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As development of robots with the ability to self-assess their proficiency for accomplishing tasks continues

to grow, metrics are needed to evaluate the characteristics and performance of these robot systems and their

interactions with humans. This proficiency-based human-robot interaction (HRI) use case can occur before,

during, or after the performance of a task. This article presents a set of metrics for this use case, driven by a

four-stage cyclical interaction flow: (1) robot self-assessment of proficiency (RSA), (2) robot communication

of proficiency to the human (RCP), (3) human understanding of proficiency (HUP), and (4) robot percep-

tion of the human’s intentions, values, and assessments (RPH). This effort leverages work from related fields

including explainability, transparency, and introspection, by repurposing metrics under the context of profi-

ciency self-assessment. Considerations for temporal level (a priori, in situ, and post hoc) on the metrics are

reviewed, as are the connections between metrics within or across stages in the proficiency-based interaction

flow. This article provides a common framework and language for metrics to enhance the development and

measurement of HRI in the field of proficiency self-assessment.
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1 INTRODUCTION

Robots that can self-assess their abilities to perform tasks can potentially improve human-robot

interaction (HRI). Proficiency self-assessment (PSA) is the ability of a robot to predict, esti-
mate, or measure how well it can perform a task in a given context and environment. Human-robot
teaming benefits not only from identifying a set of practicable metrics for PSA but also from de-
veloping metrics that evaluate how the robot communicates its proficiency to a human, how the
human understands the communication, and how the robot perceives the human. Together, these
metrics enable comprehensive evaluation of human-robot teaming.

Accurate self-assessment is a feat that some human experts exhibit. They know what they can
or cannot do under a variety of circumstances, they can often estimate the likelihood of success
(though sometimes with biases [12, 77]), and they usually know how well they can do it. Human
self-assessment is grounded in extensive experience of one’s own behavior, requiring perceptive
observation of environmental conditions and introspective access to one’s abilities, limitations,
and goals. Moreover, humans can include their knowledge of other humans and their capabilities
in performance assessments of tasks that involve multiple humans. Human self-assessment serves
as evidence that robots should also be able to self-assess their proficiency provided that they are
equipped with the necessary metrics.

This article presents a review of PSA metrics as well as metrics for evaluating how PSA impacts
communication and other aspects of human-robot teaming. The metrics lead to the following op-
erational definition of task-based proficiency: the extent to which a given robot, and its sensors,
actuators, and computational resources, is proficient at a task is determined by four factors: (1) the
probability and extent to which the robot will accomplish the task (i.e., achieve the task goal or
set of task goals), (2) within a time bound or throughout a time period, (3) given a set of environ-
mental variations, and (4) relative to contextual standards. Proficiency assessment is the ability to
accurately make assertions about a robot’s proficiency given the task, the context, and the robot’s
observations about and behaviors within the world, relative to contextual proficiency standards.
Naturally, the term proficiency self-assessment refers to proficiency assessment performed by the
robot about itself and the teams in which it may participate.

Assessment can be performed at multiple temporal phases: a priori (before the task is executed),
in situ (while the robot is performing its task or mission), or post hoc (after the mission termi-
nates). A priori assessment enables performance predictions; in situ assessment enables adapta-
tion to changes or transformation to new goals or operational envelopes [4, 9, 69]; and post hoc
assessment leads to evaluations that can inform future behaviors and longer-term learning. PSA
can take on three increasingly sophisticated forms:

(1) An estimate of the probability that (or extent to which) a robot is proficient, perhaps accom-
panied by information about the uncertainty associated with the estimate.

(2) Measurements from a set of metrics that correlate, predict, or set bounds on a robot’s
proficiency.

(3) An explanation of the causal factors that led to a particular assertion about proficiency.

Not every PSA form is possible in every problem, so PSA metrics naturally cover a range of forms.
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This article’s perspective is that proficiency self-assessment is part of a larger system of humans
and possibly other robots or agents. For ease of exposition, it is assumed (though this assumption
is revisited in the discussion, Section 7) that the robot is part of a simple human-robot interaction
dyad, where the behavior of the robot impacts the human in some meaningful way. More specifi-
cally, this article adopts a rhetorical framing where the human is the problem holder [164] and the
robot is assigned to perform tasks or accomplish goals in pursuit of the problem held by the human.
Thus, the article emphasizes metrics for robots to self-assess proficiency and to communicate its
self-assessed proficiency to a human partner, leading to the important communicative dimension
of proficiency-based assertions: the efficacy of the process of communicating proficiency between
human and robot. While the rhetorical framing of a team composed of a single human and single
robot is used, the metrics in this article apply not only to human-robot dyads but also to teams
with multiple human or artificial partners.

This article is organized as follows: Section 2 describes the scope of the article, including a review
of related concepts, a summary of relevant roles in human-robot teaming, a temporal flow for how
PSA is embedded in human-robot teaming, an illustrative case study, and limitations of the article.
Sections 3 through 6 describe metrics for each state in the temporal flow. Section 7 summarizes
the metrics, identifies relationships between the metrics, and discusses open problems on PSA in
human-robot teaming. Finally, Section 8 presents conclusions.

2 SCOPE

Proficiency self-assessment and communication of such are related to several other areas of re-
search in autonomous systems and HRI. In this section, related work is reviewed and compared to
the area of proficiency self-assessment as a means of positioning it within HRI research. Through-
out the article, metrics from these related research areas are leveraged to form the basis of metrics
for robot proficiency self-assessment and communication of proficiency. Connections and over-
laps between related research areas were considered; as such, some metrics are combined and/or
recontextualized to match this domain. New metrics and evaluation criteria are also proposed.
This section also presents four stages of proficiency-based human-robot interaction scenarios for
which metrics are defined along with an example scenario that will be referenced throughout the
remainder of the article.

2.1 Concepts Related to Proficiency Self-assessment

Proficiency assessment is closely related to explainability in artificial intelligence (explain-

able AI, or XAI). Hoffman et al. [70] identify three purposes of XAI: “How does [the AI] work?”,
“What mistakes can [the AI] make?”, and “Why did [the AI] just do that?” XAI emphasizes causal
factors that a human can use to calibrate trust in and reliance on decisions made by an AI algo-
rithm. The explanation of the causal factors might include bounds on the algorithm’s confidence
in its performance or reliability. The overlap between proficiency self-assessment and XAI would
include intersecting sets, but neither XAI nor proficiency self-assessment is a subset of the other.
For example, proficiency self-assessment might include an explanation, but it might also be a clear
statement about how proficient the agent is without any explanation. The complement to this is
when XAI includes a discussion of what bounds influence the competency of the algorithm with-
out yielding a clear assertion about whether the algorithm will be useful in the present context.
Furthermore, explanations of “Why did the AI just do that?” emphasize post hoc evaluation and
may de-emphasize a priori and in situ assertions about likely success. Finally, proficiency self-
assessment can be used by an agent to autonomously initiate a change in goals or behaviors, thus
supporting mixed initiative interactions that tend to be outside the scope of XAI.
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Communicating proficiency is also closely related to transparency in human-machine interac-
tion. Chen et al. define transparency as “the descriptive quality of an interface pertaining to its
abilities to afford an operator’s comprehension about an intelligent agent’s intent, performance, fu-
ture plans, and reasoning process” [21]. These elements of transparency suggest that the concepts
of transparency and proficiency self-assessment overlap, but, as with proficiency self-assessment
and XAI, neither is subsumed by the other. Transparency emphasizes in situ assessments of the
causal factors contributing to agent behavior including the beliefs and motivations of the agent,
and can include projections of the likely success of the agent in its task. Transparency is a property
of an interface, and the interface may not explicitly report real-time performance metrics [134] or
other assessments of proficiency.

Endsley’s three levels of situation awareness (SA)—perception, comprehension, and pro-
jection [40]—are widely used throughout HRI research and are particularly relevant to metrics
definition for robot self-assessment of proficiency. The robot’s proficiency measures could iden-
tify shortfalls or alignments between required capability to perform a task and robot capability
(perception), explaining or reasoning as to why and the degree to which success or failure
is likely (comprehension), or predicting the robot’s ability to accomplish a task (projection).
Communication of proficiency can also be categorized using these levels of SA, similar to Chen
et al.’s situation-awareness-based agent transparency (SAT) model [21]. In the SAT model,
an autonomous agent’s goals and actions (level 1 SAT), reasoning process (level 2 SAT), and
projections/predictions (level 3 SAT) optionally with associated uncertainty measures (U) can
be communicated transparently to improve team effectiveness. The SAT model has been used to
develop interfaces that adhere to its principles at level 1, 1 + 2, 1 + 2 + 3, and 1 + 2 + 3 + U [136], the
latter of which is most related to communicating proficiency self-assessment due to its inclusion of
uncertainty measures. Given that Endsley’s three levels of SA are primarily used for categorizing
human understanding, they are used as such for metrics of human understanding later in this
article.

Throughout the remainder of the article, relevant metrics from each of these related concepts
are referenced if similar measures exist. The intent of this article is to leverage metrics from these
areas and recontextualize them as appropriate as well as propose new metrics that are particular
to each stage of the proficiency-based interaction flow.

2.2 Human-robot Roles

For the purposes of this article, the human is the problem holder, meaning they act as a partner
who is teamed with the robot and who requested the robot to perform a task. The human’s
role is therefore most akin to that of a supervisor, operator, or teammate [133], in that they
have some experience with the robot and are intended to work with or alongside it. More
specifically, the human’s role as the problem holder is somewhere between that of an information
consumer [56] (receives and uses information from the robot to make decisions) and an abstract
supervisor [71] (uses the information received from the robot to modify its objectives and goals).
The experience level of the human may vary, though, ranging from novice to expert, which will
impact the human’s understanding of the robot’s proficiency and therefore how the robot should
communicate its proficiency. As part of the human-robot team, the robot can serve multiple roles
including individual support, team support, or as a team member [153]. The robot may consider
the implications of the human-robot roles during interactions to influence how it chooses to com-
municate its proficiency. These human-robot roles set the use case for the metrics reviewed in this
article; i.e., other roles such as the human as a bystander or the robot serving a social role are not
considered.
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Fig. 1. Proficiency-based interaction flow.

2.3 Proficiency-based Interaction Flow

To frame this article’s discussion of metrics, a proficiency-based interaction flow that consists of
four stages is proposed:

• RSA: Robot performs Self-Assessment of proficiency.
• RCP: Robot Communicates its Proficiency to the human.
• HUP: Human processes the communication and conveys their Understanding of the robot’s

Proficiency.
• RPH: Robot Perceives the Human’s intentions, values, and assessments.

This four-stage interaction flow is shown in Figure 1. For a given proficiency-based interaction, all
stages may not occur (e.g., interaction with a robot that does not possess the required perception
capabilities for RPH will skip this stage), but the flow is intentionally abstract to encompass all
proficiency-based interactions. The metrics at each stage can be used to evaluate human-robot
interactions that include robot proficiency self-assessment and communication of proficiency, or
can be used by the robot system to evaluate its own performance. The use of the metrics by robot
systems may be particularly important for robots that attempt to improve their communications
of proficiency to humans over time. Metrics are reviewed for each stage of the proficiency-based
interaction flow in the following sections. The metrics reviewed at the RSA and RPH stages are
categorized and defined similarly (both deal with evaluations of the task and teaming), as are those
at the RCP and HUP stages (both deal with communications). Connections between the metrics
within and across stages are detailed in each section as appropriate.

Each stage impacts subsequent stages in the flow. The robot’s self-assessed measure of profi-
ciency at the RSA stage will be converted into a communicable form at the RCP stage. When that
proficiency is communicated, the human will attempt to understand it at the HUP stage. When the
human conveys that understanding back to the robot (e.g., by pointing and asking about an object
the robot referenced in its communication), the robot may perceive the human’s behavior in the
RPH stage to infer information about the human, such as the human’s intention. Based on how the
robot uses this information in the RPH stage, the RSA stage may be repeated (e.g., if the human
made any physical updates to the task to improve the likelihood of success), which may include
updating assessments about its own proficiency (e.g., if the human suggests different strategies to
assist in accomplishing the task). Alternatively, the interaction may progress from the RPH stage
to the RCP stage wherein the robot communicates its proficiency again using a different method
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(e.g., if it perceived the human did not understand the previous communication) and/or updating
the information being communicated (e.g., if the human asked a clarifying question in response to
the previous communication).

A summary of the metrics presented throughout the rest of this article can be seen in Table 1, or-
ganized by the stage of the proficiency-based interaction flow they are associated with and grouped
into categories.

2.4 The Fetch Scenario

To ground the discussion of metrics to a common reference point, a human-robot interaction sce-
nario is defined that will be referenced throughout the article: a mobile manipulator robot is tasked
with finding bolts, screws, and other components to place into a specific type of bin and then de-
liver the bin to another station for the human to use to build a gearbox (Figure 2). The process
will be performed continuously until several bins are filled by the robot and used by the human to
build several gearboxes, aiming to produce a specified number of gearboxes per hour. The human
problem holder in this scenario has commanded the robot to perform the task, will monitor the ro-
bot’s performance, can ask questions about progress made, can intervene to augment the scenario
as needed, and will inspect the final state of the bin before building the gearbox. This scenario
is similar to that described in Frasca et al. [50]. Throughout the rest of this article, this scenario
is referred to as “the Fetch scenario.” Robot proficiency self-assessment techniques and communi-
cation methods are not specified here but will be as needed when the scenario is referenced. To
illustrate the proficiency-based interaction flow in Figure 1, below is an example of the events at
each stage when occurring in situ for the Fetch scenario:

• RSA: The robot conducts proficiency self-assessment at picking up a bin filled with screws,
producing a measure of low confidence at succeeding.
• RCP: The robot speaks to the human, “I am unlikely to pick up the bin without dropping it.”
• HUP: The human heard the robot but does not fully understand why the robot has low

confidence, so they follow up and ask, “Why is your confidence low?”
• RPH: The robot perceives this communication and decides that it will communicate its pro-

ficiency again with more detail (i.e., advancing to the RCP stage next).

2.5 Limitations

It should be noted that the metrics presented in this article are each at varying levels of devel-
opment, maturity, and prominence. Some metrics have not yet been robustly validated through
experimentation, while others have been utilized substantially throughout research albeit in dif-
ferent contexts. Readers are encouraged to refer to the research articles cited for each metric (if
available) for further information regarding implementation and nuances. The authors acknowl-
edge that the newly proposed metrics in this article may be less substantially defined than others.
Continued definition, development, and comparison of these metrics toward effective implementa-
tion will be required as proficiency self-assessment research progresses, so the metrics presented
in this article should be considered a starting point for the field.

3 METRICS FOR ROBOT SELF-ASSESSMENT OF PROFICIENCY (RSA)

The role of the robot within a team affects how proficiency is evaluated and, as a result, informs
the metrics used to perform this evaluation. In the context of a robot that collaborates with
humans to complete a task, the robot should perform self-assessment over its task knowledge,
determining whether it has sufficient knowledge and capabilities to complete the task or should,
instead, interact with a human teammate to request additional assistance (e.g., request additional
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Table 1. Summary of Metrics at Each Stage of the Proficiency-based Interaction Flow

Stage Category Metrics

Robot self-assessment of proficiency (RSA)

Uncertainty
Alignment of uncertainty and performance
Risk-averse reward
Uncertainty reduction

Performance
Mission progress
Replanning triggers
Accuracy vs. rejection curves

Time

Predicted vs. actual completion time
Productive time
Reliability
Forecasting time

Events
Interventions
Repeated attempts
Violation of performance envelopes

Robot communication of proficiency (RCP)

Attributes
Information communicated
Nature of communication
Communicability

Complexity

Abstraction
Clutter
Comprehensiveness
Simplicity
Size

Efficiency

Communication time
Conversion time
Communication latency
Transmission time

Human understanding of proficiency (HUP)

Perception
Perception clarity
Perception completeness
Perception time

Comprehension

Comprehension clarity
Comprehension completeness
Communication consistency
Content quality
Processing difficulty
Comprehension time

Projection

Expectations
Projection clarity
Congruity
Command changes
Environment changes

Robot perception of human intentions,
values, and assessments (RPH)

Uncertainty and

coherence

Model consistency
Behavior consistency
Model uncertainty
Model prediction accuracy

Performance
Mission progress
Replanning triggers
Violation of performance envelopes

Time

Persistence
Expected execution time
Coordination time
Event timing

Events

Corrections
Interventions
Modifications
Communications

Human factors
Workload, stress, trust, and situation awareness
Violations of human performance limitations
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Fig. 2. Example HRI scenario referenced yhroughout the article as “the Fetch scenario.”

training data). In the context of a fully autonomous robot, the robot may assess its task knowledge
and capabilities to determine whether it should accept or reject the task, or otherwise inform its
human collaborator about its proficiency. In either setting, it is important for the robot to assess
its uncertainty when attempting to complete a task according to its current task knowledge.
Uncertainty-based metrics for self-assessment are discussed in Section 3.1.

In addition to assessing uncertainty, the robot may need to assess the performance of its actions
and whether they are producing the expected outcome. This performance assessment may occur at
multiple stages of task planning and execution. For example, failures may occur during task plan-
ning, after which (post hoc) the robot will need to update its planning parameters or otherwise
attempt the task in another way. Alternatively, self-assessment may involve evaluating a priori
whether a candidate plan will achieve the task goals (e.g., using a goal reasoning framework [75]).
Finally, self-assessment may serve to monitor in situ the robot’s actual performance during task
execution in comparison to its expected performance. Metrics for assessing performance are dis-
cussed in Section 3.2.

Task uncertainty and performance may also affect another aspect of human-robot teams. In the
context of mixed-initiative human-robot teams, the robot’s level of autonomy is dynamic and ide-
ally determined according to the robot’s own proficiency at performing a task. In this setting, the
robot should have the capability to deliberate over its current level of autonomy to efficiently use
human assistance when it is required and available. Additionally, the robot would ideally assess
the type of assistance that would enable it to optimally address a particular problem, which may
involve identifying the interaction modality and/or constraints under which that assistance should
be obtained [43]. Thus, such events along with timelines of certain operations that may impact the
robot’s role in the team can be simple but useful indicators of potential task failures, the robot’s au-
tonomous capabilities, and overall task performance. Time- and event-based metrics are discussed
in Sections 3.3 and 3.4 respectively.

3.1 RSA: Uncertainty

This category of metrics relates to the robot’s confidence in its ability to complete the task to a
particular performance standard. Uncertainty is different from performance prediction; an agent
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can have high confidence that a particular sequence of actions will result in task success or failure,
whereas a robot that is uncertain in its task model may produce a range of possible outputs without
a means of distinguishing higher-performing outputs from lower-performing ones. While the fol-
lowing metrics are largely used for in situ self-assessment, metrics of uncertainty can also be used
a priori and post hoc. For example, Johnson et al. [75] evaluated model uncertainty according to
an acceptable bound of uncertainty, considering the maximum uncertainty to be that of the model
before any training data has been obtained (i.e., a priori self-assessment). The level of “acceptable”
uncertainty (i.e., the level of uncertainty at which the model’s output is accepted) could then serve
as a useful post hoc metric.

Alignment of uncertainty and performance. This metric is measured through correlations
between the variance of the model’s output and the actual task performance achieved using that
output. Fleming and Daw [46] used a similar metric for evaluating uncertainty-based approaches,
correlating the confidence in the model to the actual error incurred by its output; they also
used the correlation between the model confidence and the strength of the input stimulus as a
metric. When a robot may represent a task according to multiple models, the uncertainty of the
candidate models may indicate which is best suited for a particular learning problem. For example,
Fitzgerald et al. [45] evaluated the correlation between (1) the uncertainty of two models trained
over a set of noisy training data and (2) their respective performance in performing a novel task.
The resulting comparison is an evaluation of whether model uncertainty serves as a proxy for
expected task performance.

Risk-averse reward. The total reward over a sequence of actions by the robot, based on the cost
of correct, incorrect, and undecided actions, is used to calculate this metric. When used as a reward
function in self-assessment problems, risk-averse metrics consist typically of three rewards: the
reward associated with (1) making a correct decision, (2) making an incorrect decision, and (3) mak-
ing no decision (and thus rejecting the task). An agent trained to optimize this reward function via
reinforcement learning will (ideally) learn to gauge its confidence in a decision such that it rejects
the task when it is uncertain in its model’s output. When used as a metric for robot self-assessment
(e.g., [27, 73, 171]), the cumulative reward over a series of tasks reflects the robot’s ability to assess
risk. This cumulative reward is increased by rejecting tasks in lieu of achieving poor performance
on them, while also attempting tasks that the robot expects to complete successfully.

Uncertainty reduction. Calculating the accuracy in predicting what training data will reduce
the robot’s uncertainty is another means of evaluating a robot’s ability to assess which training
data points will improve its task model. In this context, it is assumed that the robot has access to a
human teacher who may provide additional training data to the robot. If the robot’s assessment of
its uncertainty is correct, it will be able to correctly identify training samples that, once labeled by a
teacher, will lead to reduced uncertainty in the overall task model. Rakicevic and Kormushev [119]
presented an online active learning approach for a task learning and transfer application. The
exploration component was decoupled from the task model and performed an informed search in
the trial-parameter space to generate the subsequent most informative trials, by simultaneously
exploiting information from previous trials and reducing the task model’s overall uncertainty.

3.2 RSA: Performance

This category of metrics relates to the extent to which the robot was able to complete its task.
While performance and proficiency are not the same thing, measures of performance can be used
to provide information about the robot’s proficiency. A robot that is performing a task poorly when
previously believing it was proficient at the task should consider whether the failure is a result of
a lack of proficiency or simply circumstances outside its control. When a robot has performed
the same or similar tasks multiple times in the past, then it can use its past performance in these
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tasks as an a priori assessment of its proficiency [73, 171]; this assumes that the robot is capable
of determining how past performance relates to the current task, particularly the current context.

Performance metrics primarily relate only to in situ and post hoc applications. Cumulative
scores, rewards, and penalties can be assessed after a mission to determine how well a task was per-
formed. Additionally, performance summaries [135] can be used to evaluate proficiency. Estimates
of performance and proficiency can be further evaluated via subjective scoring by the human at
the HUP stage (see Section 5). Additionally, when evaluating a robot’s self-assessment ability, a
set of experts may use appropriate behavioral coding standards to define a “ground truth” label
for proficient and inproficient robot behavior.

Mission progress. In sequential tasks, mission progress refers to the number or percentage
of sub-tasks that have been successfully completed. Real-time estimates of mission progress or
partial summaries of mission state can include reaching mileposts, satisfying preconditions or
postconditions, and deviations from scripts [134, 135]. When the robot achieves a milestone or
satisfies necessary preconditions or postconditions, it can potentially increase its confidence in its
proficiency in that task. On the other hand, failures to achieve milestones or satisfy preconditions
or postconditions might reflect negatively on the robot’s proficiency in the absence of a more
detailed understanding to explain away such failures.

Replanning triggers. The metric evaluates the rate or frequency of replanning a mission. Re-
planning can be triggered by changes in the environment [51, 167], by lack of progress [161], at
regular time intervals [26], when a plan drifts away from the problem holder’s intention [137], or
when a goal-reasoning system indicates that the goal currently being pursued cannot be accom-
plished [4]. Changes to the environment or robot that lead to state spaces in which the robot is no
longer proficient should be detected in order to enable replanning.

Accuracy vs. rejection curves. This is the relationship between the agent’s task rejection rate
and its performance on accepted tasks. An accuracy vs. rejection curve reflects (1) the range of
risk assessments (rejection rates) that are plausible for a particular task and (2) the acceptable
level of risk for a particular task according to the corresponding performance expectation. In prac-
tice, a single rejection rate may be selected such that the robot rejects tasks that exceed that risk
threshold. This metric has been demonstrated in the context of assessing the reliability of a robot’s
perception [27, 171] and to evaluate the tradeoff between the accuracy and autonomy afforded to
a robot as a function of how much assistance it receives from a human teacher [44]. Overall, accu-
racy vs. rejection curves provide a post hoc evaluation of the robot’s performance across a range
of risk tolerances.

3.3 RSA: Time

This category of metrics relates to the robot’s uncertainty and expected performance over time.
The extent to which a robot is proficient at a task is highly governed by the probability that the
robot will accomplish the task within a time bound. In a human-robot interaction context, time-
based thresholds are often used as indicators to predict and evaluate failures and to aid the robot
in making decisions as to when to ask for human assistance to recover from a failure.

Predicted vs. actual completion time. This metric measures the accuracy in predicting the
robot.s task completion time according to changes in system and environment. Assessment of pre-
dicted task completion time against a time threshold is a another metric for how proficiently the
robot will be able to complete a task. In the Fetch scenario, the robot can use the planner’s output
of “predicted time to execute a particular trajectory” to decide a priori, based on a predefined time
threshold, whether to replan or to execute the recommended trajectory. Additionally, the combina-
tion of uncertainty and time (e.g., the ratio of maximum uncertainty, as discussed in Section 3.1, to
expected task completion time) can be a useful metric to choose among goals relevant to the task
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when there are conflicting goals. This metric may also serve to measure the difference between the
predicted failure time and actual time when a failure occurred [132]. A comparison of predicted
completion time to actual completion time as a post hoc self-assessment is a simple indicator of
how well a task was performed.

Productive time. The duration of time in which the robot operates autonomously is its
productive time. This metric, which is primarily applicable in supervisory control tasks, measures
the continuous amount of time that the agent can remain autonomous before requiring assistance.
It may serve as an in situ metric toward measuring a robot’s proficiency toward a task or a subgoal.
For example, Olsen and Goodrich [113] defined productive time as the ratio of the time spent
in autonomous operations to the total time spent across autonomous, manual, and unscheduled
manual operations.

Reliability. This is the duration of time in which the robot meets performance standards under
defined working conditions. Some of the commonly used time parameters for this metric include
mean time between failures (MTBF) and mean time to failure (MTTF) [78]. In the Fetch
scenario, the system time between perception failures is used as a decision-making parameter to
reset the vision system.

Forecasting time. This is the time elapsed between the prediction of a failure and the occur-
rence of that failure. This metric may be measured at multiple levels of confidence in the form of
a prediction time curve, measuring the time elapsed between initial fault detection and the confir-
mation of that fault [131, 132]. Alternatively, the volume of data required to detect a failure may
be tracked as a proxy for time [132].

3.4 RSA: Events

This category of metrics relates to changes in the system status that affect the robot’s perfor-
mance. At the most basic level, counting events can provide insight into how well the robot is
performing a task. Examples include, but are not limited to, counts of failures, human interven-
tions, requests by the robot for assistance, corrections, and the amount of required training. These
types of measurements are largely applicable to in situ and post hoc interactions. Additionally,
in a human-robot team context the numerical thresholds on these measures for acceptable perfor-
mance might directly impact other measures of proficiency. For example, in a time-critical mission,
a lower threshold on the allowed number of replans or reattempts for the robot would result in a
higher number of human interventions.

Interventions. External interventions that can affect (positively or negatively) the robot’s per-
formance are counted and can be compared to another set of countable instances (e.g., successfully
performed tasks without interventions). In a human-robot teaming context, interventions may be
initiated by the robot (e.g., in response to expected need for data [44]) as well as by the human (e.g.,
in response to an impending robot failure or collision [27]). Depending on their nature, these inter-
ventions can provide useful insight into the proficiency of the robot. Proportions of autonomously
completed and human-assisted steps within a task can also be an indicator of productivity. For ex-
ample, Fitzgerald et al. [44] measure the ratio of supervised and unsupervised steps in an assembly
task, where supervision consisted of indicating the object the robot should use in the next step of
the task. In a safety-critical setting, a higher ratio of human-initiated autonomy switches to total
autonomy switches or interventions suggests an overall poorer task performance, as compared to
a scenario with a lower ratio.

Repeated attempts. This metric can be measured when an action is performed in response to
system or environment anomalies that affects the robot’s performance, resulting in repeat attempts
of that action. When a robot fails in an operation during a task, it might reattempt the operation or
ask a human for assistance. Monitoring the number of reattempts (or the number of failures) can
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characterize a robot’s progress on a task. In the Fetch scenario, the robot failing to pick up a screw
after a pre-set number of reattempts could initiate a request for human assistance. For scenarios
where direct human assistance is not possible, a robot might use the number of failures as an indica-
tor to abort or reinitialize the operation. Often counts of such failure events may be used in combi-
nation with a time metric. Returning to the Fetch scenario, a certain number of detection failures by
the perception system, combined with time between failures, could be used as a decision-making
parameter to reset the camera and vision system. Monitoring the ratio of number of successful task
executions vs. total task executions [123] can serve as an indicator of a robot’s reliability, which
can be used a priori to update the robot’s self-confidence prior to the next task repetition.

Violation of performance envelopes. The number of times when the robot’s performance is
not within acceptable bounds in a mission is measured by this metric. Performance envelopes [69]
can be established based on prior experience. In a human-robot teaming context, frequent violation
of performance envelopes can indicate that the robot is not proficient according to the performance
standard set by the human for a particular environment. Examples of ways to measure whether
performance is within acceptable bounds include (1) comparing in situ performance estimates
to predefined numerical thresholds [9], (2) testing whether performance exceeds history-based
aspiration levels from Simon’s theory of satisficing behavior [140], (3) using barrier-function-based
measures to evaluate proximity to constraint violations [37], and (4) detecting the violation of
verification and validation assumptions in real time with a human-in-the-loop [129].

4 METRICS FOR ROBOT COMMUNICATION OF PROFICIENCY (RCP)

Once the robot has assessed its own proficiency, it must turn that assessment into a communication
provided to its human partner. The manner in which the robot communicates its proficiency may
be influenced by the human’s role and/or the robot’s perception of the human (i.e., outputs from
the RPH stage) and tuned accordingly. These characteristics of proficiency communication are
akin to those used to define the properties of explanations: content (what is being explained), com-

munication (how the system interacts with the user), and adaptation (tuning explanation methods
to be most effective for the intended user) [91]. In this section, considerations for communication
modalities are presented (Section 4.1) followed by metrics for the RCP stage, detailed according to
the contents of the communication and capability of the robot to communicate those contents (Sec-
tion 4.2), the complexity of the communication’s contents (Section 4.3), and the efficiency of com-
munication (Section 4.4). All of the metrics described in this section are applicable across all three
temporal levels: a priori, in situ, and post hoc. Many of these metrics can be used to evaluate robot
communications in other domains; this section specifically contextualizes each metric for profi-
ciency self-assessment. It also should be noted that these metrics do not pertain to a robot’s ability
to self-assess its proficiency at communicating, which is covered later in the Discussion (Section 7).

4.1 Modalities for Communicating Proficiency

The robot will use one or more modalities to communicate its proficiency to the human. The inher-
ent limitations of the communication modality will affect what kind of proficiency measures can
be communicated and what aspects of the communication the human is expected to understand
(i.e., inputs to the HUP stage).

A visualization display consisting of graphics, charts, or images displayed on a monitor (e.g.,
visualizations of input-output relationships of a neural network [172] or heat maps to convey
image saliency [22, 65]) can be rich in information and can be transmitted instantaneously, but
may require some additional interpretation from the human. These could include text as part
of a visualization (e.g., highlighting text that indicates what component of the robot system is
being used to perform a task [165]), a historical log, or sentences via natural language generation
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(e.g., narrating robot experiences during task execution [126], summarizing explanations based
on situation criteria [172]). Natural language generated by the robot can also be conveyed
visually and could appear instantaneously while still requiring interpretation from the human
(i.e., reading), albeit the format may be more immediately recognizable and can afford increased
user satisfaction and confidence with a system [38]. Audio can also be used for conveying natural
language to form statements (e.g., communicating faults such as low battery [62]), explanations
(e.g., explaining the values, tradeoffs, and competing objectives of planned behaviors [152]), or
questions (e.g., the robot asking if the human understood what it communicated [41]). Non-speech
audio, such as “auditory icons,” or sounds that represent concepts being conveyed [104] may also
be used for alerts to get a user’s attention. Auditory communication is most appropriate for short,
concise messages that require immediate response, whereas visual displays might be preferred in
cases where the message is complex, must be referred to later, or has a spatial component [29].

Lights positioned on the robot may also be used for alerts (e.g., when encountering a person
or obstacle [144]) or for communicating directional information (e.g., which direction the robot
is planning to turn [139]). Robot motion and augmented reality (AR) communication methods
can utilize a common reference frame of the physical scene wherein parts of the environment can
be explicitly referenced [18]. For example, motions performed by the robot may reference itself
(e.g., arm movement to express incapability at lifting an object [90], torso movement to correlate
with confidence level [154]) and/or the environment (e.g., adjusting motion trajectories to more
clearly communicate robot intent for object selection [34, 98], pointing to objects for the human
to manipulate [60], gazing toward points of interest [2]). AR projections into the physical environ-
ment can also reference the robot (e.g., light projection onto the floor to depict the planned path of
travel [15, 138]) or parts of the environment (e.g., projecting a hologram icon onto a tool the robot
is planning to use [18]). Virtual reality (VR) methods can display animations of simulated robot
movement, such as showing alternatives that could have been performed as the result of a post
hoc assessment after a failed task. These allow for adjustable perspective that may not be feasible
using other modalities (e.g., an immersed operator judging planned robot movements prior to their
execution [23]).

Multi-modal interfaces can maximize the richness of communications and optimize human
workload. In the context of a swarm of robots, transparent communications of the collective have
utilized color-coded visualizations of status combined with robot speech and vibrations for haptic
feedback to alleviate workload and increase situation awareness [59]. For human-robot handovers,
combinations of robot motion and haptic feedback have been used when a robot holds onto an ob-
ject longer than expected to convey information to the human partner, which can influence the
human’s behavior [1]. In a multi-modal interface, the information being communicated may be
redundant across modalities (e.g., text-captioned speech [80]) to ensure that the information is
received by the human (which has been shown to be effective at resolving human uncertainty in
complex tasks [3]), whereas non-redundant information in two separate modalities may contain
two different pieces of information (e.g., visual display showing low battery, speech describing
possibility of future task success) or a modulation of the information [114] (e.g., speech describing
task failure with robot motion to explain which part of the robot failed). An advanced robot sys-
tem may also choose one modality over another to communicate an aspect of proficiency based
on contextual factors and the inherent limitations of single modalities described here.

4.2 RCP: Attributes

The proficiency measures being communicated by the robot will possess one or more possible
attributes. For the proficiency self-assessment context, attributes from the explanation research
literature are leveraged including those that may be predictive of explanation quality [169], failure
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types for explaining impossible robot behaviors [120], truthfulness of agents (e.g., transparency vs.
deception [33]), and others to distill a common set. These attributes can be used to characterize
the contents of a robot communication and will factor into complexity metrics (see next section).
See Table 2 for examples of each of the attributes as applied to the Fetch scenario.

Information communicated. The following attributes characterize the type of proficiency
information included in the communication from the robot:

• Alternatives. These are task strategies that could enable higher-proficiency self-
assessments to be made by either increasing the likelihood of success, optimizing perfor-
mance thresholds (e.g., a robot presenting possible grasps it could execute for an operator to
select [94]), or enabling otherwise impossible tasks to be performed. Each of the alternatives
may also have associated probabilities for success or failure and their communication may
possess some of the other attributes in this list. Alternatives presented a priori would be pre-
dictions of expected failure (e.g., predicting and mitigating potential trust-induced failures
by proposing alternatives [160]), in situ alternatives could be caused by detecting a failure
in progress, and evaluations of proficiency post hoc may lead to communicating alternatives
for next time.
• Contextual reference. Elements in the scene that contribute to the self-assessed measures

of proficiency may be referenced within the communication. Reference to elements in the
scene may be made relatively (e.g., the object to the robot’s left) or absolutely (e.g., the red
object); this attribute is referred to as locality in [126], where a robot narrates its experiences.
Contextual reference can include characteristics of the environment, objects interacted with,
and reference to either agent.
• Governance. The robot’s self-assessment may be governed via an internal set of rules or

policies used to drive the resulting proficiency measures and then referenced in the com-
munication. Explainable AI systems often have these types of mechanisms (e.g., [117]) to
provide reasoning for their decision-making to a user. Inclusion of this attribute in a com-
munication may also inform how the human tasks the robot in the future while those same
rules and policies are active.
• Impact. This attribute notes the effect of anticipated success or failure on subsequent actions

or future tasks. Inclusion of this type of information may be based on predicting performance
on part of an upcoming task and describing how the robot’s proficiency may propagate
failure and success throughout the entire task (e.g., if the robot predicts issues with lifting
a type of object and the task specification includes lifting several of that object). The robot
may have a governing set of rules or policies as described previously that, if adhered to for
a given scenario, may violate each other (e.g., the robot cannot follow a person while also
avoiding the kitchen if the person walks into the kitchen [121]).
• Novelty. The robot may communicate its proficiency based on prior experience with the

same task or similar tasks or that the task is perceived to be novel; this metric attribute cap-
tures the amount of novelty. Similarity-based self-assessment techniques (e.g., [7, 58, 74])
utilize these types of comparisons as part of measuring proficiency and could therefore out-
put them as part of the communication.
• Probability. Measures of probability will be included in all communications of proficiency,

albeit likely at different abstraction levels. These types of measures are akin to expressions
of uncertainty (e.g., [20, 163]) or self-confidence (e.g., [5, 89]), or strictly as probabilities
when used in explanations (e.g., [91]). Probability measures can be conveyed explicitly (e.g.,
displayed text or spoken words) or implicitly (e.g., visual display characteristics to correlate
with uncertainty communication [81, 83, 97]). Conveying measures of uncertainty may
impact the credibility of the robot and therefore the human’s trust of the robot’s proficiency.
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Table 2. Examples of Proficiency Communications That Possess Each of the Attributes Described
in Section 4.2 as Applied to the Fetch Scenario

Group Attribute Proficiency Communication Examples with Each Attribute Explanation

Information

communicated

Alternatives
The red bin is closer than the green bin, so I have a higher chance of

successfully placing the bolts in that bin instead of the green bin.

Presenting the red bin as an

alternative.

Contextual

reference

I couldn’t grab the bin because the table to my left is obstructing my

arm movement, so the task was not completed.

Reference to the table as an

environmental factor.

Governance
I am unable to move beyond the bounds of my designated area, so I

cannot pick up the dropped screw.

Justifying failure due to internal

rule that drives behavior.

Impact

There is a good chance I will drop a bolt on the floor and I have

trouble picking up items off of the floor, so the likelihood of successful

task completion will decrease if that happens.

Projection of possible failure onto

the rest of the task.

Novelty

Novel: I do not have experience with screws of this size, so there is a

good chance I won’t be able to grasp it.
The size of the screw is novel.

Similar: I dropped the bin because I have had problems with grasping

curved objects in the past.

Considering prior experience using

similar objects.

Probability

There is a good chance I will successfully place the bolts in the bin,

but there is only a 25% chance I will succeed in placing the screws in

the bin.

Two types of probability measures

communicated: “good chaance”

and “25%.”

Nature of

communication

Framing

Failure, unsatisfiable: My gripper cannot open wide enough to grasp

the bin, so I cannot attempt this task.

Maximum gripper width cannot

be changed.

Success, synthesizable: I successfully placed a bin filled with bolts and

screws on the specified station.

Task success is communicated

post hoc.

Truthfulness
There are no problems [when there are in fact low-level problems

unlikely to impact performance].

Deceptive statement about task

performance status.

Redundancy
I am not able to grasp this screw [while the robot simultaneously tilts

its head in the direction of the screw].

Speech and motion communication

about the same object.

Scope

Task: I successfully completed, filled, and moved the bin as specified. The entire task is described.

Requirement: I was not able to complete the task in the amount of

time allotted.

Exceeding maximum performance

time is described.

Nature of communication. The nature of the proficiency information being communicated
(i.e., how it is being communicated) can be characterized using the following attributes:

• Framing. The proficiency measures will be framed as measures of either success or failure
(i.e., attribute framing as positive or negative proportions [95], or critical or complimen-
tary recommendations [163]). Raman and Kress-Gazit [120] describe three types of failure
conditions that can be communicated: unsynthesizable when the robot attempted the task
but failed (applicable to post hoc communication only), unsatisfiable when an unchangeable
condition of the scenario physically prevents the task from being attempted, or unrealizable
when the task could be attempted if something was changed. These same types of failures
can be inverted for types of success measures when the robot was able to attempt the task
and succeeded (synthesizable; applicable to post hoc communication only) or the conditions
of the scenario enable the task to be attempted (satisfiable and realizable; applicable to a
priori communication only).
• Truthfulness. The robot may be truthful in its communications or intentionally acting sub-

versively or deceptively rather than transparently in order to elicit a particular response from
the human at the HUP stage of the interaction flow (e.g., giving the human the perception
of having control over the robot or that the robot is more capable than it actually is [150]).
Deceptive robot motion may also be used to exaggerate, quickly switch, or communicate
ambiguous goals [33], which could be the case if the robot is in an adversarial role.
• Redundancy. The communication of proficiency may be redundant across modalities when

a robot utilizes multi-modal communication. The entire communication may be redundant
across modalities (e.g., text-captioned speech), or only certain attributes of the communica-
tion may be redundant (e.g., contextual reference to an object in the space may be described
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via speech while the robot motions toward it). Redundancy in a communication may be used
to ensure that the communication is received by the human but also may lead to cognitive
overload [114].
• Scope. Scope relates to how much of the task or to what property of the task the proficiency

measure refers to. The scope could be the entire task, a subtask, or a requirement of the
task/subtask.

The proficiency measures derived from the RSA stage will inform about the possible attributes
the communication could possess at the RCP stage (e.g., communicating alternatives if a counter-
factual self-assessment method is used). These attributes can also be used to inform metrics at
the HUP stage whereby evaluations can be performed to determine if the human perceives and
comprehends these attributes (which may or may not be required for effective task performance).

Communicability. Some aspects of the proficiency measures derived at the RSA stage may not
be communicable by the robot. A lack of communicability could be due to the inherent limitations
of its available communication modalities or a lack of functionality to convert proficiency measures
into a communicable form. Communicability concerns a robot’s overall proficiency-based commu-
nication capabilities, comparing the number of unique attributes the robot is able to communicate
to a master list of possible attributes. This characterizes the overall robot capability rather than in-
dividual instances of communication. For example, if the robot in the Fetch scenario lacks the abil-
ity to specify which object is obstructing its path, then proficiency measures that make contextual
reference to the object are not communicable. A system may also be able to reason about communi-
cability, conducting feasibility analyses of the limitations of its available modalities [13]. This is an
important characterization to make in order to set expectations for measures at the HUP stage and
as a guideline when designing a robot’s proficiency self-assessment and communication methods.

4.3 RCP: Complexity

Several metrics cover the complexity of communicated proficiency and are influenced by the at-
tributes the communication possesses (see prior section) with some modality-specific measures.
These qualitative and quantitative metrics are most useful for relative comparisons between com-
munications of proficiency (e.g., one communication is more or less abstract than another) rather
than absolute scales.

Abstraction. The level of abstraction refers to the amount of detail in the description that is
given about a piece of information, which can be represented in coarse or fine resolution [147].
A measure of abstraction can be applied to each of the previously reviewed communication at-
tributes. For example, in the Fetch scenario, contextual reference to a bolt could be communicated
by the robot pointing to it (coarse) or it could simultaneously state via speech that it cannot pick
up the bolt by its head (fine). For communicating probability, the robot’s confidence in task success
could be stated as high/low (coarse) or as a percentage (fine). While no absolute scale exists for
information abstraction, some efforts specify a mapping of task characteristics into abstraction lev-
els. For example, Rosenthal et al. [126] describe a mobile robot communicating information about
its navigation performance, defining levels of increasing abstraction starting with coordinates of
movements (level 1), then to traversal times and distances (level 2), then to right/left turns and
straight segments (level 3). Similar scales could be developed based on different task types.

Clutter. Any extraneous information that is included as part of the communication of profi-
ciency that may distract from or obfuscate the core of the communication is considered clutter.
Objective metrics to evaluate clutter are specific to the modalities used for the communication.
Visual clutter metrics include feature congestion and edge density [125]; Roundtree et al. [127]
specify a set of metrics (including visual clutter) for swarm visualizations that were shown to be
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predictive of human perceived transparency and performance. Visual clutter metrics are also useful
when considering the entire scene where activities occur (e.g., for everyday driving [86]). The use
of extra words or description used in text and speech modalities can be evaluated by comparing the
number of unique words used to the total number of words in the communication [130]. Readability
analyses of text- or speech-based communications can be performed by utilizing readability indices
such as the Flesch-Kincaid readability test [47] or the FOG index [57]. These analyses are devoid
of context, however, so additional subjective ratings should also be conducted at the HUP stage.

Comprehensiveness. The number of attributes possessed by a communication is indicative of
its comprehensiveness. Comprehensiveness can be expressed as a ratio of the number of unique
attributes the communication possesses to the number the robot is capable of communicating (i.e.,
its communicability). At the HUP stage, assessments of comprehensiveness can be conducted to
evaluate human understanding of completeness (the quantity of information received compared
to the quantity expected [87, 93]).

Simplicity. For the purposes of this article, simplicity refers to the degree to which there is a
“simple” explanation for the proficiency measurement being communicated. This concept is bor-
rowed from evaluation of explanations that are measured by generating a causal model for the
explanation and counting the number of root causes in the model [169]. Such a model may be
generated by identifying causal language provided in the explanation and then counting the con-
nections between causes and effects [142]. Evaluating the number of root causes has been shown to
be predictive of explanation quality [169], but determining the causal pathways for an explanation
is somewhat subjective; more formal methods may be needed to validate this metric.

Size. The size of a communication refers to the number of features it contains, which are modal-
ity specific. Note that size is not the same as length, which is time based (see Section 4.4). The size
of a text or speech display can be measured by counting the number of words or sentences [126].
Similar quantitative metrics can be applied to robot motions used for communication (either phys-
ically or simulated in VR) including the distance traveled by the robot’s limbs, the number of rep-
etitions of communicative movements, and the speed of the movements [90]. In Kwon et al. [90],
repetition of expressive robot motion at a fast or moderate speed was shown to increase a human’s
understanding of the robot’s goal and made the cause of robot incapability clearer. Static visual
displays may lack a discernible set of features to produce a metric for size.

4.4 RCP: Efficiency

The robot will communicate its proficiency to the human over a period of time. The amount of
time used to communicate is a function of the length of the message and the speed at which it is
communicated.

Communication time. The amount of time required for a message to be (1) generated, (2) trans-
mitted, and (3) understood by the recipient [102] is the communication time. For the purposes of
this article, these phases are adapted to fit the proficiency-based interaction flow and are delineated
into three separate metrics: conversion time, transmission time, and perception/comprehension
time. The latter is out of scope for RCP metrics but in scope for HUP metrics (see Section 5.1).
Communication time will be most impacted by the overall complexity of the communication. A
highly transparent robot will communicate more information that may be less efficient than others,
producing a transparency-efficiency tradeoff [72]. It is intended that the complexity and efficiency
measures provided in this article could be used to conduct similar analyses for evaluating HRI
within the proficiency-based interaction flow.

Conversion time. The first phase is the time required by the robot to convert the measures
of proficiency it intends to convey to the human into a communicable form (see Section 3), a
common step in facilitating information exchange in human-robot teams [14]. Depending on
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how the robot’s self-assessment functions, measurement of conversion time may be difficult.
Concretization is a process used to produce a communicable version of an explanation generated
by a system [146]. If an explicit process like this is used by the robot, then conversion time could
be measured and reported by the robot.

Communication latency. Latency is the amount of time between when a message is sent and
when it is received; it is a common metric for evaluating HRI communications [151]. As an ef-
ficiency metric at the RCP stage, communication latency can be measured either as the amount
of time between the RSA stage and the transmission of the communicated proficiency (see next
metric) or as the amount of time between conversion and transmission. Unless the robot explicitly
communicates when it is in each phase, latency measures between conversion and transmission
may be difficult to measure. Latency between transmission and perception/comprehension time
is covered in Section 5.2. High communication latency times may also impact HUP metrics, par-
ticularly if the human is expected to react in a timely manner to the communication, such as to
intervene to improve the robot’s proficiency measures.

Transmission time. The second phase refers to the length of time from the moment the robot
starts communicating its proficiency until it stops. This can be measured according to the observ-
able start and end time of communication (e.g., the length of sentences spoken by or movements
performed by the robot). If the robot produces speech, natural language measures including the
number of words [126], conciseness [19, 146, 168], and talking speed will impact this metric. A con-
cise communication can be further qualified as one that is considered complete but minimally rep-
resented [84]. Transmission time for communication via physical or simulated robot motion in VR
will be impacted by movement speed, distance traveled by the robot’s limbs, and the number of rep-
etitions of movements [90]. Kwon et al. [90] used those measures to derive a cost metric when deter-
mining effective methods for communicating incapability with robot motions. Robot movements
may have to be communicated at a particular speed if they pertain to the proficiency measure. For
static visual displays on a screen or via AR, transmission time may be (near) instantaneous.

5 METRICS FOR HUMAN UNDERSTANDING OF PROFICIENCY (HUP)

Communicating proficiency is only effective if the intended receiver correctly understands the
message. Therefore, part of examining a robot’s ability to communicate proficiency is analyzing
how well a human can interpret and understand the robot’s communication, thereby revealing
how effective the robot was in conveying its proficiency to the human.

Unlike metrics at the RCP stage of the proficiency-based interaction flow (Section 4), which mea-
sure the communication in isolation, metrics related to human understanding necessarily involve
the human. In particular, the metrics in this section focus on measuring downstream effects of the
robot’s communication by measuring its impact on the human. These metrics inherently account
for context such as the human’s prior knowledge, the complexity of the task, or any limitations
such as time pressure. These measurements can only be conducted after the communication has
been delivered, as they require measuring the effects of the communication on the human, so they
do not function a priori.

Some of the metrics in this section can be measured explicitly, while others are measured im-
plicitly. Explicit measurements directly test the concept at hand, often by querying the human to
gauge their understanding. These kinds of measurements typically happen outside the flow of an
interaction, so the interaction must pause while the human responds to an explicit measurement
request. Explicit measures can test objective information (e.g., a knowledge test in which a human
reports their understanding of the robot’s communication), but it can often be useful to assess the
human’s subjective experience with explicit measures as well. Adding a measure of the user’s con-
fidence via a Likert or continuous scale, for example, can help to assess perceived certainty, which
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can be used in collaboration with knowledge questions to tune future robot communications. In
contrast to explicit measurements, implicit measurements are based on what is already occurring
in an interaction, so they do not require additional action outside of the typical interaction flow.
While explicit measures allow for more precise measurements of specific concepts, implicit mea-
surements are less disruptive. Which type of metric to use depends on the situation.

In this work, human understanding of a robot’s proficiency is grouped into three levels, inspired
by the three levels of situation awareness [40]. Each level represents an increasingly deep human
understanding, so the levels are sequential, not categorical:

(1) Perception: how well the communication is received by the human
(2) Comprehension: how accurately the human extracted meaning from the communication
(3) Projection: how well the human can apply the effect of this communication for future

coordination

There is an inherent downstream effect of the metrics from one level to another. However, it
may not be necessary for the human to perceive or comprehend every attribute of the proficiency
communication in order for the interaction between human and robot to be effective (i.e., effective
projection). For example, the human may perceive the proficiency communication and not com-
prehend all of the attributes it possesses, but still initiate an appropriate change of action or plan.
The following metrics can be used to measure human understanding of the entirety of the robot’s
proficiency communication or could instead be modality specific (e.g., the human may fully com-
prehend what the robot said but did not accurately perceive the robot’s movement). The metrics
apply regardless of whether the proficiency-based interaction occurs a priori, in situ, or post hoc
to a task.

5.1 HUP: Perception

The first level of human understanding involves perceiving the communication. This is influenced
by factors under the robot’s control, such as the volume used by the robot or the visibility of its
movement to the human receiver. It is also influenced by factors outside of the robot’s control, such
as ambient noise or environmental occlusions. Finally, it can be influenced by cognitive factors of
the receiver, such as distractedness or a lack of shared context with the robot. In the Fetch scenario,
the robot might communicate its proficiency using speech, such as “I am unlikely to succeed at
retrieving the large screw.” Accurate perception of this statement would mean hearing all of the
words correctly. If a visual communication method was used, accurate perception would require
seeing the communication.

Perception clarity. The message should be perceived clearly by the human partner. Perception
clarity can be measured by evaluating the accuracy of the received message; less accuracy means
less clarity. For text- or speech-based communication methods, accuracy can be measured by
using a read-back method in which the human repeats back the communication provided by
the robot, measuring the deviation between the human’s read-back and the robot’s original
message. This method is similar to the read-back/hear-back method employed by airline pilots
and air traffic controllers [141]. For nonverbal communication such as robot motion, the human
could repeat the motion instead (e.g., mimicking a hand signal). Another method for measuring
perception clarity is to count the number of follow-up queries made by the human that ask the
robot to repeat the communication or clarify what attributes were included in the communication
(called “explainee return questions” in Madumal et al. [99]). For example, using the Fetch scenario,
the human may inquire, “Did you say ‘small’ or ‘large’ screws?” This follow-up method is also
used in subsequent HUP levels to evaluate comprehension clarity (Section 5.2) and projection
clarity (Section 5.3). Characterizing the type of follow-up (whether for perception, comprehension,
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or projection clarity) may be difficult to objectively discern and is subject to interpretation.
Follow-up communications from the human to the robot can be tracked at the RPH stage as a
count of the number of communication events that occur (see Section 6.4).

Perception completeness. Measures of perception completeness compare the quantity of the
information that is received compared to the quantity that is expected [87, 93]). At the perception
level, this is a measure of how much signal is received by the human. For example, in the Fetch
scenario, the human might only receive the first five words of the robot’s utterance (“I am unlikely
to succeed”) and therefore wouldn’t have enough information to accurately perceive the commu-
nication. A human may or may not be aware that they have incompletely received a message. The
amount of completeness could be assessed through explicit questions.

Perception time. This metric refers to the amount of time required for a human to receive
the proficiency communication. Measures of communication complexity including clutter, com-
prehensiveness, and size from RCP will impact the perception time. For example, larger messages
may take longer to receive due to longer transmission and reading times. Perception time can be
measured using an end-of-message response, such as the start of a read-back or a simple acknowl-
edgment of receipt. Perception time is not exclusively a feature of the communication, as it can be
affected by the partner’s current cognitive processing capacity.

5.2 HUP: Comprehension

After perception, the robot’s proficiency communication must be processed and interpreted to ex-
tract task-relevant meaning. This may involve combining the current communication with prior
ones to provide complete information. It may also involve resolving ambiguity in the communi-
cation, perhaps by using context, prior knowledge, or prior communications. For example, in the
Fetch scenario, the robot can communicate its proficiency by saying, “I am unlikely to succeed at
retrieving the large screw.” While there might be several screws on the table, the adjective “large”
enables a human listener to resolve the potentially ambiguous reference, increasing the likelihood
of successful comprehension. The robot might also point to the screw, multimodally communicat-
ing redundant information to increase comprehension.

Given that the levels of human understanding at the HUP stage are sequential, all metrics for
comprehension will be impacted by those for perception (i.e., the human cannot comprehend that
which they do not perceive). Even with perfect perception, comprehension can be affected by
a variety of factors. Comprehension issues stem from a mismatch between how the robot has
formulated its communication and how the human interprets it. This mismatch can arise from
vocabulary-based ambiguity in the communication, such as using unfamiliar words, words with
multiple meanings, or unclear referents like “that one” (i.e., in these examples, varying abstraction
of the contextual reference attribute of the communication). Errors in comprehension can also arise
when the robot incorrectly assumes the human has contextual information or prior knowledge
that, when missing, affects the comprehension of the communication. In the example above, if the
human only knew about small screws, they might incorrectly comprehend the robot’s statement
to be about the small screws.

Comprehension clarity. The clarity of the proficiency communication at this level of HUP
refers to the accuracy of human understanding. Assessments at this level largely consist of sub-
jective ratings from the human and can be evaluated along several parameters that will impact
overall comprehension clarity. The parameters deal with several factors of the interaction includ-
ing comprehension of the properties of the communication, human expectations, awareness of
goals, and the internal machinations of how proficiency measures were derived. Parameters of
comprehension clarity include:
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• Coherence. External coherence refers to whether the communication overlaps or fits with
the human’s existing mental models, and internal coherence refers to how well the parts
of a communication fit together with each other [169]. Each of the attributes possessed
by a proficiency communication should be internally coherent with each other to increase
comprehension.
• Comprehensibility. A comprehensible communication is one that is presented in a human

understandable fashion, meaning in terms, structure, and semantics similar to that which a
human expert would produce if provided the same input (adapted from [42, 105]).
• Explicability. Evaluations of explicability compare what the robot communicated regard-

ing its proficiency to what the human had expected it to. This is adapted from explainable
systems’ research that typically refers to an agent communicating its plan [17], so is most
relevant for a priori and in situ communications. The use of explanatory actions during
planning have been used to increase explicability of a robot’s actions [145].
• Fluency. The linguistic quality of a communication—sometimes referred to as natural-

ness—typically assessed automatically generated text or speech communications [52].
Evaluating this metric (and others related to natural language generation) as a relative
comparison of communications rather than absolutely has been found to greatly improve
consistency of the measure [112]. It should be noted that for the HUP stage of the
proficiency-based interaction flow, fluency does not refer to the evaluation of collaborative
activities between a human and a robot (as in [67]).
• Informativeness. This parameter is a measurement of how much informational content

a communication possesses [52]. This can be evaluated in reference to the attributes the
communication possesses, i.e., if some attributes are informative or if they are extraneous.
• Intelligibility. Evaluations of intelligibility measure the human’s understanding of how the

robot’s model functions [8]. This is a similar goal of some transparent robot systems, such
as those that aim to communicate the cause of incapability to the human [82]. This metric
could also be evaluated objectively in comparison to how the robot actually functions.
• Legibility. The human’s comprehension of a proficiency communication is considered

legible when the goal of the communication is not known (adapted from [17, 32]). This is
sometimes also called readability or transparency. In the context of this article, the goal of
a communication refers to what attributes of the robot’s proficiency it is attempting to com-
municate (e.g., contextual reference; see Section 4.3 for other attributes). This metric should
only be evaluated in scenarios where the human is not aware of the robot’s communication
goal, such as a priori to a task being performed or post hoc if the human did not observe any
of the robot’s previous activities (i.e., scenarios wherein the human is less aware of what
the robot might communicate). The legibility rating scale introduced in Dragan et al. [32]
can be used for robot motion communication modalities and adapted for others.
• Predictability. If the human knows the goal the robot is attempting to communicate, pre-

dictability can be evaluated as to how the proficiency communication aligns with the hu-
man’s expectations (adapted from [17, 34]). The human may be able to predict what the ro-
bot’s proficiency communication will be post hoc to a task if they observed the robot’s previ-
ous activities. If the human has prior, repeated experience with the robot, predictability of the
proficiency communication could be evaluated at any temporal level. A predictability scale is
provided by Dragan and Srinivasa [35] that—similar to the legibility rating scale—is designed
for subjective rating of robot motion but can be adapted for other communication modalities.

See Table 3 for examples of each parameter as applied to the Fetch scenario. Comprehension
clarity can be objectively evaluated by counting the number of follow-up queries made by the
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Table 3. Examples of Proficiency Communications with High Comprehension Clarity for Each Parameter
Described in Section 5.2 as Applied to the Fetch Scenario When the Robot Has Been Asked to Reach

for a Screw That Is Outside of Its Workspace

Parameter Examples with High Comprehension Clarity Explanation

Coherence I cannot grasp the large screw, so I cannot place it in the gray bin.
Describes a single, coherent

sequence of actions.

Comprehensibility My arm cannot reach to the large screw from here. Uses human-understandable terms.

Explicability You requested that I move the screw, but I am not able to grasp it.
Describes ability with respect to

human expectation.

Fluency I’m sorry, I’m not able to reach the screw. Uses natural, human-like speech.

Informativeness
I’m not able to grasp the screw because it is 1 meter beyond the

reach of my left arm.

Contains high informational

content.

Intelligibility I cannot reach the screw because I do not want to risk tipping over.
Describes additional considerations

by the robot while manipulating.

Legibility [Robot reaches unsuccessfully toward screw that’s out of range.]
The robot’s action clearly indicates

the goal.

Predictability
[Robot picks up bin after it has been filled with the appropriate

bolts and screws.]

The action is unsurprising, given

human expectation.

human to the robot in order to clarify the meaning of a proficiency communication. These queries
can be characterized according to the proficiency attributes they refer to (see Section 4.3). For
example, using the Fetch scenario, a post hoc inquiry relevant to comprehension would be asking,
“Is this the type of screw you had an issue with?” in order to clarify the contextual reference
attribute of the proficiency communication. Comprehension clarity can also be identified through
backchanneling actions, such as head nods, that indicate that the human understands what the
robot is trying to communicate [64].

Comprehension completeness. At the comprehension level, completeness refers to the quan-
tity of information understood by the human compared to the quantity that is expected (adapted
from [87, 93]). For example, the human may query the robot in the Fetch scenario in situ and ask,
“Which object are you trying to grab?” and will expect the robot’s responding communication to
include contextual reference to the object. This is similar to explicability, which measures how
close a robot’s plan aligns with the human’s expectations [17]. This definition can be adapted to
refer to proficiency communications regarding future events that occur a priori or in situ to a task.

Communication consistency. Consistent communication refers to information presentation
over time that has repeatable formatting and is compatible with prior information [84]. In the
context of proficiency communication, consistency can be subjectively rated by the human
or objectively evaluated along several axes according to the properties of the communication
produced at the RCP stage (e.g., the communication modality used, transmission time, and the
attributes it possesses). Consistency is similar to predictability in that evaluating it assumes
the human is expecting the robot to communicate its proficiency in a certain way. In some
explainability research, consistency is referred to as precision; a precise communication is one
that the human believes to be sufficient and not surprising in relation to prior explanations [168].

Content quality. The quality of the content provided in the communication can be evaluated
in terms of goodness or satisfaction, two terms that are used frequently throughout explainability
research. Subjective evaluation scales can be used to assess these aspects of comprehension, such
as the checklists provided by Hoffman et al. [70] where the human rates their level of agreement
with various statements related to understanding, detail sufficiency, completeness, and trust. Sev-
eral of the previously mentioned metrics have been shown to be predictive of subjective ratings
of explanation quality including the possession of attributes like alternatives, completeness, and
internal coherence [169]. Evaluations of this metric are impacted by the clarity metrics previously
mentioned in that evaluations of poor content quality may be influenced by poor clarity.
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Processing difficulty. Depending on factors like the communication’s clarity, quality, and tim-
ing, the human may face challenges in processing the conveyed information while attempting
to comprehend it. Broadly used measures for evaluating cognitive workload in human-robot in-
teraction can be utilized, including subjective ratings like the NASA-TLX scale [61] or objective
evaluations such as the introduction of a secondary task [24] and biometric measures like the use
of functional near-infrared spectroscopy (fNIRS) to classify workload of auditory or visual
processing [118]. Difficulty in processing may also be evidenced by additional follow-up inquiries
made by the human. These measures may also be used at the RPH stage as inputs to the robot’s
perception of the human.

Comprehension time. This is the amount of time required for a human to make sense of
a communication. Perception time (Section 5.1) plus comprehension time is the total amount of
time that a human needs to understand a communication from a robot. In our conception, com-
prehension time starts when the human has fully received the message and ends when they fully
understand the message’s content. In reality, perception and comprehension time often overlap,
because people make sense of a communication as it arrives, rather than waiting for a complete
communication to arrive before beginning to interpret it. The use of anticipatory motions prior
to robot actions has been shown to increase reaction times when participants were tasked with
labeling robot actions [54]. More complex communications will require more time to interpret, be-
cause they will require more cognitive processing. Verbal messages may need to be repeated back,
textual statements may be read more than once, and visual displays may be inspected repeatedly
by the human before the message is fully interpreted.

5.3 HUP: Projection

When interacting with a robot communicating its proficiency, projection refers to the human’s
ability to use the proficiency communication to plan future actions and interactions between the
robot and the human. In the Fetch scenario, if the robot has informed the human that it is unlikely
to succeed at picking up the large screw, successful projection would involve adapting future ac-
tions to incorporate this new information. For example, the human might decide to pick up and
deliver the screw themselves, rather than depending on the robot to do it. Alternately, the human
might adapt the robot’s environment to make task completion more likely, such as by reorienting
the screw to a position that is easier for the robot to grasp.

Even if the prior levels of HUP (perception and comprehension) are successful, a human
partner can still make errors in projection if they have an inaccurate understanding of the task
or the robot’s abilities. For example, the human might think that setting the screw upright
would improve the likelihood of the robot completing the screw retrieval task, when in fact it
has no bearing on the robot’s proficiency because the screw is just too big to fit in its gripper.
Projection depends on the human’s model of why the robot’s self-assessed proficiency is low, and
if this model is wrong, then the human’s projection will be ultimately incorrect. Having a robot
provide its proficiency assessments at higher levels like explanation and prediction, described in
Section 2.1, can help mitigate some of these errors.

As with perception and comprehension, projection can be measured explicitly and implicitly.
Explicit measures might involve questionnaires for the human that examine their expectations
of future robot behavior. Implicit measures include observations of what intervention a human
chooses after receiving the robot’s communication (e.g., moving a problematic object, instructing
the robot to perform the task differently) and whether their plans appear to change based on that
communication. Implicit measures assume a model of the human’s reasoning (e.g., if they predict
X, they will do Y ). Mistakes in this human reasoning model will lead to inaccurate measurements
of projection.
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Expectations. This metric addresses how accurately a person can identify future outcomes. A
robot’s communication of proficiency can influence this metric by helping improve (or harm) the
accuracy of a person’s expectations. To measure expectations, people can be directly queried about
their projection in the task (e.g., by asking, “What do you think the robot will do next?”). For exam-
ple, in a study of multi-robot operation, researchers had participants operate several virtual UAVs
simultaneously [124]. At two points during the task, they froze the simulation and asked partici-
pants to report which direction the robots were going to go next. This is an example of the situa-

tion awareness global assessment technique (SAGAT) [39], initially proposed for aviation.
Projection clarity. This metric refers to how easily a human is able to project into the future

given what the robot has told them about its proficiency. It does not necessarily require the robot’s
proficiency communication to be accurate, just that the human can use it to identify future out-
comes. As such, an inaccurate robot proficiency assessment may lead to an overall inaccurate ex-
pectation (the previous metric) but high projection clarity if the human is able to make a confident
(though ultimately incorrect) projection. In one study that measured projection clarity, researchers
designed a game in which a robot took actions that conveyed its (hidden) skills, and a human then
selected additional actions for the robot based on their understanding of the robot’s skills [128].
Projection clarity was reported as the number of participants who had greater than “neutral” rat-
ings of confidence in their projections of the robot’s skills after the game. Projection clarity can
also be measured similarly to perception and comprehension clarity by objectively evaluating the
number of follow-up queries made by the human to the robot asking to clarify information about
the future state of the task. In the Fetch scenario, the human may ask the robot, “If I adjust the
orientation of the screw, will that help?”

Congruity. Human-robot congruity is a measure of how aligned human and robot mental mod-
els are. It is most effectively measured with respect to particular features of the agents’ mental
models, such as their beliefs, goals, or expectations of rewards. For projection, congruity measures
the similarity between human and robot expectations about future outcomes. For example, re-
searchers have used techniques like cross-training to ensure that humans and robots have similar
mental models of tasks, and then have measured the congruity of those mental models by calculat-
ing the decreasing uncertainty the robot has about observed human actions during training [111].
Note that this does not rely on either agent being correct in their mental model; congruity mea-
sures alignment, not accuracy.

Command changes. Command changes are human actions taken to augment the robot’s be-
havior based on the human’s projection level of understanding. The goal of initiating command
changes is to remediate the situation and increase the robot’s future proficiency. This metric is remi-
niscent of the metric for human interventions defined for semi-autonomous operation in other HRI
scenarios [151]. Command changes to robot behavior can initiate changes in robot action or the
robot’s goal. Using the Fetch scenario, a change in action would be the human adjusting the order
in which the robot fills in the bin (maybe starting with screws first if the screw placement obstructs
the bolts), where a change in goal would be for the robot to deliver empty bins to the workstation
and the human decides to gather the screws and bolts on their own. If changes occur, they can be
tracked at the RPH stage as a number of correction or intervention events (see Section 6.4).

Environment changes. Changes to the environment are human actions in response to a pro-
ficiency communication that attempt to correct the situation by modifying conditions of the en-
vironment. For example, the robot in the Fetch scenario may not be able to deliver a bin to the
workstation if the workstation already has a bin on it, so the human may remove that bin to mod-
ify the scene. Similar to command changes, if the robot communicates high proficiency, then a lack
of environment changes may be indicative of proper projection. These changes can be tracked at
the RPH stage as a count of the number of modification events (see Section 6.4).
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6 METRICS FOR ROBOT PERCEPTION OF HUMAN INTENTIONS, VALUES,

AND ASSESSMENTS (RPH)

This article’s rhetorical framing assumes the robot is part of a human-agent interaction dyad. This
subsection further assumes that the human problem holder has an internal intention as well as
internal values, states, and beliefs. Intention is usually defined as a mental state that represents a
commitment to a plan or activity that an agent believes will bring about a desired objective [30,
53, 100]. Examples of human intention in human-robot teaming include commitment to a planned
sequence of events to accomplish a mission, a specific desire about the way a task is performed,
beliefs about the way that an interaction partner will act, and beliefs about the timing or duration
of events or mission stages. Through the remainder of this section, intentions, values, states, and
beliefs are rhetorically referred to simply as intentions.

The RPH problem is for a robot to align its models or algorithms with a human’s intention.
The robot can explicitly model or represent human intention, or the robot might implicitly assume

things about intention in its algorithms and behaviors. When an explicit model is used, alignment
means that the robot’s model is a valid representation of the human intention, and when implicit
assumptions are relevant, alignment means that the robot’s activities honor the human’s intention.
Thus, this section identifies metrics of robot-intention alignment.

Both the RSA and RPH stages measure how well a particular goal is met or how well intent
is satisfied, which is the essence of proficiency assessment. Thus, this section uses four metric
categories that are nearly identical to those found in Section 3: uncertainty and coherence, perfor-
mance, time, and events. RPH also includes a distinct metric category, colloquially referred to as
human factors, because RPH metrics are inherently interactive between robot and human. Each
metric category is given its own subsection. Each subsection emphasizes in situ assessment, with
applications to a priori and post hoc assessment provided where appropriate.

Human activity is essential to many of the metrics in this section. Relevant human activities
include both intentional messages sent from the human to the robot (e.g., gestures, speech acts,
interface commands) and implicit signals (e.g., posture, eye gaze, interface activity, task-related
behavior). Additionally, most of the metrics require information about expected behavior or
outcomes, which must be obtained in a “calibration” phase that uses experimentation and prior
experiences to establish bounds and expectations.

6.1 RPH: Uncertainty and Coherence

Metrics for uncertainty and coherence evaluate how well model outputs, behaviors, and model
representations are “working” in the context of a human-robot interaction.

Model consistency. Model consistency means that the predictions or estimates do not change
too quickly or too slowly relative to the expectations associated with the task. Explicit models
can output not only estimates of human goals, plans, and intentions [25, 106, 109, 143] but also
predictions about human activities or behaviors [63, 96]. Model consistency metrics evaluate the
rates at which these estimates and predictions change and compare those rates to expectations.
Explicit models often include internal states such as beliefs about processes, representations about
likely objects in the world, and so forth. If internal states change too quickly or too slowly relative
to expectations, then model misalignment might be occurring.

Behavior consistency. Behavior consistency means that the robot’s actions (e.g., effector ac-
tivity, speech acts) induced by either explicit models or implicit assumptions do not change too
quickly or too slowly relative to expectations. Both overly consistent behaviors (never changing
behaviors even when the world changes) or rapidly changing behaviors (thrashing through a set of
actions) can indicate that the robot’s behaviors do not align with the human’s intent, because the
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robot is not responsive enough to human activity or not consistent enough to coordinate with in-
tended interactions. For example, (1) reactive or rapidly changing responses by a robot in a shared
workspace decrease fluency in human-robot teaming [68], (2) unpredictable or illegible drone be-
havior can induce fear or stress in human-drone interaction [156], and (3) compliance with social
or proxemic norms has a strong impact on acceptance of robots in social interactions [155].

The human also generates action or communication behaviors. The consistency of human com-
munication can indicate how well the robot’s models align with the human’s intention. For ex-
ample, (1) misalignment can correlate with changes in sentiment across speech acts or chats [79],
(2) disfluence [110] can indicate misalignment under natural language collaboration, (3) changing
spatio-temporal references in shared workspaces can indicate misalignment [48], and (4) inconsis-
tent deictic gestures can indicate misalignment in gesture-based collaboration.

Similarly, the consistency of human actions can also indicate the quality of alignment. For ex-
ample, (1) operator-induced oscillations in shared or supervisory control can indicate failures by
the robot to support intended human action [28, 115], (2) spatial distancing can indicate that a
human is compensating for proxemic misalignment [107], (3) extraneous commands can indicate
misalignment between human intent and perceived robot in learning by demonstration [85], and
(4) violations of the neglect benevolence principle can indicate misalignment between human in-
tent and perceived swarm behavior in human-swarm interaction [108].

Model uncertainty. Uncertainty means that there is variability of estimates, predictions, or
internal representations of a robot. High levels of uncertainty can indicate misalignment between
the robot’s models and the human’s intent either because the intent is unclear to the robot or the
robot does not have internal representations that allow it to properly model the intent. Uncer-
tainty is a well-known metric category, and therefore, a short list of relevant metrics suffices for
this article. Uncertainty can be quantified using conventional methods like variance, confidence
intervals, correlation quality, and the probability of outliers. Uncertainty can also be quantified
using aggregation techniques such as behavioral entropy [10, 55, 166].

Model prediction accuracy. Prediction accuracy is the straightforward evaluation of how
well a robot’s model corresponds to actual human activity when explicit behavioral predictions
are made. Like uncertainty, accuracy is a well-known metric category, so a short list of metrics
suffices. Prediction accuracy can be measured using conventional techniques such as the per-
centage of correct predictions, precision and recall, F1 scores, or ROC curves. Evaluation can be
performed and data gathered post hoc (either after a mission is complete or between repeated
tasks) to assess the alignment of the robot’s models of human intentions and human intentions.
Post hoc analysis might identify overconfidence of in situ estimates or inconsistent performance
across repeated tasks. When combined with data-driven approaches for refining robot behavior,
indirect measures like convergence of inverse reinforcement learning models or persistence of
learned reward structures can indicate alignment.

6.2 RPH: Performance

Proficiency should correlate with alignment of robot behaviors and human intent. Measures of
performance can be used to provide in situ or post hoc information about the alignment of the
robot’s models and the human’s intent when prior experience can be used to establish expectations
about the values of the performance criteria. Simply put, low performance probably indicates that
the robot did not contribute to solving the problem held by the human. Performance measures are
not applicable a priori since performance measures depend on activity and outcomes.

For example, as mentioned in the RSA: Performance metrics (see Section 3.2), cumulative
scores, rewards, and penalties can be assessed post hoc by the robot to determine how well a task

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 3, Article 29. Publication date: July 2022.



Metrics for Robot Proficiency Self-assessment and Communication of Proficiency 29:27

was performed. Poor post hoc scores can indicate that the robot did not successfully accomplish
or honor the human’s intention. To this end, the RSA: Performance and Events metrics are
applicable at the RPH stage and so are not reiterated here. Similar metrics of mission progress,
replanning triggers, and violation of performance envelopes provide information about the
alignment between the robot’s models and the human’s intent if the human has explicitly stated
a set of expectations about progress. Additionally, subjective scoring by the problem holder at the
HUP stage (see Section 5) or by a set of experts using appropriate behavioral coding standards
can be used to compute performance. Techniques like automatically generated performance
summaries [135] facilitate post hoc subjective scoring. Low subjective scoring can indicate
misalignment between robot behavior and human intent.

6.3 RPH: Time

Metrics related to time deal with the duration of phases of autonomy, time elapsed between signals
of interest, or the perseveration of an activity. Time-based metrics are simple in the sense that they
do not need access to predictions from the robot’s model nor access to the states in the robot’s
internal model.

Persistence. Persistence-based metrics reflect the amount of time spent in a particular activity.
Robot-oriented metrics include the amount of time the robot spends in a mission phase [134], at a
particular location, or in a particular sub-task. Long periods of perseveration or very brief periods
in an activity can indicate misalignment if the human assumes regular progress toward a goal [134].
Human-oriented metrics can include the amount of time a human fixates on a location in space [16,
148, 149] or menu of an interface [66] or works on the same sub-task. These metrics can indicate
that the human is trying to figure out what the robot is doing, which indicates misalignment.

Expected execution time. The deviation between the robot’s expected task completion time
and the human’s is a straightforward indication of how well robot behaviors align with human
intent.

Coordination time. When tasks or missions can be repeated, the time required before or after
a mission is executed can indicate the quality of alignment. A long debriefing time can indicate
that there is misalignment between what the robot did at various phases of the mission and what
the human thought was needed. Similarly, a long prebriefing time can indicate a priori a mismatch
between the needs of the problem holder and the likely ability of the robot to be able to satisfy
those needs without significant human input.

Event timing. The time elapsed between expected or planned events can indicate how well
the robot’s behaviors align with human intent. Relevant events include communication acts, ac-
tivities by either human or robot, subtask completion by either human or robot, or changes in
performance indicators. Example metrics include (1) the frequency of interactions, (2) the pacing
of communications such as mean time between connection events [122], (3) the time at which mile-
posts are reached or the order with which mileposts are reached [134], (4) the rate of change of
instantaneous performance indicators [24], and (5) dwell time of eye gaze in interface-mediated
or social interactions [2].

6.4 RPH: Events

Section 3 on RSA metrics notes that events can be defined in various ways and that counting events
can be useful in understanding how well a robot is performing. In the context of a robot perceiving
the human, relevant events can include actions initiated by the human to affect the robot’s behavior
or actions initiated by the robot to gather information from the human. The metric types and
metrics in this subsection are closely related to the definition of clarity given in Section 5.2; they
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are based on the assumption that a lack of clarity to a human manifests itself to the robot in various
forms, with each form providing information about the alignment of robot behavior and human
intention. Proper alignment may also be evidenced by a lack of interaction from the human if the
robot communicates a high proficiency measure. For post hoc evaluations, events may be counted
when debriefing and may include counting instances of overuse or disuse [92], as well as measures
of transparency [21] or awareness violations [36].

Corrections. Corrections are human activities that repair or modify results from the robot’s be-
havior. Counting the number of corrections directly measures misalignment between robot models
and human intent. When the relationship between the robot and the human follows a supervisory
control mode, the number of undo commands also indicates misalignment. When the relationship
between human and robot is more collaborative, the number of times the human undoes the ro-
bot’s work or redoes it in a different way indicates misalignment.

Interventions. Interventions are human activities that seek to alter the future behaviors of
the robot, especially if those future behaviors are likely to produce poor results (i.e., command
changes that occur at the HUP stage; see Section 5.3). Interventions can include changing the ro-
bot’s actions, altering the robot’s goals, or changing autonomy modes, such as the human stopping
a robot to do the task without the robot or changing to a mode where the human has more control.
Interventions can also include demonstrating tasks or giving negative or positive feedback [159].
Counting interventions is a metric that can indicate misalignment.

Modifications. Modifications are human activities that shape the environment or task setup
(i.e., environment changes that occur at the HUP stage; see Section 5.3). Modifications can include
task shaping such as cleaning up a room before a Roomba vacuums [49], placing objects within
the reach of the robot’s gripper, adding RFID tags to important objects in the world [88], or chang-
ing lighting conditions to improve object recognition or mapping. Modifications can also include
explicit adaptations that a human makes to a robot’s model, like labeling objects or tuning param-
eters to alter performance. Modifications are representative of a person’s understanding of the
robot’s abilities. As such, when the dyad is in alignment, the human is making modifications that
assist the robot—but when there is misalignment, modifications may not help the task completion
by the robot. Due to this, both types of modifications should be reported.

Communications. Communication includes the number of speech acts, instant messages, in-
terface requests, or queries initiated by either the robot or the human. This number depends on
context because in some applications a lot of communication indicates that the robot understands
the human’s intent (e.g., the team is rapidly communicating needed information in a timely way
to enable task progress) and in others a lot of communication indicates poor understanding of the
human’s intent (e.g., repeated requests for information or repeated instructions from a human).
Communication can be as simple as clicks on an interface or gestures with the hand or mouse, or
as sophisticated as natural language communication, eye gaze [2], deictic gesturing [103, 116], or
social cueing [11]. Any follow-up inquiries made by the human at the HUP stage (see Section 5)
can be counted toward this metric.

6.5 RPH: Human Factors

The alignment between the robot’s models and the human’s intent will impact the prob-
lem holder. Thus, there are a number of human factor measures that can provide informa-
tion about the human’s experience throughout the phases of interaction. Information about
the human’s experience reveals information about alignment. Since human factor metrics are
well documented, relevant measures are simply listed. These measures include human work-
load (such as NASA TLX [61]), physiological indicators of workload or stress [158], real-time
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estimates of trust [31], real-time estimates of situation awareness [101, 170], and violations of
human performance limitations [67]. High levels of workload, mistrust, stress, or frustration can
indicate misalignment of robot behavior with human intentions.

7 DISCUSSION

While many of the metrics reviewed in this article can already be used to evaluate proficiency-
based HRI, there are several factors that remain as open research areas and other evaluation
considerations.

Maturity of metrics and measuring across stages. The metrics presented in this article each
vary in terms of maturity, robustness, and prominence in the field of PSA and HRI. For instance,
the metrics at the RSA stage (Section 3) are applicable to many types of autonomous systems as all
deal with some level of decision-making and uncertainty, but the method of calculation and how
the resulting measure is utilized by the robot can vary (e.g., tracking violation of performance
envelopes as a safety measure vs. measuring risk-averse reward to inform a PSA measure for
future reference). Metrics at the RCP and HUP stages (Section 4 and 5) can also be more broadly
applicable outside of PSA and have relevance to multiple domains of HRI. RPH metrics (Section 6)
are those most explicitly applicable to PSA but are informed by broader and more common
elements of HRI evaluation, including measurement of interventions and the various human
factor evaluation tools for trust, situation awareness, etc.

However, the connections and correlations between metrics at each stage of the proficiency-
based interaction flow (see Figure 1) are still an open research area for continued investigation.
Some of those relationships are described previously throughout the article, but metrics that are
representative of the entire interaction may also be warranted. For example, the Fetch scenario
takes place in a manufacturing environment where overall task efficiency may be paramount to
maintaining expected throughput. Evaluations of efficiency will rely on metrics evaluated at mul-
tiple stages including productive time (RSA), communication time (RCP), and comprehension time
(HUP). Performance evaluation in terms of task efficacy may also rely on metrics from the RSA
stage (e.g., repeated attempts), HUP stage (e.g., command changes), and RPH stage (e.g., interven-
tions), as each action could cause unacceptable delays to task completion. While much of this is
context dependent, the metrics framework presented in this article should enable these investiga-
tions to occur using a common lexicon and metrics.

Empirical and/or model-based evaluations. Using the metrics reviewed in this article to
evaluate human-robot interaction—particularly those metrics at the HUP stage (Section 5)—can be
done empirically, in comparison to a model, or both. Empirical measures of human understanding
are drawn directly from observations of human behavior. For example, whether a human decides
to give control to a robot or keep it for themselves is driven (at least in part) by that human’s un-
derstanding of the robot’s proficiency, so observing the human’s decisions can allow us to measure
their understanding of the robot’s proficiency. These measurements can be made after a human
takes action, such as initiating follow-up queries, command changes, or environment changes.
Empirical measurements can also be used to update hypothetical human models to make future
model-based measurements more accurate.

Model-based measurements are made using a hypothetical model of a human, rather than obser-
vations of actual human behavior. Human mental models may be formulated structurally based on
how they work or functionally based on what they were doing [76]. Measures like legibility [34]
use a hypothetical human mental model that includes awareness of the robot’s goal. These models
are often validated against empirical measurements in lab-based studies, but model-based mea-
surements are useful because they can be taken at any point in the interaction and do not require
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explicit actions from the human. The robot may actively use such a model of the human to influence
how it self-assesses its proficiency or build up such a model based on the human-robot interaction.

Subjective interpretation of metrics. Some of the metrics reviewed in this article may be
subject to interpretation due to a lack of formal evaluation methods or definition of specific
criteria. For instance, at the RCP stage (Section 4), identification of whether a proficiency
communication possesses one or more attributes may require communication instances to be
coded by multiple raters, reaching a specified Cohen’s Kappa measure for inter-rater reliability.
While some automated methods are used for evaluating generated language output [52], other
communication modalities lack such methods for validation.

Similar determinations must be made at the HUP stage in order to characterize any follow-up
queries made by the human in terms of the level of human understanding (perception, comprehen-
sion, or projection) they correspond to; i.e., such queries can be used as part of a clarity measure-
ment at each level. Follow-up queries may also be tied to particular attributes of the proficiency
communication; proper characterization of such would enable more detailed analyses to be made,
such as determining which aspects of proficiency the robot is having trouble communicating effec-
tively. This same issue of subjectivity continues at the RPH stage in determining the type of events
(corrections, interventions, modifications, or communications) that occur during the interaction.
More formal criteria to classify the activities that correspond to each of these metrics would aid
their usage and adoption in the field.

Self-assessment of communication proficiency. Self-assessment may also be performed by
a robot to determine its proficiency at communicating information. For example, the robot in the
Fetch scenario may track HUP metrics over time to determine which types of communications
result in higher human comprehension clarity as evidenced by fewer follow-up inquiries. Many of
the RSA metrics could be used to this end and would be utilized by the robot when converting the
derived task proficiency measure into a communication.

To date, it does not appear that robot systems are being explicitly designed with this capability,
but the need for such considerations has been raised in the research literature [6]. Examples of
relevant robot systems include those that make in situ decisions about communication modality
choice based on associated cost parameters for each [162] or those that conduct feasibility analyses
based on the inherent limitations of certain modalities [13]. The latter referenced paper presents
a method to reduce the complexity of communication by spreading information across multiple
modalities. If the scenario is expanded to include additional agents, the robot may further consider
how choice of communication modality and attributes conveyed to one agent may impact other
agents involved (e.g., [157]).

8 CONCLUSION

This article reviews metrics for evaluating proficiency-based human-robot interactions, organized
into four stages for these interactions: robot self-assessment of proficiency, robot communication
of proficiency to the human, human understanding of the proficiency, and robot perception of
the human’s intentions, values, and assessments. Each stage is presented with a set of metric cate-
gories; metrics, evaluation criteria, and measurement considerations in each category are reviewed
with references to similar metrics in related fields if appropriate.

The aim of this article is to provide a starting point for common definitions of metrics that can
enhance the development of robots capable of self-assessment and research around proficiency-
based human-robot interaction. Continued experimentation is needed to further investigate and
validate the correlations between metrics for proficiency-based human-robot interactions. The
authors encourage others to iterate on the metrics and concepts presented in this article to continue
their evolution, validation, and adoption throughout the field.
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