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Abstract—Domain generalization (DG) is a branch of transfer
learning that aims to train the learning models on several seen
domains and subsequently apply these pre-trained models to other
unseen (unknown but related) domains. To deal with challenging
settings in DG where both data and label of the unseen domain
are not available at training time, the most common approach is to
design the classifiers based on the domain-invariant representation
features, i.e., the latent representations that are unchanged and
transferable between domains. Contrary to popular belief, we show
that designing classifiers based on invariant representation features
alone is necessary but insufficient in DG. Our analysis indicates
the necessity of imposing a constraint on the reconstruction
loss induced by representation functions to preserve most of the
relevant information about the label in the latent space. More
importantly, we point out the trade-off between minimizing the
reconstruction loss and achieving domain alignment in DG. Our
theoretical results motivate a new DG framework that jointly
optimizes the reconstruction loss and the domain discrepancy.
Both theoretical and numerical results are provided to justify our
approach.

I. INTRODUCTION

Domain Generalization (DG) has been widely studied over
the past decade [1], [2]. Similar to Domain Adaptation (DA),
DG aims to design a classifier based on one or several seen
(source) domains and then apply these pre-trained classifiers
to the unseen (target) domains. While accessing the data from
unseen (target) domains is allowed in DA, this is strictly
prohibited in DG, leading to a more challenging problem.

In practice, without any knowledge about unseen domains,
one of the most common methods in DG is first to look for
domain-invariant features, i.e., the features that are general
and transferable between domains, then design pre-trained
classifiers based on these features. This approach is known as
domain-invariant or domain-alignment representation learning
and is widely considered as one of the most promising and
efficient approaches in DG (please see our short survey in
Sec. II). Though domain-invariant representation learning is
possible to learn invariant features, recent work [3] shows that
this technique does not account for the information loss caused
by non-invertible representation maps which consequently
motivates the use of (nearly) invertible representation maps
[3], [4].

In this paper, based on the theme of domain-invariant
representation learning and the information-theoretic point of
view, we indicate the necessity of imposing a constraint on the

reconstruction loss induced by representation mappings to retain
the relevant information about the label in learned features1. In
addition, we show that there is a trade-off between minimizing
the reconstruction loss and minimizing the discrepancy between
domains.

In this paper, our contributions include:

1) We derive a lower bound on mutual information between
the latent representation and their labels to demonstrate
the necessity of imposing a constraint on reconstruction
loss in DG [Proposition 1].

2) We characterize the trade-off between minimizing the
reconstruction loss vs. minimizing the discrepancy of
joint distributions between domains. In other words, we
show that it is impossible to perfectly accomplish these
two objectives at the same time [Proposition 2].

3) We propose a new DG learning framework that directly
accounts for both the reconstruction loss and the discrep-
ancy between domains and demonstrate the efficiency of
our proposed framework on several datasets.

The remainder of this paper is structured as follows. In
Section II, we provide a short survey of existing works on DG.
In Section III, we formally describe the problem formulation
and clarify the notations. Section IV provides some initial
results which support to our main results in Section V. The
practical approach is described in Section VI. Finally, we
provide the numerical results in Section VII and conclude in
Section VIII.

II. RELATED WORK

The most common approach in DG is domain-invariant
representation learning which aims to extract domain-invariant
features and then design a classifier based on these features
[5]–[13]. Domain-invariant approach, however, requires two
key assumptions: (a) the domain-invariant features must exist
and be shared between domains, and (b) the domain-invariant
features must be strongly correlated with labels [5], [14]–[16].
In addition, to precisely obtain the domain-invariant features,
one usually requires the availability of a sufficiently large

1Note that a smaller reconstruction loss between input data and its
representation implies the representation function is nearly invertible. Thus, our
results agree with the work in [3], [4] that using nearly invertible representation
functions is necessary for DG.



number of seen domains at training time [16], [17]. Therefore,
if (a) the invariant features are neither existent nor strongly
correlated with the label, or (b) the number of observed (seen)
domains is not large enough, domain-invariant methods may
fail [18]–[21].

Domain-invariant representation learning can be categorized
into two main branches: (a) marginal distribution-invariant
methods (covariate-alignment), i.e., learning the features such
that their distributions are unchanged according to domains,
and (b) conditional distribution-invariant methods (concept-
alignment), i.e., learning the features such that the conditional
distributions of labels given features are stable from domain
to domain. The first branch (covariate-alignment) includes the
works in [22]–[30]. Particularly, in [24], [27], the authors
employ deep neural networks to learn transformations such
that the differences between variances of transformed features
over seen domains are minimized. Similarly, Li et al. [25]
propose a method called Maximum Mean Discrepancy (MMD)
that aims to minimize the maximum of the mean discrepancy
between marginal distributions in seen domains. Sun and
Saenko [31] propose a method that not only matches the mean
but also synchronizes the covariance of feature distributions
over different domains. Shen et al. [30] minimize the Wasser-
stein distance between marginal distributions of representation
variables from different seen domains in latent space to extract
invariant features. In a new approach, Bui et al. [15] desire
to learn domain-invariant features (with marginal distributions
unchanged according to domains) together with domain-specific
features to enhance the generalization performance. The second
branch (concept-alignment) includes the works in [5]–[8],
[13], [32]–[34]. Particularly, linear/non-linear Invariant Risk
Minimization algorithms are proposed in [5], [6] to find a
common optimal linear/non-linear classifier over all observed
domains under a key assumption that a common optimal
classifier exists if the conditional distributions of the learned
features are stable from domain to domain. Li et al. [8] propose
a method to extract domain-invariant features via minimizing
the mutual information of label given extracted feature for a
given domain. Wang et al. [32] minimize the Kullback–Leibler
(KL) divergence between conditional distributions in each class
to obtain domain-invariant features. There are also several
works that aim to simultaneously achieve both covariate-
alignment and concept-alignment by minimizing the divergence
of joint distributions between domains [25], [35]–[37].

It is worth noting that domain-invariant methods may fail
under some particular settings, for example, if the labels more
strongly correlate with the spurious features than with the true
invariant features [7], [16]. To prevent the failure of learning
models in these particular scenarios, Ahuja et al. suggest adding
a constraint on the entropy of extracted features to capture
the true invariant features [7]. In a similar vein, Nguyen et
al. employ the conditional entropy minimization principle to
eliminate the spurious-invariant features [16].

III. PROBLEM FORMULATION

A. Notations

Let X , Z , Y denote the input space, the representation
space, and the label space, respectively. For a given family
of domains D, suppose that the data from S observed (seen)
domains D(1),D(2), . . . ,D(S) ∈ D is accessible, DG tasks aim
to learn a representation function f : X → Z followed by
a classifier g : Z → Y that generalizes well on an unseen
domain D(u) ∈ D, u ̸= 1, 2, . . . , S.

Let X denote the input random variable, Z = f(X) denote
the extracted feature random variable, Y denote the label
random variable in input space, representation space, and
label space, respectively. We use superscription (i) to denote
the variables and functions specified on domain D(i). For
example, we use p(i)(x), p(i)(z), p(i)(x, z) to denote the
distribution of input sample x, the distribution of feature sample
z = f(x), and their joint distribution on D(i), respectively. We
use p(i)(X,Z) and p(i)(Y, Z) to denote the joint distribution
between input random variable X and its representation random
variable Z and the joint distribution between label random
variable Y and representation random variable Z in D(i).
Finally, we use H(A|B) and I(A;B) to denote the conditional
entropy and mutual information between two random variables
A and B, respectively.

B. Problem formulation

For given S seen domains, a DG task aims to find an
optimal representation function f∗ by solving the following
optimization problem:

min
f :X→Z

R(u)(gf ◦ f) (1)

where R(u)(gf ◦ f) denotes the risk (classification error)
introduced by using a representation map f followed by an
optimal classifier gf on unseen domain D(u). Note that for
a given f : X → Z , the optimal classifier gf : Z → Y
completely depends on f .

In this paper, under the information-theoretic point of view,
we want to solve the following optimization problem:

max
f :X→Z

I(u)(Y ;Z) (2)

where I(u)(Y ;Z) denotes mutual information between the
labels and representation features on unseen domain D(u).
It is worth noting that a higher mutual information between
representation features and its labels likely leads to a higher
classification accuracy. Thus, solving (2) acts as a proxy for
minimizing the classification risk on the unseen domain which
is the ultimate goal of DG tasks in (1).

IV. PRELIMINARY

This section provides some definitions and preliminary
results that support our main results in Sec. V.



A. Measure of domain discrepancy

Under DG settings, one only can access to the data from
seen domains, therefore, the most common approach is first to
learn domain-invariant features and then design a classifier
based on these features [5]–[13]. For a given divergence
measure D(·||·) and a seen domain D(s), previous works on DG
usually aim to (a) enforce covariate-alignment, i.e., minimizing
D(p(u)(Z)||p(s)(Z)), or (b) enforce concept-alignment, i.e.,
minimizing D(p(u)(Y |Z)||p(s)(Y |Z))2. We, however, want to
learn a mapping f to minimize the mismatch between joint
distributions of seen and unseen domains3.

Definition 1 [Domain discrepancy induced by a representation
function]. For a representation function f : X → Z , unseen
domain D(u), and seen domain D(s), the domain-discrepancy
between D(u) and D(s) induced by f is:

K(f) = D(p(u)(Y,Z)||p(s)(Y,Z)) (3)

where D(·||·) is a divergence measure that quantifies the
mismatch between two distributions.

If the mapping f induces K(f) = 0, the distributions
between seen and unseen domains are perfectly aligned. In
practice, one usually wants to enforce K(f) ≤ ϵ where ϵ is a
positive number.

Definition 2. Let W (ϵ) denote the maximum discrepancy
between mutual information of unseen domain D(u) and seen
domain D(s) when the domain discrepancy K(f) does not
exceed a positive number ϵ. Formally,

W (ϵ) = max
f :X→Z,
K(f)≤ϵ

∣∣I(u)(Y ;Z)− I(s)(Y ;Z)
∣∣ (4)

where I(u)(Y ;Z) and I(s)(Y ;Z) are mutual information
between label Y and representation feature Z in unseen domain
and seen domain, respectively.

If ϵ = 0, K(f) = 0, I(u)(Y ;Z) = I(s)(Y ;Z), and
W (0) = 0. In addition, it is possible to verify that W (ϵ)
is a monotonically increasing function of ϵ.

B. Measure of reconstruction loss

Note that by Data Processing Inequality [38] and the fact that
Y → X → Z forms a Markov chain, for any representation
function f :

I(u)(Y ;X) ≥ I(u)(Y ;Z) (5)

where I(u)(Y ;X) and I(u)(Y ;Z) denote mutual information
between label and input and mutual information between
label and feature on unseen domain, respectively. The equality
happens in (5) if f is invertible.

2Under DG settings, one cannot directly align the distribution from the
unseen domain, therefore, aligning the distribution over all seen domains is
usually used as a proxy to achieve this goal.

3Even though this condition is restricted, our examples in Appendix A show
that achieving covariate-alignment or concept-alignment alone is not enough
to guarantee a small classification risk on unseen domain.

It is worth noting that there may exist non-invertible
representation functions that make the equality happens. Indeed,
if the label information can be precisely preserved under
mapping f , i.e., using Z to predict Y is as good as using
X to predict Y , for example, if H(u)(Y |X) = H(u)(Y |Z),
then I(u)(Y ;X) = I(u)(Y ;Z). However, under DG settings,
there is no information about the data, nor the label from
unseen domains. Thus, it is impossible to design such non-
invertible mappings that perfectly preserve the label information
on unseen domain. On the other hand, (nearly) invertible
mappings can be constructed regardless of domains which
is a possible way to retain the useful information on unseen
domains, i.e., making I(u)(Y ;Z) close to I(u)(Y ;X). In
practice, (nearly) invertible mappings can be enforced by
minimizing the reconstruction loss between input data and
its representation.

Definition 3 [Reconstruction loss]. For a representation func-
tion f : X → Z , and a function θ : Z → X , the reconstruction
loss (on unseen domain) induced by f and θ is defined by:

R(f, θ) =

∫
x∈X

p(u)(x) ℓ(x, θ(f(x))) dx

=

∫
x∈X

∫
z∈Z

p(u)(x, z) ℓ(x, θ(z)) dx dz (6)

where ℓ(·, ·) is a distortion function.

Usually, f is called encoder and θ is called decoder.

Definition 4. Let Q(γ) denote the maximum mutual information
loss (on unseen domain) when the reconstruction loss induced
by encoder f and decoder θ does not exceed a positive number
γ. Formally,

Q(γ) = max
f :X→Z,
θ:Z→X ,
R(f,θ)≤γ

I(u)(Y ;X)− I(u)(Y ;Z). (7)

Note that γ = 0 implies f is invertible, leading to
I(u)(Y ;X) = I(u)(Y ;Z). Therefore, Q(0) = 0. In addition,
it is possible to show that Q(γ) is a monotonic increasing
function of γ.

V. MAIN RESULTS

Based on definitions and initial results in Sec. IV, we point
out the necessity of employing the representation functions
such that a small reconstruction loss is induced in order to solve
the optimization problem in (2). More interestingly, we show
that there is a trade-off between minimizing the reconstruction
loss and aligning the joint distributions between domains.

Proposition 1 [Main result]. For unseen domain D(u), seen
domain D(s), and any encoder f and decoder θ:

I(u)(Y ;Z) ≥ max
[
I(s)(Y ;Z) − W

(
K(f)

)
;

I(u)(Y ;X) − Q
(
R(f, θ)

)]
.

Proof. Please see Appendix B.



Proposition 1 points out a possible way to solve the
optimization problem proposed in (2). Particularly, to max-
imize I(u)(Y ;Z), one simultaneously needs to (a) maximize
I(s)(Y ;Z) − W (K(f)), and (b) maximize I(u)(Y ;X) −
Q(R(f, θ)). Since I(u)(Y ;X) is a constant, W (·) and Q(·)
are monotonically increasing functions, we need to find an
encoder f and a decoder θ to maximize the mutual information
on seen domain I(s)(Y ;Z), minimize the domain discrepancy
K(f), and minimize the reconstruction loss R(f, θ), at the
same time.

In practice, if the invariant features exist, strongly correlate
with the label, and can be precisely learned, there may exist
a mapping f such that I(s)(Y ;Z) is large and K(f) is small
which make the first lower bound I(s)(Y ;Z)−W (K(f)) is
tighter than the second lower bound I(u)(Y ;X)−Q(R(f, θ)).
However, under some failure cases in literature [18]–[21],
for example, if the invariant feature does not exist, or if the
invariant feature is not strongly correlated with the label, then
K(f) is large and I(s)(Y ;Z) is small, and the second lower
bound I(u)(Y ;X)−Q(R(f, θ)) might be the tighter one. Thus,
the traditional approaches that simultaneously target to learn
the invariant features (minimizing K(f)) and minimize the
empirical risk (a proxy for maximizing the mutual information
on seen domain I(s)(Y ;Z)) for optimizing the first lower
bound, can fail.

Motivated by Proposition 1, one wants to design an encoder
f and a decoder θ to simultaneously minimize both K(f)
and R(f, θ). Unfortunately, we show that it is impossible to
optimize K(f) and R(f, θ) at the same time.

Definition 5 [Reconstruction-alignment function]. For unseen
domain D(u), seen domain D(s), and a given decoder θ, the
reconstruction-alignment function T (γ) is defined by:

T (γ) = min
f :X→Z

K(f) = min
f :X→Z

D(p(u)(Y,Z)||p(s)(Y,Z))

s.t. R(f, θ) =

∫
x∈X

∫
z∈Z

p(u)(x,z)ℓ(x, θ(z)) dx dz ≤ γ
(8)

where γ is a positive number, ℓ(·, ·) is a distortion measure,
and D(·||·) is a divergence measure.

The reconstruction-alignment function T (γ) is the minimal
discrepancy between the joint distributions of the unseen
domain D(u) and seen domain D(s) that can be obtained if
the reconstruction loss (on unseen domain) does not exceed
a positive number γ. We formally characterize the trade-off
between minimizing reconstruction loss and achieving domain
alignment as below.

Proposition 2 [Main result]. If the divergence measure D(a||b)
is convex (in both variables a and b), then T (γ) defined in (8)
is (a) monotonically non-increasing, and (b) convex.

Proof. Please see Appendix C.

Sharing some similarities with rate-distortion theory [38],
Proposition 2 characterizes the trade-off between minimizing
the domain discrepancy K(f) and minimizing the reconstruc-
tion loss R(f, θ). Since Proposition 2 holds for any decoder θ,

there is no encoder f and decoder θ that can perfectly minimize
the domain discrepancy and the reconstruction loss.

In addition, though the proof of Proposition 2 is constructed
by considering the reconstruction loss on unseen domain,
a similar proof holds for seen domains, i.e., there is a
universal trade-off between minimizing the domain discrepancy
and minimizing the reconstruction loss regardless of domain.
Finally, it is worth noting that the assumption about the
convexity of the divergence D(·||·) is not too restricted in
practice. Indeed, most of the divergence measures, for example,
the Kullback-Leibler divergence, are convex [38].

VI. PRACTICAL APPROACH

In this section, motivated by Proposition 1, we propose a
framework that simultaneously optimizes the domain discrep-
ancy, the reconstruction loss, and the empirical risk on seen
domains4. Specifically, we want to minimize the following loss
function:

min
f,gf ,θ

M∑
i=1

R(i)(gf ◦ f) + αLdiscrepancy(f) + βLreconstruction(f, θ),

(9)
where the first term is the empirical classification risk over M
seen domains, the second term denotes the domain discrepancy,
and the third term represents the reconstruction loss. α, and
β are two positive hyper-parameters that control the trade-off
between minimizing these three loss terms.

Compared to most of the existing works in DG, the main
difference of our objective function in (9) comes from the
reconstruction loss term which is added in light of Proposition
1 to preserve the information between the latent representation
and its labels on unseen domain. Therefore, (9) can be
practically optimized by adding a decoder (for optimizing
the reconstruction loss) into the well-established existing
DG models that already handle the empirical risk and the
domain discrepancy terms. Practically, we employ the following
DG methods: Invariant Risk Minimization (IRM) algorithm
[5], Maximum Mean Discrepancy (MMD) algorithm [25],
CORrelation ALignment (CORAL) algorithm [31], Invariant
Risk Minimization-Maximum Mean Discrepancy (IRM-MMD)
algorithm [37], Information Bottleneck-Invariant Risk Mini-
mization (IB-IRM) algorithm [7], Empirical Risk Minimization
(ERM) algorithm [39], and Conditional Entropy Minimization
(CEM) algorithm [16] to minimize the first two terms in (9)5.

To minimize the reconstruction loss term in (9), we train an
encoder f : X → Z together with a decoder θ : Z → X to
minimize:

Lreconstruction(f, θ)=

M∑
i=1

∫
x∈X

p(i)(x)ℓ(x, θ(f(x))) dx, (10)

4Here, minimizing the empirical risk (on seen domains) is considered as a
proxy for maximizing the mutual information between label and representation
features. Using mutual information as a direct objective function will be kept
in our future work.

5Due to the limited time, we randomly select some algorithms from recent
works on DG to add the reconstruction loss term. We encourage the reader to
find the details of these algorithms in [5], [7], [16], [25], [31], [37].



where the squared-Euclidean distance is selected as the distor-
tion measure, i.e., ℓ(a, b) = (a− b)2, and p(i)(x) denotes the
input distribution on domain D(i), i = 1, 2, . . . ,M .

By adding the reconstruction loss term into IRM, MMD,
CORAL, IRM-MMD, IB-IRM, ERM, and CEM algorithms,
the following new algorithms are constructed: IRM-Rec,
MMD-Rec, CORAL-Rec, IRM-MMD-Rec, IB-IRM-Rec, ERM-
Rec, and CEM-Rec, respectively. One of the advantages of
employing multiple algorithms for dealing with the first two
terms in (9) is that it allows us to evaluate the effectiveness
of combining the reconstruction-loss term on a variety of DG
methods. Indeed, our numerical results in the next section show
that adding the reconstruction loss term leads to improvements
in the accuracy of existing DG methods.

VII. EXPERIMENTS

A. Datasets

Colored-MNIST (CMNIST) [5]. The CMNIST dataset is
a common DG dataset which was first proposed in [5]. The
learning task is to classify a colored digit into two classes: the
digit is less than or equal to four or the digit is strictly greater
than four. There are three domains in CMNIST, two domains
contain 25,000 images each and one domain contains 20,000
images. Here, the color is considered as a spurious feature
which is added in a way such that the label is more correlated
with the color than with the digit. Due to a strong spurious
correlation between colors and labels, any algorithm simply
aims to minimize the training error will tend to discover the
color rather than the shape of the digit (on seen domains) and
therefore fail in the test on unseen domains. More details about
the CMNIST dataset can be found in [5].

Covariate-Shift-CMNIST (CS-CMNIST) [40]. The CS-
CMNIST dataset is a dataset derived from CMNIST dataset
which was first introduced in [40]. There are 10 classes in CS-
CMNIST dataset where each class corresponds to a digit from
zero to nine and each digit is associated with a single color.
There are three domains in CS-CMNIST: two training domains
and one testing domain, each containing 20,000 images. The
color is considered the spurious feature and is added in a way
such that the color is more correlated to digits on seen domains
than on unseen domains. More detail about CS-CMNIST can
be found in [7], [40].

B. Compared Methods

As previously discussed in Sec. VI, by adding the reconstruc-
tion loss term, we compare the proposed IRM-Rec, MMD-Rec,
CORAL-Rec, IRM-MMD-Rec, IB-IRM-Rec, ERM-Rec, and
CEM-Rec algorithms against their original IRM [5], MMD
[25], CORAL [31], IRM-MMD [37], IB-IRM [7], ERM [39],
and CEM [16] algorithms.

C. Implementation Details

For the CMNIST dataset, we utilize the excellent implemen-
tation in Domainbed [21] that employs the MNIST-ConvNet
with four convolutional layers as the learning model. 20 trials
corresponding to 20 pairs of hyper-parameters α and β are

randomly selected in [10−1, 104]. For each trial, the learning
rate is randomly picked in [10−4.5, 10−3.5] while the batch
size is randomly selected in [23, 29].

Since the CS-CMNIST dataset is not available in Domainbed
[21], we follow the implementation proposed in [7] where the
learning model is composed of three convolutional layers with
feature map dimensions of 256, 128, and 64, respectively. The
last layer (linear layer) is used to classify the colored digit
back to 10 classes corresponding to 10 digits from zero to nine.
We use an SGD optimizer for training with a batch size fixed
to 128, the learning rate fixed to 10−1 and decay every 600
steps with the total number of steps set to 2,000. In contrast
to CMNIST, a grid search is performed in CS-CMNIST with
α, β ∈ {0.1, 1, 10, 102, 103, 104}.

The training-domain validation set procedure is used for
model selection, i.e., selecting the hyper-parameters (the
models) that induce the highest validation accuracy on the
validation set sampled from seen domains [7], [21].

We repeat the whole experiment three times for CMNIST
and five times for CS-CMNIST via selecting different random
seeds6. For each selected random seed, the whole process of
hyper-parameters tuning and model selection is repeated. After
the whole process is finished, only the average accuracy and
its corresponding standard deviation are reported. Our code
can be found at this link7.

D. Results and Discussion

Algorithm IRM [5] IB-IRM [7] MMD-IRM [37] CEM [16]

Accuracy 61.5 ∓ 1.5 71.8 ∓ 0.7 77.2 ∓ 0.9 85.7 ∓ 0.9

Algorithm IRM-Rec IB-IRM-Rec MMD-IRM-Rec CEM-Rec

Accuracy 71.0 ∓ 0.8 75.6 ∓ 1.1 79.7 ∓ 0.6 87.1 ∓ 1.3

TABLE I
Average accuracy (%) of compared methods on CS-CMNIST dataset.

Algorithm IRM [5] MMD [25] ERM [39] CORAL [31]

Accuracy 52.0 ∓ 0.1 51.5 ∓ 0.2 51.5 ∓ 0.1 51.5 ∓ 0.1

Algorithm IRM-Rec MMD-Rec ERM-Rec CORAL-Rec

Accuracy 51.7 ∓ 0.2 51.7 ∓ 0.1 51.8 ∓ 0.1 52.0 ∓ 0.1

TABLE II
Average accuracy (%) of compared methods on CMNIST dataset.

Table I and II provide the accuracy of compared methods
on CS-CMNIST dataset and CMNIST dataset, respectively.

As seen, for the CS-CMNIST dataset, the accuracy of all four
tested algorithms has been improved when the reconstruction
loss term is added. Particularly, the lowest improvement is
1.4% observed from CEM algorithm [16], while the largest
improvement appears in IRM algorithm [5] with the gain

6We follow the settings in [7], [21]. Particularly, in [21], the experiment is
repeated three times while in [7], the experiment is repeated five times.

7https://github.com/thuan2412/tradeoff between domain alignment and
reconstruction loss

https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruction_loss
https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruction_loss
https://github.com/thuan2412/tradeoff_between_domain_alignment_and_reconstruction_loss


of 9.5%. We believe that the difference in the improvement
between the tested algorithms can be explained by Proposition
1. Indeed, it seems like the original CEM algorithm [16] already
works well on CS-CMNIST, therefore, the first lower bound
in Proposition 1 induced by CEM is pretty tight which leads
to a small improvement in accuracy when the reconstruction
loss term is added. On the other hand, since IRM algorithm
[5] performs poorly on CS-CMNIST, we suspect that the first
lower bound in Proposition 1 induced by IRM is the looser
one, leading to a large improvement when the reconstruction
loss term is added for optimizing the second bound.

Compared to CS-CMNIST, CMNIST is a more challenging
dataset where all tested algorithms perform poorly. Indeed,
because there exists a strong spurious correlation between
the colors and the labels of digits in CMNIST, there is no
algorithm that works well on CMNIST [21]. However, as
observed from Table II, three out of four tested algorithms
have been improved by adding the reconstruction loss term
when tested on CMNIST dataset. Even though the improvement
is not substantial with the largest margin being only 0.5% from
the CORAL algorithm, this still demonstrates the usefulness
of optimizing the reconstruction loss term in DG.

It is worth noting that the numerical results for IRM, MMD,
CORAL, and ERM on the CMNIST dataset are collected from
[21] while the numerical results for IRM, IB-IRM, and CEM
on the CS-CMNIST dataset are collected from [16]. Since
the source code of MMD-IRM [37] was not released, we
implemented this algorithm by our-self in order to construct
the MMD-IRM-Rec algorithm.

Finally, our future work will focus on integrating the
reconstruction loss into other state-of-the-art DG algorithms. Of
course, using mutual information as a direct objective function
instead of empirical risk will also be considered as one of our
future works.

VIII. CONCLUSIONS

In this paper, we showed that learning domain-invariant
representation features is necessary in DG but insufficient
to preserve the mutual information between label and repre-
sentation features on unseen domains. This fact suggests for
imposing a constraint on the reconstruction loss between the
input and its latent representation in order to preserve most of
the relevant information about labels. More importantly, we also
point out the trade-off between minimizing the reconstruction
loss and achieving domain alignment in DG. In other words,
it is impossible to minimize both the reconstruction loss and
the domain discrepancy at the same time. Our theoretical
results motivate a new practical framework that jointly accounts
for both the reconstruction loss and the domain discrepancy
to learn the optimal representation features. In practice, our
proposed algorithms can provide a comparable or slightly better
performance compared to state-of-the-art DG methods.
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APPENDIX

A. Covariate-alignment or concept-alignment alone is not
sufficient to achieve Domain Generalization

In this section, we provide two small examples to show that
achieving covariate-alignment or concept-alignment alone is not
enough to minimize the classification error on unseen domains.

Example A.1 (Covariate-alignment alone is not enough). Suppose
that there exits a mapping f : X → Z such that the marginal
distributions of seen and unseen domains in the latent space are
perfectly aligned. Particularly, we assume that Z = {0, 1}, and
p(s)(Z = 0) = p(u)(Z = 0) = p(s)(Z = 1) = p(u)(Z = 1) =
0.5. Next, suppose that there is a mismatch between the conditional

distribution between two domains (inadequate concept-alignment), for
example,

p(s)(Y = 0|Z = 0) = 0.9,

p(s)(Y = 1|Z = 0) = 0.1,

p(s)(Y = 0|Z = 1) = 0.1,

p(s)(Y = 1|Z = 1) = 0.9,

and

p(u)(Y = 0|Z = 0) = 0.1,

p(u)(Y = 1|Z = 0) = 0.9,

p(u)(Y = 0|Z = 1) = 0.9,

p(u)(Y = 1|Z = 1) = 0.1.

If one trains a maximum likelihood classifier g : Z → Y on seen
domain, then g(Z = 0) = 0 and g(Z = 1) = 1. The classification
error on the seen domain induced by f and g is:

R(s)(g ◦ f) = p(s)(Z = 0)
[
1− p(s)(Y = 0|Z = 0)

]
+ p(s)(Z = 1)

[
1− p(s)(Y = 1|Z = 1)

]
= 0.1.

Next, if one applies this pre-trained classifier g to the unseen
domain, the classification error is:

R(u)(g ◦ f) = p(u)(Z = 0)
[
1− p(u)(Y = 0|Z = 0)

]
+ p(u)(Z = 1)

[
1− p(u)(Y = 1|Z = 1)

]
= 0.9.

Therefore, covariate-alignment alone is not sufficient to guarantee
a low classification error on unseen domain.

Example A.2 (Concept-alignment alone is not enough). Suppose
that there exits a mapping f : X → Z such that the conditional
distributions of seen and unseen domains in the latent space are
perfectly aligned. Particularly, we assume that Z = {0, 1}, and

p(s)(Y = 0|Z = 0) = p(u)(Y = 0|Z = 0) = 0.9,

p(s)(Y = 1|Z = 0) = p(u)(Y = 1|Z = 0) = 0.1,

p(s)(Y = 0|Z = 1) = p(u)(Y = 0|Z = 1) = 0.49,

p(s)(Y = 1|Z = 1) = p(u)(Y = 1|Z = 1) = 0.51.

Next, suppose that there is a mismatch between the marginal distribu-
tion of two domains (inadequate covariate-alignment), for example,
p(s)(Z = 0) = 0.9, p(s)(Z = 1) = 0.1 while p(u)(Z = 0) = 0.1,
p(u)(Z = 1) = 0.9.

If one trains a maximum likelihood classifier g : Z → Y on seen
domain, then g(Z = 0) = 0 and g(Z = 1) = 1. The classification
error on seen domain induced by f and g is:

R(s)(g ◦ f) = p(s)(Z = 0)
[
1− p(s)(Y = 0|Z = 0)

]
+ p(s)(Z = 1)

[
1− p(s)(Y = 1|Z = 1)

]
= 0.139.

Next, if one transfers this pre-trained classifier g to the unseen
domain, the classification error is:

R(u)(g ◦ f) = p(u)(Z = 0)
[
1− p(u)(Y = 0|Z = 0)

]
+ p(u)(Z = 1)

[
1− p(u)(Y = 1|Z = 1)

]
= 0.451.

Therefore, achieving concept-alignment alone does not ensure a
low classification error on unseen domain.



B. Proof of Proposition 1
First, from Definition 2, for a given f :

W (K(f)) ≥ I(s)(Y ;Z)− I(u)(Y ;Z), (11)

which is equivalent to:

I(u)(Y ;Z) ≥ I(s)(Y ;Z)−W (K(f)). (12)

Next, from Definition 4, for given f and θ:

Q(R(f, θ)) ≥ I(u)(Y ;X)− I(u)(Y ;Z) (13)

which is equivalent to:

I(u)(Y ;Z) ≥ I(u)(Y ;X)−Q(R(f, θ)). (14)

Combine (12) and (14), the proof follows.

C. Proof of Proposition 2
First, it is worth noting that our proof closely follows to the proof

of rate-distortion theory in [38].
Particularly, consider two positive numbers γ1 and γ2, and assume

that γ1 ≤ γ2. For a given decoder θ, let Fγ1 and Fγ2 denote the sets of
representation functions f such that R(f, θ) ≤ γ1 and R(f, θ) ≤ γ2,
respectively. From γ1 ≤ γ2, Fγ1 ⊂ Fγ2 . Therefore:

T (γ1) = min
f∈Fγ1

K(f) ≥ min
f∈Fγ2

K(f) = T (γ2). (15)

Thus, T (γ) is a monotonically non-increasing function of γ.
Next, let:

f1 = argmin
f :X→Z

K(f) s.t. R(f, θ) ≤ γ1, (16)

f2 = argmin
f :X→Z

K(f) s.t. R(f, θ) ≤ γ2. (17)

Let p(u)1 (Y,Z), p(s)1 (Y,Z) be the corresponding joint distributions
of Y and Z on unseen and seen domain introduced by f1, and
p
(u)
2 (Y,Z), p(s)2 (Y,Z) be the corresponding joint distributions of Y

and Z on unseen and seen domain introduced by f2, respectively.
Let p(u)1 (X,Z), p(s)1 (X,Z) be the corresponding joint distributions

of X and Z on unseen and seen domain introduced by f1, and
p
(u)
2 (X,Z), p(s)2 (X,Z) be the corresponding joint distributions of X

and Z on unseen and seen domain introduced by f2, respectively.
Note that for any representation function f , we have p(u)(Y,Z) =

p(u)(Y |X) p(u)(X,Z) and p(s)(Y,Z) = p(s)(Y |X) p(s)(X,Z)
where p(u)(Y |X) and p(s)(Y |X) denote the conditional distribution
between label and input data in unseen and seen domain, respectively.
Of course, p(u)(Y |X) and p(s)(Y |X) are independent with the
mapping f . Thus,

p
(u)
1 (Y,Z) = p(u)(Y |X) p

(u)
1 (X,Z), (18)

p
(u)
2 (Y,Z) = p(u)(Y |X) p

(u)
2 (X,Z), (19)

and,

p
(s)
1 (Y,Z) = p(s)(Y |X) p

(s)
1 (X,Z), (20)

p
(s)
2 (Y,Z) = p(s)(Y |X) p

(s)
2 (X,Z). (21)

Next, to prove the convexity of T (γ), we show that:

λT (γ1) + (1− λ)T (γ2) ≥ T (λγ1 + (1− λ)γ2), (22)

for any λ ∈ [0, 1].
Now, let:

p
(u)
λ (X,Z) = λp

(u)
1 (X,Z) + (1− λ)p

(u)
2 (X,Z), (23)

p
(s)
λ (X,Z) = λp

(s)
1 (X,Z) + (1− λ)p

(s)
2 (X,Z). (24)

By definition, the left hand side of (22) can be rewritten by:

λT (γ1) + (1− λ)T (γ2)

= λD(p
(u)
1 (Y,Z) || p(s)1 (Y,Z))

+ (1− λ)D(p
(u)
2 (Y,Z) || p(s)2 (Y,Z))

= λD(p(u)(Y |X)p
(u)
1 (X,Z)||p(s)(Y |X)p

(s)
1 (X,Z)) (25)

+ (1−λ)D(p(u)(Y |X)p
(u)
2 (X,Z)||p(s)(Y |X)p

(s)
2 (X,Z))(26)

≥ D(p(u)(Y |X)p
(u)
λ (X,Z)||p(s)(Y |X)p

(s)
λ (X,Z)) (27)

where (25) and (26) due to (18), (19), (20), and (21); (27) due to
(23), (24), and the convexity of D(·||·).

Let fλ is the corresponding function that induces the joint
distribution p

(u)
λ (X,Z) and p

(s)
λ (X,Z)8, the reconstruction loss

corresponding to fλ is:

γλ =

∫
x∈X

∫
z∈Z

p
(u)
λ (x,z)ℓ(x, θ(z)) dxdz. (28)

By Definition 5,

D(p(u)(Y |X) p
(u)
λ (X,Z)||p(s)(Y |X) p

(s)
λ (X,Z)) ≥ T (γλ). (29)

Combine (27) and (29):

λT (γ1) + (1− λ)T (γ2) ≥ T (γλ), (30)

or the left hand side of (22) is larger or at least equal to T (γλ). Next,
we show that T (γλ) is at least as large as the right hand side of (22).
Particularly, we want to show:

T (γλ) ≥ T (λγ1 + (1− λ)γ2). (31)

Since T (γ) is a monotonically non-increasing function, we want
to show that:

γλ ≤ λγ1 + (1− λ)γ2. (32)

Indeed,

γλ =

∫
x

∫
z

p
(u)
λ (x,z)ℓ(x, θ(z))dxdz (33)

=

∫
x

∫
z

(
λp

(u)
1 (x,z)+(1−λ)p

(u)
2 (x,z)

)
ℓ(x,θ(z))dxdz (34)

= λ

∫
x

∫
z

p
(u)
1 (x,z)ℓ(x, θ(z))dxdz (35)

+ (1− λ)

∫
x

∫
z

p
(u)
2 (x,z)ℓ(x, θ(z))dxdz (36)

≤ λγ1 + (1− λ)γ2 (37)

with (33) due to (28); (34) due to (23); (35) and (36) due to a bit of
algebra; (37) due to (16) and (17), respectively.

From (32) and (37), (31) follows. Finally, from (30) and (31), (22)
follows. The proof is complete.

8Indeed, we always can construct fλ that induces p
(u)
λ (X,Z) and

p
(s)
λ (X,Z) by linear interpolating between f1 and f2.
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