
Adapting to the “Open World”: The Utility of Hybrid Hierarchical
Reinforcement Learning and Symbolic Planning

Pierrick Lorang1,2, Helmut Horvath3, Tobias Kietreiber3,
Patrik Zips2, Clemens Heitzinger3, and Matthias Scheutz1

Abstract—Open-world robotic tasks such as autonomous
driving pose signicant challenges to robot control due to un-
known and unpredictable events that disrupt task performance.
Neural network-based reinforcement learning (RL) techniques
(like DQN, PPO, SAC, etc.) struggle to adapt in large domains
and suffer from catastrophic forgetting. Hybrid planning and
RL approaches have shown some promise in handling environ-
mental changes but lack efciency in accommodation speed.
To address this limitation, we propose an enhanced hybrid
system with a nested hierarchical action abstraction that can
utilize previously acquired skills to effectively tackle unexpected
novelties. We show that it can adapt faster and generalize
better compared to state-of-the-art RL and hybrid approaches,
signicantly improving robustness when multiple environmental
changes occur at the same time.

I. INTRODUCTION

As robot applications expand into the “open world”,
away from constrained “closed-world” applications where
designers get to control much of the operating environment,
a pressing challenge to be addressed is rapid adaptation to
unforeseen changes in robot’s task environment that the agent
couldn’t anticipate due to lack of prior knowledge —we will
refer to such changes as “novelties” (e.g., see [1]).

While some novelties may not impact an agent’s per-
formance, others could lead to task failure if ignored. A
popular method for addressing such changes in robotics is
reinforcement learning (RL), especially when combined with
deep neural networks as they can approximate functions
in large continuous domains [2]. However, neural networks
lack mechanisms to restrict their training to relevant data
in such large domains, and they suffer from a performance
decline when acquiring new concepts sequentially [3], [4],
a phenomenon known as catastrophic forgetting [5]. Inte-
grating RL-based approaches with symbolic constraints and
reasoning capabilities has recently emerged a promising way
to address this stability-plasticity dilemma in neural sys-
tems [6]–[9]. Yet, these hybrid approaches, while better than
pure RL learners, still show slow adaptation to changes, even
in moderately sized discrete domains. To be applicable in
robotic tasks, these methods need to be applied to continuous
domains and shown to be able to adapt quickly to unforeseen
conditions.

1Tufts University, Human-Robot Interaction Laboratory, Medford, MA,
USA first.last@tufts.edu

2AIT Austrian Institute of Technology GmbH, Center for Vision, Au-
tomation & Control, Vienna, Austria first.last@ait.ac.at

3TU Wien, Institute of Information Systems Engineering, Faculty of In-
formatics, TU Wien, Vienna, Austria first.last@tuwien.ac.at

We propose a hybrid hierarchical RL and planning ap-
proach that is able to overcome catastrophic forgetting and
swiftly adapt to novelties, outperforming current neural and
hybrid methodologies. Enhanced robustness is demonstrated,
highlighting zero-shot learning potential in select scenarios.

Our novel contributions include:

• (1) A novel hybrid approach integrating a nested hi-
erarchical action abstraction system into a neural RL
learner, allowing the agent to quickly build new skills
from previously acquired policies and solidifying its
overall robustness to changes in complex open-world
environments (see Fig. 2).

• (2) The application of hybrid RL planning in a large
continuous domain and the utilization of plan operators
for transfer learning between policies and better cur-
riculum learning to avoid catastrophic forgetting.

• (3) A comprehensive performance assessment of
our approach in the realistic continuous self-driving
CARLA [10] simulation and comparison with a stan-
dard RL and a hybrid agent on continual novelty ac-
commodation scenarios (see Fig. 1).

II. RELATED WORK

Challenges of open-world learning have been recently
explored using variations of deep reinforcement learning and
hybrid learning-planning approaches [11], [12]. These ap-
proaches, proposed as potential solutions for non-stationary
learning, often face challenges like catastrophic forget-
ting [13] and difculty adapting to sudden changes in
the task environment, leading to permanent task failure.
Moreover, tackling such changes in continuous open-ended
environments is still not addressed. For example, [7]–[9],
[14] develop integrated layered architectures to tackle non-
stationarity in open-world environments, but assume sim-
ple discrete domains. [15] and [16], on the other hand,
present a neurosymbolic approach for open-world novelty
accommodation, in which they learn a world model that
uses imagination to help its policy adapt to novelties, but
they do not inject novelties continually, and the domains
are assumed to be discrete. Some recent work in open-
ended self-driving car environments developed algorithms for
identifying known entities and unknown objects (e.g., [17],
[18]) but they are restricted to perception and do not address
execution. There is currently no system that demonstrates
the utility of hybrid hierarchical RL planning approaches in
continuous robotic domains.

Fig. 1: Adaptive response to environmental changes. (a) In open-world settings, alterations can lead to reduced task performance or
failure for state-of-the-art RL algorithms. (b) Our approach employs hierarchical RL to utilize learned controls and skills, enabling
continual improvement in adapting to new challenges. (c) Our method effectively responds to introduced novelties, in some cases, without
even requiring more training. (d) This adaptability is realized through a Hybrid Planning and Learning framework, integrating a nested
hierarchical learner which generates and links new execution protocols to failing planning operators.

III. PRELIMINARIES

We dene domain representations for the planning layer
and separately for the execution layer (Fig. 2), denoting S
as the discrete state space used by the planning level and
S̃ as the continuous sub-symbolic state space used by the
execution level. We briey review basic RL and planning
concepts before introducing our proposed approach.

Reinforcement Learning (RL). A Markov Decision Pro-
cess (MDP) denoted as M = ⟨ S,A, R, τ, γ⟩, consists of
an innite set of sub-symbolic states S̃ and actions A, a
transition function τ that determines the probabilities of
transitioning from one state to another given an action, and
a function R(s̃, a, s̃′) that assigns rewards to each transition.
An RL algorithm aims to maximize the expected sum of
future discounted rewards, denoted as Gt, at a specic time
t, with discount factor γ ∈ [0, 1). The value of a state-action
pair under a policy π, denoted as Qπ(s̃, a), represents the
expected return when starting in state s̃, performing action
a, and then following policy π. A generalization of the MDP
is the semi-Markov decision process (SMDP) in which the
amount of time between one decision and the next is a
random variable, either real- or integer-valued.

Hierarchical Reinforcement Learning (HRL). In hi-
erarchical RL, we consider “closed-loop partial policies”
designed for specic parts of the problem. For MDPs, this
extension adds the set of options [19] to the admissible
actions, each of which can itself invoke other options, thus
allowing a hierarchical specication of an overall policy. The
original one-step actions, now called the “primitive actions”,
may or may not remain admissible. Extensions along these
general lines result in decision processes modeled as SMDPs,
where the waiting time in a state now corresponds to the
duration of the selected option. If t is the waiting time in
state s upon execution of option a, then a takes t steps to
complete when initiated in s, where the distribution of the

random variable t depends on the policies and termination
conditions of all lower-level actions comprising a.

Hybrid Planning and Learning. We consider a domain
description σ = ⟨E ,F ,S,O⟩, where E is a set of known
entities in the environment, F is a set of known predicates
(with their negations) used to describe the relations between
entities, S is the set of environmental states that consists
of grounded predicates, and O denotes the set of known
operators oi such that ψoi and ωoi denote the preconditions
and effects of oi respectively. Following [8], we consider
an Integrated Planning Task (IPT) T = ⟨T,M, d, e⟩, that
combines the planning task with the lower-level MDP to
ground symbolic predicates, specify goals symbolically, and
implement action execution from a higher level (operators) to
lower level (policies). An IPT consists of a STRIPS task [20]
T = ⟨E ,F ,O, s0, sg⟩ (s0 and sg being the initial state and
goal state respectively), an MDPM = ⟨ S,A, R, τ, γ⟩ (which
describes the low-level properties of the environment). We
also dene the goal set Sg as the set of subsymbolic states
that satisfy the effects ωoi of the failed operator oi.

The planning domain σ is related to the MDP, across the
state and action spaces, through two functions (see Fig. 2).
The rst function is the detector function d : S → S ,
where S is the set of sub-symbolic states in M . The detector
function d maps S onto the high-level planning states S
and is therefore surjective: multiple sub-symbolic states can
be mapped to the same symbolic state, and each such state
has at least one associated sub-symbolic state. The second
function is the executor function e : O → X , which
maps each planning operator o ∈ O to a set of executors
in X . An executor is dened as x = ⟨Ix,πx,βx⟩, where
Ix ⊆ S is the initiation set, denoting the set of symbolic
states where the action executor x is available for execution,
πx : S → A is a policy leading to a termination state in Sg ,
and βx(s̃) ∈ {False,True} is the termination indicator which

Fig. 2: The hybrid architecture for adapting to novelties and
preventing catastrophic forgetting (see text for details).

returns True if the exploration using πx can be terminated at
s̃ and False otherwise.

Problem Formulation. A hybrid agent A starts with some
prior knowledge K described as a planning domain, an initial
set of executors in X , a detector function d and an executor
function e. If K is sufcient to solve the planning task T ,
the agent will nd a plan P for the IPT T and execute
it. If during plan execution the expected effects of any
operator are not achieved, because of the presence of novelty
with respect to the agent’s current knowledge, execution is
aborted, and the agent must attempt to recover from this
failure by nding a Stretch-IPT T̃ = ⟨T ′,M ′, d′, e′⟩ (where
T ′ = ⟨E ′,F ′,O′, so, sg⟩) for which a solution exists in
the lower-level MDP M and map new executors onto new
operators (we do not deal with new mappings of entities or
uents here).

IV. NESTED HIERARCHICAL FRAMEWORK

Our framework (Fig. 2) consists of two core algorithms 1
and 2 in addition to the planning and RL algorithms. The
agent uses a symbolic planner to generate a plan, i..e, a
sequence of operator invocations, for which the executor
function e nds the set of mapped control or skill executors
which are then ordered by the prioritization strategy based
on their effectiveness in the current environmental context.
A control executor uses primitive actions to operate in the
lower MDP, while a skill executor uses grounded operators
to act in a discrete-time semi-MDP atop the control MDP,
acting as a HRL policy that chooses between “options” to be
executed for a nite number of steps. These “options” can
either be control executors, or other (nested) skill executors.
Note that in our framework, the executor denition is similar
to that of “options” dened by [21], except that we allow
for the direct derivation of the initiation and termination
conditions from the agent’s observations or knowledge. For
an executor x = ⟨Ix,πx,βx⟩, πx (for πc

x or πs
x) is the RL

policy which explores and learns the missing information by
acting in the transformed environment, Ix is the initiation set
continually abstracted from observation in this environment
(using the detector function d), and βx is derived from the
agent’s knowledge. To build Ix, we use the detector function

d to abstract symbolic information of the subsymbolic states
from which the executor found a path to its goal, and βx

is computed from the grounded predicates of the failed
operator’s expected effects (using the plan P). A unique
reward function Ri is associated with each operator oi to
learn the new associated executors, xs

new = ⟨Ix,πs
x,βx⟩ if it

is a skill and xc
new = ⟨Ix,πc

x,βx⟩ if it is a control.
Algorithmic description. The agent attempts to generate

a plan from its current state using its domain knowledge
(Alg. 1 line 1) and if successful, gathers the set of all
executors Xi for each operator oi in the plan, prioritizing
them (line 5) based on a selection strategy (cf. below) and
executing them (line 7) until one succeeds (execution is
deemed successful if the agent reached a plannable state
in Sg from which a plan P to the task goal exists). If
all executors in Xi fail or if Xi is empty, the agent enters
Recovery mode (lines 13–24) through which it learns either
a new skill, in a skill-SMDP Ms = ⟨ S,O, Ri, τ, γ⟩, or
a new control, in a control-MDP M c = ⟨ S,A, Ri, τ, γ⟩.
The decision which MDP to consider (line 14) is based on
whether the change has local or global effects which the
agent can determine by attempting to execute each of its
executors (if none work, the effect is global). The agent
then instantiates a Stretch-IPT T̃ ′ (lines 17 and 20), fed to
Alg. 2 Adapt (line 21), along with the failed sub-state and the
operator’s expected effects. A successfully learned executor
x is added to the failed operator’s Xi.

Alg. 2 Adapt initiates both I and β from respectively the
grounded predicates of sf , the failed sub-symbolic state, and
ωoi , the expected effects of oi (lines 1–2). The off-policy
RL algorithm (in this work SAC or PPO) is initialized using
the given hyper-parameters (line 3) for training (lines 5–9)
on the task problem and returning the executor on success
and failure otherwise. Note that the agent uses the symbolic
planner in two ways: to build the trajectory to reach the
global task goal (i.e., Alg. 1, line 1) and repeatedly in the
RL learning process (i.e., in Train, Alg. 2, line 6) whenever
the agent reaches a sub-symbolic state s ∈ Sg

1 to verify
whether d(s) is a plannable state2. For the latter, the planner
is called to ensure that a path exists from the state reachable
by the policy to the task goal. Hence, plannable states are part
of the MDP’s (or SMDP) termination conditions, which is
why Train receives the stretch IPT, including T ′, the domain
required to compute the plannable states. Once the agent
learns the new executor xnew, the agent executes it (Alg. 1,
line 24) to resolve the impasse. If the agent fails to learn a
solution executor, the framework returns failure.

Executor Selection Strategy. Whenever the agent selects
an operator, it chooses between mapped executors by rst
checking the availability of each executor (using I) and
then prioritizes them based on how well they t the current
environment. If no executor is available, no Ix, x ∈ Xi

matches the current symbolic observation, or all available

1β is used to check whether the reached sub-symbolic state is in Sg .
2We do not call the planner at every time step while learning, but only

when the agent reaches a state in Sg .

Algorithm 1 Plan&Execute (T)
Require: T = ⟨T,M, d, e⟩ ▷ Integrated Planning Task
Require: T = ⟨E ,F ,O, so, sg⟩
1: P = Plan(T , d(s)) ▷ P = ⟨o1, o2, ..., o|P|⟩
2: if P={} then return failure ▷ Abort
3: for oi ∈ P do
4: Xi ← e(oi)
5: for x in Prioritized(Xi) do ▷ Selection Strategy Priorization
6: s ← d(s)
7: Success = Execute(x)
8: if Success then
9: if s ̸∈ Ix then
10: Ix ← Ix ∪ s ▷ Add the initiation substate to Ix
11: break for
12: if ¬Success then ▷ If all failed, proceed to Recovery
13: sf ← failure sub-symbolic state
14: Novelty-type ← Evaluate failure() ▷ Test in the environment
15: if Novelty-type is Local then
16: Build Skill-level SMDP Ms

17: T̃ = ⟨T,Ms, d, e⟩ ▷ Stretch Skill-IPT
18: else if Novelty-type is Global
19: Build Control-level MDP Mc

20: T̃ = ⟨T,Mc, d, e⟩ ▷ Stretch Control-IPT
21: xnew ← Adapt(T̃ , ωoi , sf)
22: if xnew is failure then return failure ▷ Abort
23: Xi ← Xi∪{xnew}
24: Execute(xnew) ▷ Else, Execute Learned Executor

executors already failed, the agent still tries the remaining
executors in Xi. If one of them is successful, the agent will
add the failure state to its initiation set so that it can be
directly selected on another trial. If none worked, the agent
enters recovery mode.

Learning a Control Executor with RL. If the novelty is
global, the agent must learn new controls for each operator
in the control-level MDP M c, as done by classical Hybrid
approaches. In that case, the novelty affects the entirety of
the environment; all states are considered failing (sf) and
the initial state is sampled randomly from all sub-states that
map—through d—onto every known symbolic state. These
states are all added to the I set of each new executor, and
their termination condition β is individually computed by
utilizing the planner to predict the expected effects of the
operator when starting from d(sf).

Learning a Skill Executor with HRL. If the novelty
is local, only one operator at a time might fail. In such
instances, it is conceivable that a solution to overcome
the novelty already exists within the repertoire of known
operators. However, the agent might not be aware of this
solution because the symbolic representation is not detailed
enough or/and because the detector function, which describes
the low level observations in this symbolic representation,
might be incapable of extracting the relevant information
from sensors. The idea is then to learn this solution from
experience using a HRL protocol in the discrete-time skill-
level Semi-MDP (SMDP) Ms. The difference compared to a
control-level MDP, aside from the discrete n-steps execution,
lies in the action space of the skill-SMDP which consists of
all known operators. Upon selection of an operator in the
skill-level SMDP, the agent will search for the set of mapped
executors, and will afterwards leverage the selection strategy

Algorithm 2 Adapt (T̃ , ωoi , sf) → xnew

Require: an off-policy RL algorithm A
Require: hyper-parameters H
Require: Neps ▷ Number of episodes
Require: η ▷ The success rate evaluation threshold
Require: T̃ ▷ For nding plannable states
Require: ωoi ▷ For episodes termination
Require: sf ▷ For episodes reset
1: I: initiation set ▷ Initialized with d(sf)
2: β(s̃): termination indicator ▷ Computed from ωoi
3: initialize A using H
4: initialize πnew

x ▷ Transfer from existing policy: Selection Strategy
5: for Neps episodes do
6: πnew

x ←Train(πnew
x ,T̃ ,sf , β)

7: if success(πnew
x , T̃) > η then

8: xnew←⟨Ix,πnew
x , βx⟩ return xnew ▷ Executor Discovered

9: return failure

to queue and execute the executors in this set for n steps (we
set n to 10). Following such protocol, a skill executor invokes
either a control executor or an other nested skill executors.

This nested structure has two important advantages when
it comes to learning: for one, the action space of operators
is often signicantly smaller than that of executors. And
second, while learning a new skill executor for a given
operator, the agent can possibly execute another skill that
was already trained for this operator, yet simply in different
conditions. This latter system provides the agent with the
ability to leverage analogies between scenarios, which in
certain circumstances would act as a guidance to learn
faster. For instance, consider a car that has learned a skill
for bypassing an obstacle on the road using control level
executors such as change lane left and right. Our method
not only transfers weights of this skill policy to training a
new one, e.g., driving with obstacle & black ice, but it is
also able to invoke that skill executor (as an action) during
training to guide the agent into choosing what control ts
best given the observation.

V. EXPERIMENTS & RESULTS

A. Experimental Setup

The experiments were conducted in the CARLA [10]
driving simulation.3 We evaluated three agents on a pre-
dened navigation task measuring navigation performance
from one xed departure location to 20 xed arrival loca-
tions, comparing our approach to the hybrid RapidLearn [7]
and a Soft Actor-Critic [22] (SAC, implementation provided
by [23]) reinforcement learning agent. We chose SAC as
empirical observations have indicated some robustness of
maximum entropy algorithms (like SAC) to environmental
disturbances [24], [25]. We used SAC to learn control
policies and PPO to learn skill policies4. We averaged our
results over ve different random seeds.

The two hybrid agents use the symbolic metricFF [26]
planner with initial symbolic domain knowledge in PDDL

3The code is available at https://drive.google.com/file/d/
1P8hu3bDMuwh9Od0aJtDnA16_tYeYgeNQ/view?usp=sharing

4PPO was chosen for convenience (no discrete SAC exists in [23] yet).

Fig. 3: Top: Agent Performance evaluated by success rate on novelty injection before training: higher values indicate better performance.
Middle: Agent Performance after training: higher values indicate better performance. Bottom: Training duration per novelty for each
agent evaluated by the number of training steps: lower values indicate faster training.

[27], [28] which includes essential operators (follow lane,
turn right, turn left), change lane left and change lane right
for comprehensive navigation, using a designated detector
function d5. A function e maps existing operators to RL-
learned executors that were trained in the initial domain. The
RL learners’ observation space is based on a 2D LiDAR-
like sensor, emitting beams at 75

360 °-angles, supplemented by
additional sensors providing driving-related information such
as velocity, throttle, steering angle, and road curvature.

All agents were trained on the navigation task, with the
RL baseline training for 14M steps and the Hybrid agents
for 1M steps/operator (5M total) allowing them to achieve a
similar success rate on the navigation task of around 85%.6

The RL agent initially underperformed compared to Hybrid
approaches, despite concerted efforts to enhance its policy.
However, the primary objective of these experiments is to
assess each agent’s capability to maintain initial performance
levels despite encountering novelties.

Training comprised 2M steps for global and 700k for
local novelties, set empirically for fair comparison. A reward
threshold, determined empirically for all methods, halted
training upon convergence. All agents were subjected to a
similar reward function based on road offset throughout the
experiment, from initial training to scenario completion.

We used six sequential scenarios with either a single or
multiple novelties in the following order: (1) Deated Tire:

5Example in CARLA, d outputs grounded predicates such as at(car, l1)
for sub-symbolic states within a square centered at location l1.

6For the baseline RL agent to learn the navigation task, it must acquire
knowledge of the map model corresponding to the PDDL transitions. To
assist the baseline agent in effectively learning the high-level task with a
minimally altered reward, we introduced additional termination conditions,
concluding an episode if the car deviated from the intended path, therefore
encoding navigational information via episode length. We leveraged the
integrated CARLA navigator system to construct the trajectory from the
car’s position to a target location. It is important to note that the generated
trajectory itself remained hidden to the agent during training.

One of the tires are deated and has no friction with the road.
(2) Black Ice: The road becomes very slippery, and friction
on all wheels is reduced. (3) Deated Tire & Rain: Besides
the tire deating, rain makes the road slightly more slippery.
(4) Obstacle: Static cars appear on some portion of the
road. They block some lanes making the follow lane operator
fail. (5) Obstacle & Black Ice: Besides static cars, black
ice makes the road slippery. Maneuvering the car around
obstacles becomes more difcult. (6) Obstacle & Mist: Mist
reduces the LiDAR’s maximum detection distance making
obstacle detection more difcult. Note that the rst three
are global novelties, they require the agent to learn new
control strategies, while the last three are local novelties. Our
hierarchical approach capitalizes on prior controls and skills
to adapt to local novelties which do not necessarily require
to learn new controls from scratch. In scenarios where only
global novelties occur, our agent would perform similarly as
a typical Hybrid agent would, as it would not be able to
utilize this prior knowledge.

To test the agents’ ability to adapt to novelties, we
evaluated them at novelty injection to measure how much
they were impacted by the change, and after training on
each novelty to measure their accommodation level.

B. Results

Fig. 3 displays all agents’ performance. The x-axis shows
novelty injection-training pairs, and the y-axis shows navi-
gation success rate. Throughout the sequential injection, the
baseline RL agent shows limited exibility and struggles
to adapt to new conditions. Both hybrid agents demon-
strate good adaptability across diverse conditions due to two
benets of the hybrid approach: it employs operators to
learn specic policies (for specic circumstances) instead of
adapting one global policy, and when facing a local novelty,
it can reduce the search space and facilitate adaptation
to the affected operators. Hybrid approaches consistently

improve their performance on each introduced novelty, often
matching their performance in the initial environment while
the baseline RL agent shows catastrophic forgetting. The
results also indicate that hybrid approaches exhibit robustness
to changes without additional training. For novelties with
minimal impact on the agent’s performance, such as Deated
Tire & Rain, hybrid agents maintain stable performance
(90% before, 85% after injection), obviating the need for re-
training. This ability to reuse trained executors contributes
to the agents’ robustness to novel conditions.

While both hybrid agents have similar performance on
global novelties, because new low-level control laws need
to be learned and prior knowledge cannot be utilized, the
performance difference can be seen with local novelties,
where our agent signicantly outperforms RapidLearn, both
in terms of performance and in terms of training time.
An exception appears for Obstacle & Mist novelty, where
RapidLearn slightly outperforms our approach after training.
Such exception shows a limitation of learning a skill from
existing controls, while rened controls could capture better
the mechanism of a novelty leading to improved performance
on it. Nevertheless, our method post-training performance
sees an overall remarkable boost of nearly 30% when com-
pared to traditional methods like RapidLearn, highlighting
the effectiveness of our approach. Additionally, our approach
substantially accelerates the training process, reducing the
training time by more than tenfold (around 14 times). Even
when accounting for the execution of ten environment steps
for every HRL training step, it remains a more computation-
ally efcient approach, as execution steps are considerably
less computationally intensive than combined execution and
training steps.

Finally, our approach also greatly enhances robustness,
particularly in scenarios that involve a combination of pre-
viously encountered local and global novelties. Notably, our
agent achieves 58% success rate when the novelty Obstacle
& Black Ice is injected on zero-shot learning, i.e., without
any training. On such novelty, our agent robustness com-
pletely outperforms RapidLearn by a factor of three and
RL by a factor of 20. This heightened robustness can be
attributed to HRL’s capacity of combining skills, such as
avoiding obstacles, with lower-level policies, such as ice
control policies, when needed.

VI. DISCUSSION

Our results are encouraging as they point to the utility of
hierarchical RL as a way to learn behaviors that do not re-
quire the acquisition of new low-level control policies. With
enough low-level policies in place, the agent will be able
to handle a wide variety of novelties better and faster than
other approaches. And importantly, our approach intrinsically
addresses a shortcoming of planning-based approaches that
downward renability does not always hold in robotic do-
mains, i.e., that details of the underlying continuous state
may have important effects on the entirely plan.

However, our approach comes with limitations. It as-
sumes a function to categorize novelties (as local or global),

which is an ongoing challenge in open-world adaptation.
We simplify by empirically classifying novelties based on
their effects on the environment; if multiple operators fail,
it is classied as global. This binary classication may not
reect real-world scenarios, impacting our agent adaptation
strategy. Additionally, our method does not enhance training
efciency on global novelties compared to RapidLearn-like
methods, lacking mechanisms for faster control learning
beyond transfer learning. In essence, if a global novelty
affects all operators, a new executor version must be learned
for each. While this approach surpasses pure RL in such
scenarios, there remains signicant room for improvement.

Additionally, there are still important challenges to be
addressed before the proposed system could be deployed
in real-world settings, the most important of which is one
closed-world assumption shared by most RL algorithms, i.e.,
for an RL algorithm to learn a new policy quickly without
requiring the physical platform to perform all the actions in
the real world, it needs a simulation environment with delity
sufcient for simulation-trained policies to mostly work on
the robot. However, in open-world settings the robot cannot
assume that its simulator would reect all aspects of the
real world, otherwise there would be no novelties. But then
it is of limited use for training. To address this challenge,
the robot would need a way to model at least parts of the
novelty to be able to learn a partial policy in simulation,
and then continue training the policy in the real world with
hopefully only a few trials (which our hierarchical hybrid
approach would enable). Whether this strategy can work,
will depend on the extent to which the robot can quickly
characterize the novelty and use the characterization to add it
to its simulation. While novelty characterization was outside
the scope of this paper, it would also be helpful for the
problem of assessing whether the novelty has only local or
global effects, relieving the robot from trying out all of its
executors to determine whether a new control strategy might
be needed. Finally, it would also help with the selection of
executors by using its characterization to nd the best tting
one (rather than having to determine for each of them their
predicted outcomes of the actions they would take in the
given state, selecting one action at random, say, and then
determining which policies was closest to the real outcome,
repeating the process until the best executor is found).

VII. CONCLUSION

We introduced a hybrid hierarchical reinforcement learn-
ing and symbolic planning framework that signicantly im-
proves open-world adaptability of robots compared to state-
of-the-art hybrid and reinforcement learning approaches as
we demonstrated with our extensive evaluation: robots can
acquire and rene skills in structured and leverage previously
learned skills to enhance their performance in new and more
complex tasks, resulting superior performance and faster
accommodation. The framework also enables more efcient
skill interplay, which improves the robustness to variations
experienced changes and can even handle unexperienced
novelties without additional training in some cases.

REFERENCES

[1] F. Muhammad, V. Sarathy, G. Tatiya, S. Goel, S. Gyawali, M. Guaman,
J. Sinapov, and M. Scheutz, “A novelty-centric agent architecture for
changing worlds,” in Proceedings of 20th International Conference on
Autonomous Agents and Multiagent Systems, 2021.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[3] X. Qu, Z. Sun, Y. S. Ong, A. Gupta, and P. Wei, “Minimalistic attacks:
How little it takes to fool deep reinforcement learning policies,” IEEE
Transactions on Cognitive and Developmental Systems, 2020.

[4] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodrı́guez, “Continual learning for robotics: Denition, framework,
learning strategies, opportunities and challenges,” Information Fusion,
vol. 58, pp. 52–68, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1566253519307377

[5] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan,
“Measuring catastrophic forgetting in neural networks,” in Proceedings
of the AAAI Conference on Articial Intelligence, vol. 32, no. 1, 2018.

[6] A. Chen, A. Sharma, S. Levine, and C. Finn, “You only live once:
Single-life reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 14 784–14 797, 2022.

[7] S. Goel, Y. Shukla, V. Sarathy, M. Scheutz, and J. Sinapov,
“Rapid-learn: A framework for learning to recover for handling
novelties in open-world environments,” in IEEE International
Conference on Development and Learning (ICDL), London, UK,
September 12-15, 2022. IEEE, 2022, pp. 1–8. [Online]. Available:
https://arxiv.org/pdf/2206.12493

[8] V. Sarathy, D. Kasenberg, S. Goel, J. Sinapov, and M. Scheutz,
“Spotter: Extending symbolic planning operators through targeted
reinforcement learning,” in Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, 2021, pp.
1118–1126. [Online]. Available: https://www.ifaamas.org/Proceedings/
aamas2021/pdfs/p1118.pdf

[9] P. Lorang, S. Goel, P. Zips, J. Sinapov, and M. Scheutz, “Speeding-up
continual learning through information gains in novel experiences,” in
4th Planning and Reinforcement Learning (PRL) Workshop at IJCAI-
2022, 2022.

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[11] P. W. at ICAPS 2022, “Bridging the gap between ai planning and
reinforcement learning (prl @ icaps),” 2022. [Online]. Available:
https://prl-theworkshop.github.io/prl2022-icaps/

[12] P. W. at IJCAI 2022, “Bridging the gap between ai planning and
reinforcement learning (prl @ ijcai),” 2022. [Online]. Available:
https://prl-theworkshop.github.io/prl2022-ijcai/

[13] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in Cognitive Sciences, vol. 3, no. 4, pp. 128–135, 1999.

[14] F. Yang, D. Lyu, B. Liu, and S. Gustafson, “Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-
making,” 07 2018, pp. 4860–4866.

[15] J. Balloch, Z. Lin, R. Wright, X. Peng, M. Hussain, A. Srinivas,
J. Kim, and M. O. Riedl, “Neuro-symbolic world models for adapting
to open world novelty,” 2023.

[16] S. Doncieux, N. Bredeche, L. L. Goff, B. Girard, A. Coninx,
O. Sigaud, M. Khamassi, N. Dı́az-Rodrı́guez, D. Filliat, T. Hospedales,
et al., “Dream architecture: a developmental approach to open-ended
learning in robotics,” arXiv preprint arXiv:2005.06223, 2020.

[17] P. R. Vieira, P. D. Félix, and L. Macedo, “Open-world active learn-
ing with stacking ensemble for self-driving cars,” arXiv preprint
arXiv:2109.06628, 2021.

[18] K. Joseph, S. Khan, F. S. Khan, and V. N. Balasubramanian, “To-
wards open world object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
5830–5840.

[19] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement
learning,” Articial Intelligence, vol. 112, no. 1, pp. 181–211, 1999.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0004370299000521

[20] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Articial Intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[21] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Articial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[23] A. Rafn, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/
v22/20-1364.html

[24] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” 2019.

[25] S. Huang, H. Su, J. Zhu, and T. Chen, “Svqn: Sequential
variational soft q-learning networks,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=r1xPh2VtPB

[26] J. Hoffmann, “The Metric-FF planning system: Translating “ignoring
delete lists” to numeric state variables,” Journal of Articial Intelli-
gence Research, vol. 20, pp. 291–341, 2003.

[27] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL–the Planning Domain
Denition Language,” 1998.

[28] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL–the Planning
Domain Denition Language,” 1998. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212

