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Abstract. There is currently relatively little work on architectures and evalua-
tions of robots that support creative designs of human interactants in manipula-
tion tasks through dialogue. We build a dialogue system by integrating a large
language model into a robot cognitive architecture and investigate whether en-
gaging in dialogues with the robot collaborator on a creative task has positive
effects on task satisfaction and experience of the human, evaluating the effect of
dialogue on perceived robot utility, intelligence, and supportiveness as a creative
partner. We test our hypotheses with a cake decoration task during which partic-
ipants collaborate with a robot arm equipped with a mixed-initiative co-creative
dialogue system to place decorations on a dummy cake. The results show that the
participants prefer robots that make reasonable suggestions compared to random
suggestions and that they perceive those robots to provide more creative support.

Keywords: Human-robot creative collaboration · Dialogue system · Cognitive
architecture.

1 Introduction

Collaborative robots are being increasingly designed to help humans perform their
tasks. For instance, robots are being designed to hand over tools in a way that makes it
convenient for the humans to immediately use them [16] and optimize task allocation
in collaborative assembly [23]. In this paper, we instead investigate intuitive and cre-
ative collaboration, motivated by potential applications in the arts, entertainment, and
in assistive robotics where robots carry out creative tasks that users are not collocated
to directly execute themselves. Creativity can help people lead happier and more mean-
ingful lives [12] [4]. Given the importance of creativity, there has been a rise of interest
in fostering human creativity through human-robot creative collaboration. Research in
this area shows that interacting with a social robot can facilitate creativity. For instance,
Kahn et al. show that participants are able to generate more ideas in a Zen rock garden
task when a humanoid robot encourages them and shows relevant images and video
clips compared to the base condition in which the participants access the same informa-
tion through self-paced PowerPoint presentation [10]. Oliviera et al. show that children
are able to generate more ideas during storytelling when playing with an intervention
tool robot that exhibits creative behaviors compared to the control condition in which
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you think about this suggestion?

Fig. 1: The cake decoration task setup
the robot is turned off [3]. Buyukgoz el al. find that participants’ generated more new
ideas when interacting with a robot exhibiting medium level of proactive behavior in
the form of verbal interruptions compared to when interacting with a robot exhibiting
high level of proactive behavior [6]. However, not a lot of work has been done to investi-
gate the effects of different modes of creative agent initiative in the form of suggestions
and justifications using architectures that both support interactive task dialogues and
ground the dialogues in physical manipulations. We present such an architecture and
hypothesize that:

H1: Task dialogues with a robot will increase task satisfaction and experience.
H2: A robot that offers suggestions and task-specific reasoning behind suggestions is

perceived as more intelligent.
H3: A robot that offers suggestions and task-specific reasoning behind suggestions pro-

vides more creative support to the user.
H4: Users prefer collaborating with a robot that offers task-specific reasoning behind

its suggestions.
H5: Users are less likely to reject suggestions from the robot that offers task-specific

reasoning behind suggestions.
H6: Users with higher creative self-efficacy are more likely to reject suggestions.

We present an interactive task dialogue system that interfaces with the Distributed In-
teractive Cognition Affect and Reflection Architecture (DIARC) to ground natural lan-
guage descriptions of the task in the robot’s actions [18]. The system is not only able to
engage with the participant in a dialogue to complete a cake decoration task as shown
in Fig. 1 but can also make placement suggestions for decorative items.

We validated this dialogue system in a within-subjects user evaluation in which par-
ticipants worked with three different versions of the robot to complete the task. We col-
lected participants’ ratings of creative support, perceived robot intelligence, task experi-
ence and satisfaction as well as open-ended feedback on all three conditions. Finally, we
compared the relative utility of the three robot configurations. The results showed that
while the robot’s participation in interactive task dialogues tended to increase the user’s
perceived creative support, the robot’s ability to give task-specific justifications for sug-
gestions had a large positive effect on not only the creative support the user received
but also the overall user experience. In summary, our contributions are as follows:

– We present an architecture that integrates a large language model into a robot cog-
nitive architecture to support interactive task dialogues.

– We present user evaluation results on a co-creative task with different modes of
agent initiative.
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2 Background

2.1 Human-AI Mixed-Initiative Co-creation

Mixed-initiative co-creation (MI-CC) refers to the process during which a human and
an artificial intelligence (AI) system take the initiative to contribute to the creation of
an end product [22]. Previous research has investigated mixed initiative co-creative sys-
tems that create digital products. For example, Alveraz et al. explore MI-CC in story-
telling [2] and Liapis et al. explore it in game design [14]. We focus on architectures
that collaborate during ideation through task dialogues while interactively carrying out
the physical manipulations for the user. Our system is an instance of an MI-CC system
that brings the creation into the physical world. Interaction with a physical MI-CC that
communicates ideas through natural language and is solely responsible for the physi-
cal manipulations has different properties than previously-studied systems. Since users
may perceive the system as more of a creative partner than a tool, it is important to
directly investigate it as we do in this work.

2.2 Human-Robot Creative and Physical Collaboration

There has been extensive research on human-robot physical collaboration in which suc-
cess is clearly defined. Popular tasks for evaluating human-robot physical collaboration
include assembly tasks [1, 19], construction tasks [21], sorting tasks [9], human-robot
navigation in search and rescue [8], and efficient tool handover [16]. In contrast, our
work addresses creative tasks in which the goals of the tasks are loosely defined and
humans have more freedom to complete the tasks according to their preferences. More
specifically, our work addresses human-robot co-creation tasks during which both the
human and the robot participate in the ideation process.

Recently, there has been a rise in interest in human-robot creative collaboration.
However, research in this area has focused on tasks that either lack a physical aspect
or on tasks in which the robot and human both take part in the physical aspect. For ex-
ample, Sandoval et al. [17] investigate people’s perception of robot’s creativity through
a storytelling game with a Wizard of Oz setup, Thorn et al. [20] explore observers’
perception of a robot after watching videos of it dancing to a human pianist’s music,
Kahn et al. [10] measure participants’ increase in creativity when collaborating with a
robot that encourages them to think of more ideas during a Zen rock garden task, and
Buyukgoz et al. [6] study the effects of a robot’s proactive behavior in the form of ver-
bal interruptions on participants’ creativity. None of these tasks requires the robot to
physically manipulate objects. On the other hand, Lin et al. [15] present a co-creative
process in which a robot needs to move a pen across a piece of paper to sketch with
the participant and Law et al. [13] showcase a collaborative design task in which the
robot and the human simultaneously manipulate a tangible user interface. While these
tasks involve physical manipulations, both the human and the robot equally partici-
pate in the physical aspect. None of these tasks involve collaborative ideation through
natural language dialogues. Our work addresses tasks in which collaboration through
natural language happens during ideation and the physical manipulation is solely done
by the robot. We expect that this approach will have applications in assistive robotics
and service robotics.
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3 Experimental System Overview

Fig. 2: The text user interface
To study the effects of interactive task dialogue on the human user’s task satisfaction

and experience, we developed a system consisting of a dialogue manager that interfaces
with DIARC capable of carrying out a cake decoration task [18].

The cake decoration setup consists of a textual user interface and a Gen3 Kinova
robotic arm. The physical setup of the cake decoration is shown in Fig. 1. The cake
is represented as a grid with columns labeled a, b, c, d and rows labeled 1, 2, 3. The
robot is able to take two high-level actions: moving a decoration to a location on the
cake or taking an object off the cake and putting it back in its staging location. The user
communicates with the robot arm through a text user interface shown in Fig. 2.

3.1 Dialogue System

The dialogue system, based on GPT-4, generated both appropriate responses to human
text inputs and made the appropriate robot action function calls based on the conversa-
tion. Fig. 3 illustrates the program flow of the dialogue system. After receiving human
text input, the program appends it to the conversation history. The program dynamically
fills in a prompt template with descriptions of the current state of the task. The system
then queries GPT-4 with the filled-in prompt and the conversation history for what the
response should be. If the output is “action”, the system chooses the appropriate ac-
tion function signature and extracts parameter values from the conversation history. If
the output is “suggestion”, the system either generates a “reasonable” suggestion or a
random suggestion on what next action to take based on the experimental condition. If
the output is “explain”, the system either generates a task-specific or a vague explana-
tion based on the experimental condition. If the output is “other”, the system displays
a pre-determined response to inform the user that it cannot respond to their request
and redirects the user back to the cake decoration task. To ensure that the human and
the robot take approximately equal initiative in the task, the robot alternates between
prompting the human for what it should do next and giving a suggestion on what to
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Fig. 3: Dialogue program flow
do next. More specifically, the robot generates a suggestion in two cases: when directly
prompted by the human and when it has just successfully completed an action com-
manded by the human. The robot does not generate a suggestion when it has just com-
pleted an action suggested by itself. As a result, the robot proactively suggests a next
move only about half of the time. The dialogue system interacts with DIARC when car-
rying out a robot action and when introspecting the robot’s beliefs about the task state.
We use DIARC as the robot’s cognitive architecture because it is easily configurable.
In our case, the LLM-based dialogue system acts as the natural language processing
components–namely, the Natural Language Understanding (NLU), Natural Language
Generation (NLG) and the dialogue manager components in the cognitive architecture.
The robot has two user-facing actions: moving a decoration to a location on the cake and
taking a decoration off the cake. We built “action scripts” for both actions using pre-
existing primitive actions in DIARC. When trying to execute an action, the dialogue
system submits a string consisting of an action script signature with parameter values,
e.g., TakeOffCake(cherry) as an action goal to the goal manager. The dialogue system
then receives an action status after the completion or failure of the action from the goal
manager and reports it to the user. When constructing the task description prompt for
the LLM, the robot receives the robot’s current beliefs represented as predicates that
evaluate to true about the world, e.g., at(cherry, a3) and freecakeloc(b1). The dialogue
system translates these into natural language descriptions, e.g., the cherry is at location
a3 and the location b1 on the cake is not occupied and fills in a prompt template with
these descriptions of the current state of the task. Similarly, when generating a random
suggestion on what valid action to take next, the dialogue system queries DIARC for
beliefs on what objects exist, i.e., object(X, physobj), which objects the robot is able
to pick up, i.e., canpickup(X), which locations are unoccupied, i.e., freecakeloc(X), and
which objects are on the cake, i.e., on(X, cake). The dialogue system generates a ran-
dom valid suggestion by randomly choosing an object to place at a random unoccupied
location or by randomly choosing an object that’s on the cake to be taken off. We show
examples of conversations between the dialogue system and participants below.
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Fig. 4: The DIARC cognitive architecture with a goal manager, an action manager, and a
customized dialogue manager, NLU and NLG components. The blue components were
replaced by a Large Language Model (LLM).

3.2 Experiment Conditions

To study the effects of having versus not having dialogue and different modes of agent
initiative, we implemented three experiment conditions: no dialogue, dialogue with ran-
dom suggestions and agent initiative, and dialogue with reasonable suggestions and
agent initiative. Participants work with a robot arm to decorate a cake for a customer
named Jo with the following given information in all three conditions.

– Jo is 2 years old
– Jo wants to try macarons
– Jo dislikes cherry
– Jo likes foods that taste sweet
– Jo dislikes foods that might taste bitter
– Jo strongly dislikes foods that might taste sour
– Jo prefers blue over red

No Dialogue In the no dialogue condition, the robot serves as an assistive tool in
picking up and placing the decorations. The robot follows commands and gives no sug-
gestions on what to do next.

Robot interaction in the no-dialogue condition
PARTICIPANT: put the mint macaron at a2
SYSTEM: The robot is processing your message...
SYSTEM: The robot has successfully completed the action
PARTICIPANT: take the cherry off the cake
SYSTEM: The robot is processing your message...
SYSTEM: The robot has successfully completed the action

...
PARTICIPANT: done
SYSTEM: Goodbye! Have a nice day!

As shown in the conversation above, the participant receives no feedback other than
system messages reporting the robot’s status in the third-person perspective.
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Random Suggestion In the random suggestion case, the robot serves a more active
role in designing the cake by making suggestions. After action completion, the robot
generates a response containing a random suggestion and a vague justification. The sug-
gestion is randomly selected from the set of all valid next actions. The justification is
randomly selected from a set of predefined sentences expressing the tautological idea
that “this is a good action because it is good.”

Robot interaction in the random suggestion condition

ROBOT: Hello Human, let’s decorate a cake together. What would you like me to
do first?

PARTICIPANT: take the raspberry off the cake
SYSTEM: The robot is processing your message...
ROBOT: I have completed the action. Let’s move the cherry to location c3. This

decision is smart because it makes a positive difference. What do you think of
this idea?

PARTICIPANT: ok. let’s do it!
SYSTEM: The robot is processing your message...
ROBOT: I have moved the cherry to location c3. What would you like me to do

next?
PARTICIPANT: put blueberries on b1. This will provide a nice y=x symmetry!
SYSTEM: The robot is processing your message...
ROBOT: I have completed the action. Let’s move the white chocolate cube to loca-

tion d1. Doing this action is good because it’ll lead to better outcomes. What
do you think of this idea?

PARTICIPANT: Nah! Suggest something else!
SYSTEM: The robot is processing your message...
ROBOT: Let’s move the blue marshmallow to location d3. This is wise, as it means

things will improve. What do you think of this idea?
...

PARTICIPANT: done
ROBOT: Goodbye! Have a nice day!

As shown in the conversation above, the robot alternates between prompting the partici-
pant for the next action and suggesting the next action. The predefined justifications for
suggestions are designed so that the length of the responses in the random condition are
comparable to that of the responses in the reasonable condition, controlling for robot
response length in the study.

Reasonable Suggestion In the reasonable suggestion case, GPT-4 is prompted to gen-
erate suggestions based on the task description and the robot’s current belief state of
the task. GPT-4 generates suggestions in the following format:“Let’s {description of
action}.{reason for selecting the action}.{ask what the human user thinks of this sug-
gestion}”(the same format of response as that of the random suggestion robot).

Robot interaction in the reasonable suggestion condition

ROBOT: Hello Human, let’s decorate a cake together. What would you like me to
do first?

PARTICIPANT: Put the blueberries on d3
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SYSTEM: The robot is processing your message...
ROBOT: I have completed the action. Let’s put the mint macaron at location c1. Jo

wants to try macarons and this will add a sweet taste that Jo likes. What do you
think about this suggestion?

PARTICIPANT: I agree, lets do it
ROBOT: I have successfully placed the mint macaron on the cake. What would you

like me to do next?
. . .

PARTICIPANT: done
ROBOT: Goodbye! Have a nice day!

As a result, the robot gives task-specific suggestions based on Jo’s preferences.

4 Study Methodology

Participant 
randomization

Survey
-Relative utility
-Creative 
self-efficacy

New cake 
decoration 
scenario

User experience survey 
measures the following:

- Creative support
- Perceived intelligence
- Satisfaction & 
expereince

- Open-ended feedback

Consent form

Demographics form

No dialogue condition

Random suggestion condition

Reasonable suggestion condition

Fig. 5: Experiment Procedure. Participants were randomly assigned to one of the six
orders of the three conditions. Participants started with filling the consent and demo-
graphic forms and ended with filling the creative self-efficacy survey. We applied the
surveys using Qualtrics.

We conducted a within-subject user study during which participants experienced
all three conditions mentioned above. Participants were told that they could decorate
the cake however they liked. After each condition, the experiment facilitator manually
reset the cake to the starting state shown in Fig. 1. As shown in Fig. 5, we randomized
the order in which the participants experienced the three conditions. Furthermore, we
performed block randomization to counterbalance the number of participants that were
assigned to each order.

4.1 Measures

After each condition, participants completed a survey about their experience. The ques-
tionnaire measured participants’ perceptions of the creative support received from the
robot and the robot’s intelligence, participants overall task satisfaction and experience,
and open-ended feedback that asked the participant to “describe [their] experience
working with the robot”.
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Fig. 6: New cake decoration scenario. Participants were asked to choose a robot to work
with on the cake for a new customer

Suggestion Rejection Rate We analyzed the log files for the rate at which the par-
ticipants accepted, rejected, and modified the robot’s suggestions in both the random
condition and the reasonable condition.
Creative Support Participants were asked to rate the following statements on a 5-point
Likert scale. We designed the statements to measure the degree to which interaction
with the robot supported artistic creativity. The items were based on the Creative Sup-
port Index, a validated measure for AI tools [7], modified to reflect the collaborative
role of the robot and the physical nature of the task.

– Interacting with the robot stimulated my own thinking
– Interacting with the robot was helpful when decorating the cake
– Interacting with the robot was effective in completing the cake decoration task
– Interacting with the robot helped me come up with a better cake design
– Interacting with the robot led me to think of more ways of decorating the cake

Perceived Intelligence We measured perceived intelligence of the robot using the God-
speed IV Intelligence scale [5]:

– 1=incompetent, 5=competent
– 1=ignorant, 5=knowledgeable
– 1=responsible, 5=responsible
– 1=unintelligent, 5=intelligent
– 1=foolish, 5=sensible

Overall Satisfaction and Experience We measured the participant’s overall satisfac-
tion and experience with the following scale:

– How satisfied are you with the decorated cake (1 - Very unsatisfied, 5 - Very satis-
fied)

– How pleasant is your experience in working with this robot on the task (1 - Very
unpleasant, 5 - very pleasant)

Relative Utility We compared the utility of the no dialogue robot, the random sug-
gestion robot and the reasonable suggestion robot by presenting the participant with
another cake decoration scenario as shown in Fig.6 and asking them to choose a robot
partner. We physically showed the participant a larger cake, more decorative items, and
information about a new customer with different preferences. We then asked the partic-
ipant to select a robot to work with and describe their reason for selecting this robot.
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Creative Self-Efficacy After the conclusion of all three conditions, the participant
rated the following statements on 5-point Likert scale to measure creative self-efficacy
[11]:

– I think I am a creative person
– My creativity is important to who I am
– I know I can efficiently solve even complicated problems
– I trust my creative abilities
– Compared to my friends, I am distinguished by my imagination and ingenuity
– Many times I have proven that I can cope with difficult situations
– Being a creative person is important to me
– I am sure I can deal with problems requiring creative thinking
– I am good at proposing original solutions to problems
– Creativity is an important part of me
– Ingenuity is a characteristic which is important to me

The creative self-efficacy scale was administered at the end of the study to avoid any
bias that might arise from subjects focusing on creative aspects early on.

5 Results and Discussion

Satisfaction Experience Intelligence Creative Supp.
1

2

3

4

5

no dialogue
random
reasonable

(a) Satisfaction, experience, and creative support ratings

Rand. Reason.
0.0

0.2

0.4

0.6

0.8

1.0

(b) Rejection rates

Fig. 7: User Satisfaction, Experience, Creative Support, and Suggestion Rejection Rates

We performed the Friedman’s test to analyze whether there was a significant dif-
ference in the ratings of task satisfaction, user experience, perceived intelligence, and
creative support across the three conditions. We then performed the Conover’s post hoc
comparisons to determine which conditions were significantly different from each other.
We performed a chi-square test to analyze the suggestion rejection rate among the three
conditions. Furthermore, we checked for normality and performed a linear regression
analysis to determine the effect of creative self-efficacy on the suggestion rejection rate.

5.1 Participants

We recruited 18 university students. Of those participants, 9 identified as male and 9
female. Participants had an average age of 23, with a minimum of 18 and maximum of
32. Most participants (61.1%) have never worked with robots. 44.4% identified as being
very familiar with technology; 38.9% identified as being moderately familiar; 16.7%
identified as being not familiar at all. Participants had an average creative self-efficacy
rating of 3.8 with a minimum of 2.7 and a maximum of 5.0.
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5.2 Task Satisfaction and Experience
Table 1: Conover’s Post Hoc Comparisons - Satisfaction

group1 group2 T-Stat. df Wi W j p pbon f pholm

no dialogue random 0.397 34 32.500 30.500 0.694 1.000 0.694
no dialogue reasonable 2.480 34 32.500 45.000 0.018 0.055 0.037
random reasonable 2.876 34 30.500 45.000 0.007 0.021 0.021

Table 2: Conover’s Post Hoc Comparisons - Experience
group1 group2 T-Stat. df Wi W j p pbon f pholm

no dialogue random 0.463 34 27.500 30.000 0.646 1.000 0.646
no dialogue reasonable 4.262 34 27.500 50.500 < .001 < .001 < .001
random reasonable 3.799 34 30.000 50.500 < .001 0.002 0.001

Participants reported better satisfaction with the outcome in the reasonable condi-
tion compared to the random condition (all p values < .05). Participants also reported
better experience in the reasonable condition compared to the random condition and the
no dialogue condition (all p values < .001) as shown in Fig. (a), Table 1 and Table 2.
However, the difference between the random condition and the no dialogue condition
was not statistically significant. This result partially supports H1.

5.3 Intelligence
Table 3: Conover’s Post Hoc Comparisons - Intelligence

group1 group2 T-Stat. df Wi W j p pbon f pholm

no dialogue random 0.087 34 29.000 28.500 0.932 1.000 0.932
no dialogue reasonable 3.723 34 29.000 50.500 < .001 0.002 0.002
random reasonable 3.809 34 28.500 50.500 < .001 0.002 0.002

While both the no dialogue robot and the random robot were rated as significantly
less intelligent than the reasonable robot, we found no significant difference in intelli-
gence ratings between the random robot and the no dialogue robot as demonstrated by
Table 3. This result supports H2.

5.4 Creative Support
Table 4: Conover’s Post Hoc Comparisons - Creative Support

group1 group2 T-Stat. df Wi W j p pbon f pholm

no dialogue random 1.679 34 22.500 32.500 0.102 0.307 0.102
no dialogue reasonable 5.121 34 22.500 53.000 < .001 < .001 < .001
random reasonable 3.442 34 32.500 53.000 0.002 0.005 0.003

As shown in Table 4 and Fig. (a), participants reported significantly more creative sup-
port from the reasonable robot than the random robot. Participants also reported sig-
nificantly more creative support from the reasonable robot than the no dialogue robot.
This finding aligns with H3, illustrating the utility of robot initiative in the form of
suggestions and reasons in supporting creativity.
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5.5 Suggestion Rejection
Table 5: Conover’s Post Hoc Comparisons - Rejection Rates

group1 group2 T-Stat. df Wi W j p pbon f pholm

random reasonable 2.222 17 31.500 22.500 0.040 0.040 0.040

We found that participants were significantly less likely to reject suggestions given
by the reasonable robot compared to the random robot as shown in Fig. 7b and Table 5
(p < .05). This supports H5. We found no correlation between participants’ creative
self-efficacy ratings and their suggestion rejection rates in either the random condition
nor the reasonable condition. This does not support H6.

5.6 Relative Utility
Table 6: Multinomial Test for Relative Utility

χ2 df p

Multinomial 30.333 2 < .001

Table 7: Descriptives for Relative Utility

condition Percentage of Participants Expected: Multinomial

base 0.000 0.333
random 0.056 0.333
reasonable 0.944 0.333

Participants overwhelmingly preferred to work with the reasonable robot on a similar
task as shown in Table 6 and Table 7. 17 out of 18 (94%) participants preferred the rea-
sonable robot whereas 1 out of 18 (<6%) preferred the random robot. None of the par-
ticipants preferred the no dialogue robot. This supports H4. When reporting the reasons
behind their choice, some participants highlight the reasonable robot’s effectiveness at
reducing cognitive load by suggesting to place decorations that the participant “might
have forgotten about” while others point to its ability to support creativity, commenting
that they would be able to “combine their own creativity with the robot’s help”.

6 Discussion and Conclusion

The effects of interactive task dialogues in creative and collaborative settings under-
scores the substantial impact of task-specific justifications provided by a co-creative
robot partner. Participants tend to give the highest ratings of support to the robot that in-
corporates task-specific justifications for suggestions into the dialogue. Results suggest
that task dialogue alone is not enough to improve user satisfaction and experience; they
showcase the impact of different modes of robot initiative, namely offering task-specific
justifications while taking initiative significantly improves user experience. Participants
perceive the reasonable robot as more intelligent and are less likely to reject its sug-
gestions, indicating that perceived robot intelligence plays a significant role in partic-
ipants’ willingness to accept the robot’s collaborative input. Furthermore, participants
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overwhelmingly find the reasonable robot the most useful out of the three, further high-
lighting the importance of task-specific justifications in co-creative settings. Together
these results show that the proposed architecture integrating LLM models to enable de-
sign suggestions through task-based dialogues does support users in making their own
creative designs. It thus provides an important step towards developing robots that can
aid people in carrying out creative tasks without limiting their creativity.
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