
LTL&GO TL 28.0 ± 23.2 0.50 ± 0.47

SAC TL 50.0 ± 0.00 0.00 ± 0.00

Light HyGOAL 26.4 ± 14.8 0.80 ± 0.37
Off RapidLearn 31.0 ± 11.6 0.73 ± 0.32
(Disruption) LTL&GO 41.6 ± 17.8 0.23 ± 0.38

SAC 50.0 ± 0.00 0.00 ± 0.00
HyGOAL TL 41.0 ± 14.5 0.30 ± 0.48

TL RapidLearn TL 47.2 ± 8.90 0.09 ± 0.20
LTL&GO TL 50.0 ± 0.00 0.08 ± 0.19
SAC TL 50.0 ± 0.00 0.00 ± 0.00

include a pure RL baseline (SAC+HER), pre-trained to match
Hybrid techniques’ performance on the initial task/domain.

We also evaluated transfer learning in Hybrid agents.
’Agent TL’ refers to agents with transferred executor poli-
cies between novelties, to assess if this transfer enhances
adaptability to continual novelty injections.

After each novelty injection, agents were trained on the
new scenario until meeting a convergence criterion—either
a success rate above 80% or a maximum of 500, 000 training
steps in the Pick&Place environment. In the RoboSuite
environment, an episode entails a maximum of 1, 000 inter-
actions. We averaged the results across 10 seeds per agent.
Performance was evaluated by running 20 episodes every
20, 000 training steps and calculating the mean success rate
at each evaluation point. The same RL hyperparameters
were consistently applied across all novelties. Our evaluation
focuses on two key metrics: Tadapt, indicating the number of
MDP time steps required for the agent to achieve the con-
vergence criteria, and SRpost-training, representing the agent’s
success rate upon reaching asymptotic convergence.

VI. RESULTS

Table II summarizes all agents’ performance. Pure RL,
along with re-planning (not listed in the table), yielded
zero success across all novelties within 500, 000 steps,
highlighting RL inefficiency in handling robotics novelties,
as also supported by RoboSuite Benchmark. This under-
scores RL limitations even in basic tasks. Conversely, Hy-
brid approaches demonstrated adaptability to five sequential
novelties, effectively managing significant task alterations
by utilizing domain abstraction for targeted updates where
novelties impact the agent’s knowledge base.

Our method “HyGOAL” exhibited increased sample effi-
ciency compared to other Hybrid approaches, outperforming
all of them on four out of five scenarios both in terms of time
to adapt and asymptotic success rate. In such uninformed sce-
narios, no human guidance is available, limiting the leverage
other baselines tend to utilize to speed up their adaptation.
“HyGOAL” was only outperformed once by “RapidLearn”
on the (Shift) Obstacle novelty, a scenario in which our agent
does not benefit from the framework extension. “HyGOAL”
achieved convergence criteria with impressive speed in both
Disruption novelties, just 138 episodes for Locked Door,
thereby demonstrating a faster adaptation capability.

Transfer Learning (TL) had mixed effects on agents,
proving helpful for repurposing past learning for adaptation
but harmful when unlearning previous information was nec-
essary. An ablation study 2 on the sequence of novelty injec-
tions in a discrete domain revealed TL’s limitations, particu-
larly when discarding old information outweighed the bene-
fits of leveraging past experiences. Our findings suggest that
goal-conditioned policy transfer enhances transfer robustness
compared to traditional policy transfer, with ”LTL&GO
TL” and ”HyGOAL TL” performing best. ”LTL&GO TL”
achieved better and faster convergence on the first two
Shift novelties. A Shift novelty causes certain objects in
the environment to change position in 3D space. This can
be effectively captured by using HER with a low-level
distance sensor to represent the objects’ goals, as performed
in ”LTL&GO TL”. However, ”HyGOAL TL” demonstrated
superior performance across various novelty injections, par-
ticularly excelling in handling Disruption novelties. The
symbolic goal space effectively captured new symbolic
mechanisms, including abrupt transitions, anchoring domain
information and enhancing resilience against forgetting. In
summary, TL involves risks, demanding advanced assess-
ment skills to weigh benefits and drawbacks prior to learning.

VII. DISCUSSION

Our hybrid approach streamlines the search space both
horizontally and vertically. Horizontally, the state space is
decomposed into operators, while vertically, providing the
agent with pertinent goals derived from symbolic descrip-
tions directs its exploration. The refinement of the goal space
involves including only meaningful states, specifically the
sub-states s̃ that are imbued with symbolic significance.

2Code and appendix available via this link.

https://drive.google.com/drive/folders/1RHtmjUtdAkCLSy-7u7CTBjvGtpHBzERG?usp=sharing

Consequently, owing to their symbolic nature, these sub-
states focus the agent’s attention on relevant states, thus
increasing their likelihood as plannable states. This dual
effect is in line with the hybrid approach, which integrates
a planner into the learning process.

This work opens up promising research directions, particu-
larly in hybrid approaches for handling open-world novelty.
However, some limitations need consideration. Neurosym-
bolic approaches face scalability challenges in continual
learning due to accumulating information. Agents should
efficiently share information between executors, cluster sym-
bolic states by domain, filter relevant data, and discard
outdated information. The static detector function also needs
to evolve with time and novelty injections. Future work
should focus on knowledge abstraction to improve inference
and mitigate scalability issues while enabling adaptive detec-
tion, which is crucial for enhancing adaptation and sample
efficiency. Evaluating constrained state space exploration and
refining policy transfer could lead to more focused explo-
rations, making hybrid methods and RL-based techniques
more practical for online learning in open worlds.

VIII. CONCLUSION

We introduced a hybrid framework that integrates plan-
ning and learning, using multi-goal executors conditioned
on symbolic goals derived through planning. Our approach
effectively adapts to novelties—sudden, uninformed changes
that disrupt environment dynamics and task completion.
Experiments show that combining planning with learning
significantly outperforms purely learning-based methods.
Symbolic goal-oriented learning enables the generalization
of symbolic knowledge to low-level actions, strengthening
neural connections and improving adaptability and transfer
learning. The framework’s success in various novelty scenar-
ios highlights its potential in real-world applications, where
efficiently handling unforeseen challenges is essential.

REFERENCES

[1] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “Pddl,” 1998.

[2] C. Gehring, M. Asai, R. Chitnis, T. Silver, L. Kaelbling, S. Sohrabi,
and M. Katz, “Reinforcement learning for classical planning: Viewing
heuristics as dense reward generators,” ICAPS, vol. 32, no. 1, pp. 588–
596, Jun. 2022.

[3] E. Gizzi, M. G. Castro, and J. Sinapov, “Creative problem solving by
robots using action primitive discovery,” in 2019 Joint IEEE 9th Intl.
Conf. on Development and Learning and Epigenetic Robotics (ICDL-
EpiRob). IEEE, 2019, pp. 228–233.

[4] S. Goel, Y. Shukla, V. Sarathy, M. Scheutz, and J. Sinapov, “Rapid-
learn: A framework for learning to recover for handling novelties in
open-world environments,” in IEEE ICDL, 2022.

[5] L. Steccanella and A. Jonsson, “State representation learning for goal-
conditioned reinforcement learning,” arXiv:2205.01965, 2022.

[6] R. Karia and S. Srivastava, “Relational abstractions for generalized
reinforcement learning on symbolic problems,” arXiv, p. 2204, 2022.

[7] H. Kokel, A. Manoharan, S. Natarajan, B. Ravindran, and P. Tadepalli,
“Reprel: Integrating relational planning and reinforcement learning for
effective abstraction,” in ICAPS, May 2021.

[8] L. Guan, S. Sreedharan, and S. Kambhampati, “Leveraging approxi-
mate symbolic models for reinforcement learning via skill diversity,”
arXiv:2202.02886, 2022.

[9] N. Kumar, W. McClinton, R. Chitnis, T. Silver, T. Lozano-Pérez, and
L. P. Kaelbling, “Learning operators with ignore effects for bilevel
planning in continuous domains,” arXiv:2208.07737, 2022.

[10] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox,
“Online replanning in belief space for partially observable task and
motion problems,” in ICRA, 2020.

[11] J. Balloch, Z. Lin, R. Wright, X. Peng, M. Hussain, A. Srinivas,
J. Kim, and M. O. Riedl, “Neuro-symbolic world models for adapting
to open world novelty,” arXiv, 2023.

[12] B. Liu, S. Mazumder, E. Robertson, and S. Grigsby, “Ai autonomy:
Self-initiated open-world continual learning and adaptation,” AI Mag-
azine, 2023.

[13] F. Muhammad, V. Sarathy, G. Tatiya, S. Goel, S. Gyawali, M. Guaman,
J. Sinapov, and M. Scheutz, “A novelty-centric agent architecture for
changing worlds,” in AAMAS, 2021.

[14] K. Khetarpal, M. Riemer, and I. R. amd Doina Precup, “To-
wards continual reinforcement learning: A review and perspectives,”
arXiv:2012.13490v1, 2020.

[15] M. Riemer, I. Cases, R. Ajeman, M. Liu, I. Rsh, Y. Tu, and G. Tesaro,
“Learning to learn without forgeting by maximizing transfer and
minimizing interference,” in ICLR, 2019.

[16] J. Schmidhuber, “Powerplay: Training an increasingly general prob-
lem solver by continually searching for the simplest still unsolvable
problem,” Front. in psychology, 2013.

[17] V. Sarathy, D. Kasenberg, S. Goel, J. Sinapov, and M. Scheutz,
“Spotter: Extending symbolic planning operators through targeted
reinforcement learning,” in AAMAS, 2021.

[18] R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. McIlraith, “Re-
ward machines: Exploiting reward function structure in reinforcement
learning,” JAIR, vol. 73, pp. 173–208, 2020.

[19] R. K. Nayyar, P. Verma, and S. Srivastava, “Differential assessment of
black-box ai agents,” Proc. of the AAAI Conf. on Artificial Intelligence,
vol. 36, no. 9, pp. 9868–9876, Jun. 2022.

[20] Y. Seo, K. Lee, I. Clavera, T. Kurutach, J. Shin, and P. Abbeel,
“Trajectory-wise multiple choice learning for dynamics generalization
in reinforcement learning,” 2020.

[21] F. Yang, D. Lyu, B. Liu, and S. Gustafson, “Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-
making,” 07 2018, pp. 4860–4866.

[22] A. S. Chen, A. Sharma, S. Levine, and C. Finn, “Single-life reinforce-
ment learning,” in NeurIPS, 2022.

[23] D. Xu and F. Fekri, “A framework for following temporal logic
instructions with unknown causal dependencies,” 2022.

[24] P. Lorang, S. Goel, P. Zips, J. Sinapov, and M. Scheutz, “Speeding-up
continual learning through information gains in novel experiences,” in
4th Planning and Reinforcement Learning (PRL) Workshop at IJCAI-
2022, 2022.

[25] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in ICML, F. Bach and D. Blei, Eds., vol. 37.
PMLR, 07–09 Jul 2015.

[26] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq,
L. Orseau, and S. Legg, “Ai safety gridworlds,” arXiv preprint
arXiv:1711.09883, 2017.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, 2013.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” CoRR, 2018.

[29] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” CoRR, 2017.

[30] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, 1999.

[31] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” in arXiv:2009.12293, 2020.

[32] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa,
S. Savarese, and L. Fei-Fei, “Surreal: Open-source reinforcement
learning framework and robot manipulation benchmark,” in Proceed-
ings of The 2nd Conference on Robot Learning, ser. Proceedings of
Machine Learning Research, A. Billard, A. Dragan, J. Peters, and
J. Morimoto, Eds., vol. 87. PMLR, 29–31 Oct 2018, pp. 767–782.

[33] J. Hoffmann, “The metric-ff planning system: Translating“ignoring
delete lists”to numeric state variables,” Journal of artificial intelligence
research, vol. 20, pp. 291–341, 2003.

	Introduction
	Related Work
	Preliminaries
	Symbolic Planning
	Goal-oriented Reinforcement Learning (RL)
	Hybrid Plan & Learn for Novelty Accommodation

	Method
	Problem Statement
	Methodology Overview
	Hybrid Architecture Extension
	Executor Discovery using Goal-conditioned Learning
	Goal-conditioning & Search for Shortcuts

	Experiment
	Environment
	Experimental Scenario
	Detection function
	Evaluations and Metrics

	Results
	Discussion
	Conclusion
	References

