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Abstract

Adapting to novelties in open-world environments is an im-
portant and difficult challenge, and it has been recently shown
that hybrid planning and reinforcement learning approaches
can lead to better adaptations. However, these approaches still
face intriguing difficulties induced by their heavy dependence
on training samples to overcome changes in the environ-
ment quickly. In this work, we propose an integrated planning
and learning approach that utilizes learning from failures and
transferring knowledge over time to overcome novelty sce-
narios. Our proposed approach is much more sample efficient
in adapting to sudden and unknown changes (i.e., novelties)
than the existing hybrid approaches. We showcase our results
on a Minecraft-inspired gridworld environment called Nov-
elGridworlds by injecting three novelties in the agent’s envi-
ronment at test time. We show that our approach can speed up
continual learning through information gained in each novel
experience and, thus, more sample-efficient.

Introduction
One of the most pressing unresolved challenges to AI learn-
ing algorithms like reinforcement learning (RL) is how to
cope with novelties (e.g., Muhammad et al. (2021)). Novel-
ties differ from new data points outside a given distribution
or anomalies along expected dimensions in that they usually
do not fit into an agent’s representational space and often
require the agent to completely change its problem repre-
sentations to accommodate them. In particular, the agent’s
initial knowledge base cannot solve the problem once the en-
vironment changes (Sarathy and Scheutz 2018). Hence, the
questions arise (1) how to detect and characterize novelty,
and (2) when and how to accommodate novelties in ways
that are beneficial to the agent as to improve its future per-
formance. Answering these questions is critical for agents
operating in “open worlds” where they are almost guaran-
teed to face novelties during their task performance, some
of which might have detrimental effects on the agent’s per-
formance if the agent does not know how to deal with them,
while some might present opportunities for performance im-
provements if the agent can figure out how to utilize them.
Most importantly, while the standard response to novelties
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Motivation: Fast Life-Long Learning*

Figure 1: The impact of new task on performance is signifi-
cantly reduced in the agents proposed in this paper compared
to typical life-long learning agents and there are no negative
effects when previously learned tasks need to be performed.

in domains is to collect more data or to train from scratch
(as is common with RL algorithms), it is often not possible
for agents performing tasks to extensively explore potential
changes to their representation of the environment. Hence,
our goal is not only to enable agent to handle novelties, but
also to handle them as quickly as possible, ideally with the
minimum amount of “regret” to the learner.

In this paper, we will explore how our previously pro-
posed algorithm for rapidly accommodating novelties in an
RL settings -RAPid-Learn (Goel et al. 2022)- can be ex-
tended to perform better over encounters with multiple nov-
elties and thus make progress towards fast continual learn-
ing. We begin by motivating our approach and reviewing re-
lated work, then present a simple working example to in-
troduce the concept. We follow by explaining some prelimi-
naries and necessary background before turning to the prob-
lem formulation and our proposed solution. To conclude, we
describe our experience, baseline comparisons and results
which we finally discuss as well as provide our future vision
and improvements on this approach.

*This image is adapted from the BAA for the DARPA SHELL
program



Figure 2: “The stability-plasticity dilemma considers plas-
ticity with respect to the current learning and how it de-
grades old learning. The transfer-interference trade-off con-
siders the stability-plasticity dilemma and its dependence on
weight sharing in both forward and backward directions.”
(Riemer et al. 2019).

Related Works
Current approaches to continual (“life-long”) learning
are typically variants of deep reinforcement learning
(Khetarpal, Riemer, and amd Doina Precup 2020). Studied
as a possible solution on their own for continuous (Abel et al.
2018; Lecarpentier et al. 2020) and non-stationary (Che-
ung, Simchi-Levi, and Zhu 2020) learning, they have shown
catastrophic forgetting problems and difficulty in dealing
with abrupt novel events, requiring to learn again from
scratch while ideally they should be able to build on their
previously learned knowledge as we propose (see Fig. 1).

The main challenge for these approaches is a tension
between forgetting previously learned tasks when learning
news tasks and being able to learn new tasks quickly and
also generalize to future tasks (see Fig. 2). Specifically, the
common approach of weight sharing in neural architectures
across different learning agents, especially when their tasks
are very different, does not benefit continual learning be-
cause it exacerbates this tension and requires agents to have
similar Deep Neural Network (DNN) architectures (i.e.,
knowledge cannot be shared with other non-DNN agents).

Various methods have been proposed to address this ten-
sion (e.g., Meta Experience Replay (MER) (Riemer et al.
2019) or “powerplay” (Schmidhuber 2013)), but they all re-
quire that previously used task traces for learning skills be
retained for training to prevent forgetting which is not realis-
tic for the limited computing and storage capability of edge
computing systems.

One way to help address the problem is to use sym-
bolic and semantic knowledge to control and store the in-
formation acquired during each reinforcement learning cy-
cle. Symbolic planning is an effective way to solve prob-
lems when efficient plan operators are available (Ghallab,
Nau, and Traverso 2016). However, since plan operators are
typically defined by hand, aside from being laborious, it is
impossible to anticipate future changes to the environment.
This last problem is all the more important to treat in envi-

ronments where actions represented by operators are prone
to unexpected failures or malfunction due to novelties.

We have shown that a hybrid approach using both rein-
forcement learning and symbolic planning techniques, can
take advantage of both methods (Sarathy et al. 2021). In
this approach we used a tabular RL to solve plan failures in-
duced due to novelties. In our more recent work on integrat-
ing planning and learning, we further improved the novelty
accommodation at plan execution failures at run-time (Goel
et al. 2022). We instantiate a neural network to learn action
executors of the failed operators in the form of RL policies
on-the-fly. This method also performs knowledge-guided-
exploration to learn policies rapidly.

Yet, using RL to recover from planning failures remains a
challenge notably because RL methods require a large num-
ber of training samples. The Rubik’s cube solving robot de-
veloped by OpenAI, Dactyl (Akkaya et al. 2019), ran an RL
algorithm in simulation for the equivalent of 10,000 years
in real time during training, resulting in a success rate of
20% for a maximally scrambled cube. Handling novelties re-
quires responsiveness using very little data. There is a clear
need to improve the efficiency of learning and to use ev-
ery piece of information acquired through experience. In
this paper, we propose to integrate the Hindsight Experi-
ence Replay (HER) technique (Andrychowicz et al. 2017)
into our hybrid planning and learning approach. HER has
demonstrated sample and reward efficiency over traditional
RL techniques. It showed that it is possible to leverage fail-
ures during task training using a goal-oriented policy and a
replay buffer. HER has strong potential to reuse information
for sample efficiency and thus accelerate learning over time.
We evaluate our methodology in the Minecraft-gridworld in-
spired domain (Goel et al. 2021) by injecting several novel-
ties in the agent’s environment during test times.

Running Example
Achieving a goal that is not the desired goal still gives us
information about how to achieve a state in the environ-
ment that could be used in the future (Andrychowicz et al.
2017). Let us take a task that an agent has to accomplish
in a Minecraft-like environment: craft a pogostick. The task
involves the agent collecting items (tree logs, iron) in the en-
vironment which can be crafted into other things like planks,
rubber, pogostick. However, there may be unexpected events
(novelties) that challenge the success of each operator that
play a role in the agent’s plan.

The example represented in Figure 3a depicts a novelty
scenario where the trees in the environment require axe to
cut. While exploring the environment, the agent may try ac-
tions to find a solution to retrieve tree logs from trees. It will
focus on the desired goal of fetching a tree log, which will
require several samples for training, and the agent will fail
in most of them. Yet, even if it fails in achieving the desired
goal, the agent reaches other states, called “achieved goals”,
for example, in some of them it might use a concave object
in the environment to store more water than it usually does.
While this information is not useful for the current task, it
can be crucial for learning how to put out a fire if it appears
as a novelty later on (shown in Figure 3b).



(a) Left: Desired goal: get a tree log using the axe. Right:
Achieved Goal: the agent filed a concave object with
more water than it usually can store.

(b) Left: Blowing the iron ore put the crafting table on
fire. The agent needs to put it out. Right: The agent uti-
lize crucial information from previously failed trials to
solve this novelty faster.

Figure 3: Illustration of the Running Example

Preliminaries
Reinforcement Learning
Reinforcement learning (RL) (Sutton, Precup, and Singh
1999) is a field of machine learning in which an intelligent
agent (computer program) interacts with the environment
and learns to act in that environment based on a reward sys-
tem. An RL problem is generally formulated as a Markov
Decision process (MDP). An MDP M = ⟨S,A,R, T, γ⟩
consists of finite set of states S and actionsA, a transition
function T : S × A → S defining a set of transition proba-
bilities p(s′|s, a), and a reward function R : S × A → R
mapping state-action pairs to scalar rewards. The goal of
such algorithms is to maximize the expected sum of fu-
ture discounted rewards, with the importance of future re-
wards weighted by a discount factor γ ∈ [0, 1). This is
known as expected discounted return which, at time t, is:
Gt =

∑∞
k=0 γ

kRt+k+1.
The value of each state-action pair under a policy π is

defined as the expected return when starting in s and fol-
lowing π afterwards, Qπ(s, a) = Eπ[Gt|St = s;At =
a]. An optimal policy is defined as any policy π∗ so that
Qπ∗

(s, a) ≥ Q∗(s, a) for every possible state, action, and
policy. This optimal Q-function Qπ∗

can be shown to sat-
isfy what is known as the Bellman equation: Qπ∗

(s, a) =
Es′ p(.|s,a)[R(s, a) + γmaxa′∈AQ

∗(s′, a′)].

Universal Value Function Approximators (UVFA)
Classically in RL, a value function is geared towards a single
goal and encodes a chunk of information about the environ-
ment that is utilized to reach it. UVFA idea (Schaul et al.
2015) is to represent a large set of these value functions
using just one unified function approximator generalizing

over both states and goals. Just as general value functions
approximators are able to exploit state space structure to ac-
curately generalize to similar previously unseen states, the
same is true across goals (Schaul et al. 2015). The insight
behind this technique is that goals are specified using the
same predicates that describe the states. UVFAs have been
shown to exploit both similarity encoded in the formulation
of goal representations themselves as well as structure of the
specific value functions discovered for each goal.

With UVFA, every episode has a static goal for the en-
tirety of the episode. At every time-step within that episode,
the agent receives not only the current state as input but also
the current goal π : S × G → A. The resulting reward
is now also goal-dependent rt = rg(st, at) and the cor-
responding Q-function now involves a goal in addition to
the state-action pair Qπ(st, at, g) = E[Rt|st, at, g]. Schaul
et al. show that it is possible to train an approximator to
the Q-function with direct bootstrapping using a variant of
Q-learning: Q(st, at, g) ← rg + γgmaxa′Q(st+1, a

′, g) +
(1 − α)Q(st, at, g). A direct consequence of this result is
that UVFA can be used alongside algorithms like DQN and
DDPG. It has been shown through experiments in the Lava-
World (Leike et al. 2017) environment that UVFA is able
to generalize well across state-goal pairs given a sufficient
amount of experience.

Hindsight Experience Replay (HER)
Hindsight Experience Replay (HER) uses an off-policy al-
gorithm, like Deep Q-Network (DQN) (Mnih et al. 2013)
and combines it with the multi-goal RL formulation intro-
duced by UVFA. It also modifies the sampling procedure.
The multi-goal formulation means that rewards are now
goal-specific and input to the policy includes the current
goal concatenated onto the corresponding state observation
at each time step. As explained previously, HER performs
experience replay, but after every episode (s0, s1, ..., sT )
when it stores the corresponding transitions (st → st+1)
experienced within the episode, it stores each transition with
a subset of other goals in addition to the original one.

HER assumes that every goal g ∈ G corresponds to some
predicate fg : S → {0, 1}, assumption that we follow in
this paper, and that for a given goal the agent attempts to
reach any state where fg(s) = 1. It also assumes that we
have a mapping from states to goals identifying a goal that
is satisfied in that state (in the case where a goal corresponds
to a state we want to achieve, this mapping is an identity).
Replay trajectories can be simulated with an arbitrary goal
using an off-policy RL algorithm. Through the imagination
of trajectories with different goals, HER aims to learn mul-
tiple variations of the same task from a single experience.
Experimental results show that HER improves performance
even with a single goal, though training on multiple goals
results in faster training even in the single goal case.

Integrated Planning and Learning for Open-World
Novelty Handling
We extend this work from our previous methodologies (Goel
et al. 2022; Sarathy et al. 2021) which combines symbolic



planning and targeted reinforcement learning to deal with
plan execution failures due to novelties in the agent’s en-
vironment. The agent is assumed to start with a domain
knowledge, grounded using PDDL (McDermott et al. 1998),
and defined as σ = ⟨E ,F ,S,O⟩, where E is a finite set of
known entities within the environment. F is a finite set of
known predicates with their negations. S is the set of sym-
bolic states in the environment. O denotes the set of known
action operators.

In the more recent work (Goel et al. 2022, 2021) we define
novelty as a new encounter that breaks the known dynamics
of the environment or doesn’t belong to the agent’s domain
knowledge and that can not be inferred by the agent cogni-
tive abilities. A novelty is detected via an operator in the plan
that, at execution time, can’t be executed or doesn’t produce
the expected effects and fails; we call it a failed operator.

Definition 1 (Novelty). Considering E ′: the set of novel en-
tities in the environment such that E ′ ∩ E = ∅, S ′: the set
of novel states such that S ′ ∩ S = ∅, O′: the set of novel
operators such thatO′ ∩O = ∅, and F ′ a set of novel pred-
icates which are unknown to the agent, a novelty is defined
as a tuple N = ⟨E ′,F ′,S ′,O′⟩.

A novelty introduced by the environment results in inade-
quate domain knowledge (Section Novelties), causing an ex-
ecution impasse due to operator failure. To overpass this im-
passe we define a stretch-Integrated Planning Task (Stretch-
IPT) to recover these missing operators from the agent’s
knowledge base.

Definition 2 (Integrated Planning Task) An Integrated
Planning Task (IPT) is T = ⟨T,M, d, e⟩ where T =
⟨E ,F ,O, s0, sg⟩ is a STRIPS task, M is the set of MDPs.
A detector function d : S̃ ′ → S , where S̃ ′ is the set of sub-
symbolic states, determines a symbolic state for a given sub-
symbolic MDP state, and an executor function e : O → X ,
X being the set of executors, maps an operator to an execu-
tor (Sarathy et al. 2021).

Definition 3 (Stretch-IPT). A Stretch-IPT T̃ is an IPT T for
which a solution exists, but a planning solution does not.

We are interested in finding a solution to the stretch-IPT,
specifically study how to automatically generate executors
on-the-fly to solve the execution impasse.

Definition 4 (Executor Discovery Problem). Given
a stretch-IPT T̃ = ⟨T ′,M′, d′, e′⟩ with T ′ =
⟨E ∪ E ′,F ∪ F ′,O ∪ O′, s′o, sg⟩, construct a set of
executors {x′

1, . . . , x
′
m} ∈ X for the set of failed operators

{o1, . . . , om} ∈ O such that the stretch-IPT T̃ is solvable,
with the executor function:

e′(oi) = x′
i, oi /∈ O (1)

i.e., we find an executor whose operator does not exist in O.

According to our previous work, we define each action
executor which consists of a tuple ⟨I, π, β⟩. It is similar to
the options framework as defined by Sutton, Precup, and
Singh (1999). We formally define the action executors as

Definition 5 Each action executor xi is represented by a tu-
ple <I, π, β>, where I ⊆ S is the initiation set, denoting
the set of states when the action executor Xi is available for
execution, and it follows a policy π : S × A → [0, 1] to get
to the termination state β ⊆ S.

Proposed Framework
Goal-conditioned Executor
Our proposed solution is a hybrid method of planning and
RL using a goal-oriented policy and transferring policy net-
works between novelties. We leverage both classical RL
transfer learning and information gained from failures us-
ing HER technique with DQN. We perform RL transfer
learning by transferring policy networks, i.e., we copy the
weights from the neural architecture of the source policy
network and initialize the newly considered policy network
with these values. The difference in DQN transfer learning
process compared to HER is that HER policy networks also
consider the goal as a neural input in addition to the state.

We begin by augmenting the definition of action executor
xi (Definition 5) to include goals in the policy π. We for-
mally define the goal-conditioned action executor as:

Definition 6 (Goal-conditioned Executor) Each goal-
conditioned action executor x′

i is represented by a tuple
<I, π′

sgi
, β>, where I ⊆ S is the initiation set, de-

noting the set of states when the action executor X ′
i is

available for execution, and it follows a goal-conditioned
policy π′

sgi
: S × G → A which terminates when

fg(s) = 1, where goal g ∈ G corresponds to some predicate
fg(s) : S → {0, 1}. The policy π′ terminates when the goal
gi is satisfied. β ⊆ S is the set of termination states of the
executor which satisfies the condition fg(s) = 1.

For example, if the agent’s goal is to fetch axe in the inven-
tory, the executor can be conditioned on the goal of getting
an axe in the inventory, which can later generalize to a new
goal of fetching other items (such as water) in the inventory.
This gives us flexibility of evolving the policy over time on
new goals and generalizing the executor over novelties.

Executor Evolution
The goal-conditioned executor is evolving over time by gen-
eralizing to new goals and transferring the old policy as the
initial policy for the new goal. Formally, for a new goal gi we
initialize an executor x′

i whose starting state I is the current
operator’s failed state and whose termination set of states β
is the set of states that satisfies the predicate fgi = 1. The
policy π′

sgi
of x′

i, is initialized using the trained policy on
previous experiences π̃′

sgi
.

As described above, we continually evolve the executor
over time as the agent experiences execution impasses in-
duced by novelties in its environment. Based on new goals,
we transfer the previous policy π̃′

sgi
as a initial policy for the

new goal π′
sgi

and perform continual learning.
We use the executors (as defined in Def. 6) and continu-

ally evolve them by transfer learning. The aim is to gain effi-
ciency by reusing information acquired during experimenta-



tion and to continually improve the agent’s reaction to nov-
elties. Hence, we aim at continually improving the learning
metrics, i.e., higher jump-start, shorter time-to-threshold,
and better asymptotic performance, while providing a solu-
tion to the source task selection problem in transfer learning
using a goal-dependent policy network. In this work, how-
ever, we do not explicitly solve the problem of source task
selection while transferring the policy networks and there-
fore could be an interesting direction of future work.

Dealing with Continual Domain Growth
To handle continual domain growth when using a fixed neu-
ral network structure like a DQN, we put placeholders in the
action and state spaces. We also anticipate goal placeholders
as HER needs an explicit definition of the goal to compare
achieved goals with desired goals.

In continual learning, HER is not used the traditional way
in which the gains of a multi-goal problem formulation are
immediately observable. In contrast each novelty goal for-
mulation is treated separately and continually, as would be
the case in an open world, and we can not anticipate an ex-
plicit definition of the novelties goals. To respond to this
problem we propose a relaxed version of the reward func-
tion given in the original HER paper, that we define at each
time step t as:

Rgi(st, at) =

{
0, if st ⊆ sgi
−1, otherwise.

(2)

Experiments
We use the NovelGridworlds (Goel et al. 2021) environ-
ment to conduct our experiments. The task we focus on is
called crafting a pogostick. The agent starts with complete
knowledge of the pre-novelty domain grounded in the form
of PDDL (McDermott et al. 1998). The agent uses the met-
ricFF (Hoffmann 2003) planner to generate a plan to solve
the task. The environment is injected with novelties which
causes the operators in the plan to fail at execution time.
The agent then formulates an MDP on-the-fly and solves this
MDP resulting in learning an action executor (as defined in
Definition 5). Once the agent learns to succeed in the im-
passe caused by the novelty, it can switch back to the orig-
inal plan to execute the operators and complete the task. In
our experiments, we design novelties that can cause further
impediments for the agent to solve the task. We utilize our
approach in transferring the policy networks to learn new
policies for future operator failures in the plan execution.
We describe the task environment in detail, followed by the
novelties injected. We then describe the evaluation metrics
and the baselines to compare our method.

NovelGridworlds
NovelGridworlds is an openAI gym (Brockman et al. 2016)
gridworld environment inspired from Minecraft where the
agent can collect items in its inventory, and craft subsequent
objects using various crafting actions (A diagrammatic rep-
resentation is shown in Figure 4). The observation space
consists of information from a LiDAR-like sensor that emits

Figure 4: Left: Pre-novelty domain showing an agent which
can craft items by breaking trees. Right: Novelty induces an
impasse which requires the agent to use the axe (shown in
red) to break the trees.

beams for each entity (e.g., tree, crafting-table, wall etc.) in
the environment at incremental angles of π

4 to determine the
closest entity in the beam angle, in other words, the LiDAR-
like sensor provides an observation of size 8 × |ϵ|, where ϵ
is the set of possible entities. Additional sensors observe the
contents of the agent’s inventory and the currently selected
entity. The action space is the sub-symbolic action space
given by the environment (navigation actions: turn left, turn
right, move forward; interaction actions: break, extract rub-
ber; craft actions: craft planks, craft sticks, craft pogo stick),
augmented with novel actions and hierarchical action oper-
ators (entity-parameterized approach-⟨entity⟩) implemented
by the planner. The domain was chosen for two main rea-
sons:
• It provides a complex task that involves a sequential set

of actions to reach the final state. If the agent misuses its
resources, it will fail to accomplish the task;

• The domain is designed specifically for solving for solv-
ing problems in an open-world, which allows us to create
and experiment with a variety of novelties (Goel et al.
2021). Items available in the RL environment must be
differentiated from items acknowledged by the agent at
plan-time with which it can already plan.

Novelties
The novelties in the experiments are induced by changes in
the dynamics of the environment which result in plan execu-
tion failures. We implement three novelty scenarios.

Axe-to-break In the pre-novelty scenario, the agent can
break trees in the environment by using hand. In the novelty
scenario, the trees become harder to cut, and the agent needs
to carry and select an axe next to a tree to get tree-logs (il-
lustrated in Figure 5). Therefore, at plan execution time, the
operator break tree-log fails and the agent needs to explore
the environment to learn the new dynamics of fetching an
axe and using it to cut trees.

Dynamite The second novelty, illustrated in Figure 6, is
that the the agent now needs iron as an extra ingredient to
craft a pogostick. The initial recipe of crafting a pogostick
does not contain iron. Now the agent needs to blow an iron-
ore using a dynamite and fetch iron. It can then use iron to
craft a pogostick. Therefore at the plan execution time, the
operator craft-pogostick fails, and the agent needs to explore
the environment to learn these new dynamics.



Figure 5: Illustration of axe to break novelty. Left: Break-
ing a tree now requires an axe, available in the environment.
Right: If the agent carries this axe in its inventory and selects
it in front of a tree, it fetches tree logs.

Figure 6: Illustration of dynamite novelty. Left: The actual
recipe to craft a pogostick includes iron, which can only be
obtained by blowing the iron ore using a dynamite. Right:
The agent will blow the iron ore resulting in 4 more iron
bars in its inventory but leading to Novelty3.

Fire In this novelty scenario (illustrated in Figure 7), the
crafting-table is set on fire, due to the blowing of dynamite.
This prohibits the agent’s use to craft anything using the
crafting-table. In order to use the crafting-table again, the
agent needs to use water to put it out. The agent can only
obtain one quantum of water from the water tap. To obtain
water, the agent now needs to use a concave object to fill
water, and then use it to put out fire from the crafting table.
Therefore, in this novel scenario the operator craft-pogostick
will fail, and the agent needs to explore the environment to
learn the above mentioned dynamics.

Evaluation Metrics
We evaluate our results based on the success rate of the over-
all policy while training on each novelty on a test set aver-
aging the results over 10 different training seeds. We also
consider the number of steps to converge to a given success
rate threshold of 0.99. Each 500 training steps we run 300
evaluation episodes to score the policy on a test set. The ini-
tial map in which the agent starts in each seed is random (but
seed dependent).

Baselines
We call our approach as RAPid-Learn+HER+TL (In-
tegrated planning and learning combined with HER and
Transfer learning), and compare it against four baselines:
• HER: HER alone on the entire task of crafting a pogo-

stick that learns to reach its goal and adapts its RL policy
to the three novelties.

Figure 7: Left: Again the actual pogostick recipe includes
iron, which can only be obtained by blowing the iron ore
using a dynamite. Yet the crafting table catches fire from the
dynamite blow. It needs 5 quantums of water to put it out
yet out agent can only carry one quantum of water at a time.
Right: Using the concave object present in the environment
will help him carry the five quantums of water, put out the
fire and finally craft the pogostick.

• RAPid-Learn+DQN: The hybrid approach of using
planning and DQN as the RL algorithm to learn to over-
come novelties. We don’t do any policy transfer learning
here.

• RAPid-Learn+DQN+TL: The hybrid approach of using
planning and DQN as the RL algorithm to learn to over-
come novelties while performing transfer learning.

• RAPid-Learn+HER: The hybrid approach of using
planning and HER(Nair et al. 2017) as the RL algorithm
to learn to overpass novelties, without any policy transfer
learning.

We will be able to compare the performance of hybrid
planning with HER against these baselines and analyze the
features from which it benefits. It will notably allow us to see
how good HER can take advantage of information gained
from previous failures.

Results & Discussion
We plot the learning curves of each agent’s performance
on all the novelties. We show a combined learning curve
(shown in Figure 8) to showcase how transfer learning and
learning from failures makes novelty adaptation better over
time. Figure 8b shows that our approach improves the nov-
elty adaptation by improving the time to threshold (specially
on later novelty). It can be clearly seen that our method suc-
cessfully reuses information from previous trials to speed up
the learning and shows an overall higher success rate during
training on new novelties(Figure 10b).

The more novelties the agent encounters, the more infor-
mation it stores about its environment, and it becomes better
at adapting to new situations. Having a higher success rate
while training also permits a safer approach to cope with
novelties. Our method shows better total convergence to a
threshold success rate, which is improving with the training.

The knowledge acquired on previous novelties helps
learning new novelties faster. However, it is alone not suffi-
cient to help it to converge to a success rate of 0.9 or higher.
In order to do so, it is important for the agent to further ex-
plore the environment. Therefore, the expected jump-start



(a) RAPid-Learn+DQN versus RAPid-Learn+DQN+TL (b) RAPid-Learn+HER versus RAPid-Learn+HER+TL (our method).

(c) HER versus RAPid-Learn+HER+TL (our method). (d) HER, RAPid-Learn+HER, RAPid-Learn+DQN, and RAPid-
Learn+DQN+TL versus RAPid-Learn+HER+TL (our method).

Figure 8: The figure shows the continual novelty injections and compares the performances of the our method versus baselines.

(a) Dynamite:
RAPid-Learn+DQN
& RAPid-Learn+DQN+TL

(b) Dynamite:
RAPid-Learn+HER
& RAPid-Learn+HER+TL

Figure 9: The plots show the learning curves of the operators for dynamite novelty and fire novelty. (a) shows the comparison
(RAPid-Learn+DQN) and (RAPid-Learn+DQN+TL), transfer is performed from axe novelty. (b) shows the dynamite novelty
comparison of HER versus our approach (RAPid-Learn+HER+TL); transfer being done from axe novelty.



(a) Fire:
RAPid-Learn+DQN
& RAPid-Learn+DQN+TL

(b) Fire:
RAPid-Learn+HER
& RAPid-Learn+HER+TL

Figure 10: The plots show the learning curves of the operators for fire novelty (a) shows the fire novelty performance of RAPid-
Learn+DQN versus RAPid-Learn+DQN+TL; transfer is done from dynamite novelty (b) shows the comparison between our
method (RAPid-Learn+HER+TL) and HER on the fire novelty; transfer is done from dynamite novelty.

exists yet remains tiny as the novelty policy learning still
starts with a high exploration rate to learn the new goal.

We also compare our method with a pure learning
methodology (shown in Figure 8(c)). It clearly showcases,
that the pure learning methods fail entirely to solve such
complex tasks and are unable to cope up with novelties in
their environments.

Limitations & Future work
Our approach comes with limitations and certain challenges
to be addressed. We highlight some current limitations and
ways to extend this work in interesting directions. Automat-
ing the setting of novelty hyper-parameters seems very com-
plex because the agent always lacks information about it.
Even if HER capitalizes on information from previous tri-
als, catastrophic forgetting can occur. This method also re-
quires anticipating placeholders in the goal set for future
novelties, and we are working on approaches that can auto-
matically expand the learning network by transfer learning
approaches. In order to showcase the viability of the method
to deal with future novelties, we are working on evaluating
this approach on more complex tasks and more novelty in-
jections. A future direction is to evaluate this approach in
robotics domains with continuous action spaces and stochas-
tic environments.

Policy learning and its transfer over time can lead to ex-
pansion of the network, mainly using techniques like HER
can increase the size of the replay buffer with unnecessary
information. This can be a problem, especially in lifelong
learning scenarios. We are working on extensions that can
learn functions to filter the replay buffer (Czarnecki et al.
2019) and prevent catastrophic forgetting. Human-robot col-
laboration is crucial in solving complex multi-step tasks
and accelerating the agent’s learning to overcome novel-
ties. HER has already been studied for this purpose and

has shown improvement in learning by obtaining informa-
tion from human demonstrations (Nair et al. 2017). While
our goal is to automate machines in their general behavior
further, we also plan to demonstrate the potential of this ap-
proach for human-robot interaction.

We plan to integrate this technique into real-world indus-
trial projects so that industrial machines can automatically
plan tasks and adapt to novelties efficiently. This will require
understanding the physical properties of novelties to assim-
ilate them into a simulated environment. Moreover, learning
in such scenarios should be extremely sample-efficient while
prioritizing safety. In this approach, we attempt to address
the latter part, and we are working on ideas to address the
former limitation for real-world integration. To this end we
plan on performing significantly more inferences on the fly
to restrict learning through experimentation. We also plan on
extending this method to robotics scenarios with continuous
actions, where in prior work we have developed methods
for action discovery using segmentation (Gizzi, Castro, and
Sinapov 2019) and behavior babbling (Gizzi et al. 2021) but
stopped short of using RL to learn action executors when
facing novelties.

Conclusion
In this paper, we showed that an integrated approach of plan-
ning and learning, using HER and policy transfer, allows the
agent to gain knowledge from previous trials. This approach
provides a solution for dealing with novelties in a way that is
beneficial to the agent by improving its future performance
on other novelties and continuously increasing the agent’s
learning efficiency. We evaluated our approach on an ex-
tremely complex task scenario which was injected with three
novelties, and compared it with an integrated planning and
learning approach with and without transfer learning.
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