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Abstract dz : p(x), with uncertaintyla, 8], wherep(z) is a logic

First order logic lies at the core of many methods in mathe—pre.d'Cate that depends on the vanablg The uncertain
logic framework allows us to model this sentence, and to

matics, philosophy, linguistics, and computer science. Al LT . . .
. : combine it with similar ones in order to solve various in-
though important efforts have been made to extend first or-

der logic to the task of handling uncertainty, there is still fer:)ebn;l;"F;rt%blrzrsnj'tswcvaﬁez é uﬁnceer'gml I}og:;;:lt(;ier:s
lack of a consistent and unified approach, especially withinﬁ) ic converaes to l;irst order_lo ic Un’like, existing DS
the Dempster-Shafer (DS) theory framework. In this work 9 9 gic. 9

. . o . models for logic that, in general, cannot guarantee logic
we introduce a systematic approach for building belief as- : . ) 2
. ) . consistency for a plurality of logic constructs, uncertain
signments based on first order logic formulas. Further-

i . ) . logic preserves this consistency, and can grow to incorpo-

more, we outline the foundations tfncertain Logi¢ a : . . .
. : . rate logic rules and properties without loss of uncertainty

robust framework for inference and modeling when infor- ' ; : L )
o ; ) , . measures. By preserving this consistency, it is possible

mation is available in the form of first order logic formulas : .
. . . . . to seamlessly move between the logic and DS domains,

subject to uncertainty. Applications include data fusion,

L o N . and to incorporate both the strength of first order logic for
rule mining, credibility estimation, and crowd sourcing, . : o ;
information representation, inference, and resolutiow, a
among many others.

the strength of DS for representing and manipulating un-

Keywords. Uncertain Logic, Uncertain Reasoning, Prob- Certainty in the data.

abilistic Logic, Dempster-Shafer Theory, Belief Theory. 1.1 Existing Methods for Handling Uncertainty in

) Logic
1 Introduction The need for reasoning under the presence of uncertainty
Natural language processing, artificial intelligence, andhas lead to important work aimed at providing logic rea-
graph analysis are among a number of applications thasoning with uncertainty management capabilities. Re-
heavily rely on first order logic formulations. Due to its search in this area encompasses a number of aims, such
capability for representing knowledge for inference sys-as the investigation of the source and meaning of uncer-
tems, first order logic has been gradually enriched to hantainty, the enrichment of logic systems with appropriated
dle imperfections in real-life data. Some approaches in-formalisms for uncertainty management (e.g., semantics,
clude fuzzy logic and probabilistic logic [1]. These so- axioms), and the creation of appropriate models and oper-
lutions, however, are not well suited for handling scenar-ators to quantify the propagation of uncertainty in reason-
ios characterized by ranges of uncertainty, or that requiréng and inference problems.
modeling evidence in a very strict manner to minimize the

; ) ; . Relevant foundational work, with emphasis on analyzing
risk of inference results leading to wrong conclusions.

the source and representation of uncertainty in logic sys-
Dempster-Shafer theory [2] provides an ideal modelingtems, can be found in [3]. In this work, the author in-
tool to address this problem. However, although signifi- troduces two different approaches to giving semantics to
cant effort has been dedicated to modeling uncertainty irfirst-order logics of probability, the first one incorporsi
logic under DS theory, there is still a need for a unified probability in the domain (for problems involving statis-
approach that is consistent with basic logic operations andical information), and the second one assigning proba-
that provides the support for handling variables and quan-bilities to possible worlds. This work is extended in [4],
tifiers. To address this problem we introdudacertain ~ where the author further discusses the use of a “possible-
Logic, which is the extension of first order logic into DS worlds” framework to represent and reason about uncer-
theory. Consider, for example, an expression of the form:tainty. Then, quantification of the uncertainty is accom-



plished by assigning a probability distribution to the pos- sures [13]), it is possible to simplify DS models to prob-
sible worlds. In addition, the author discusses the impor-abilistic models. Considering these advantages, a number
tance of considering time in the inference process, i.e.of researchers have studied the relation of DS theory and
possible words should describe states at each time point dbgic. In [14], DS theory is formulated in terms of proposi-
interest. The work in [5] provides insight on how to pro- tional logic, enabling certain logic reasoning operations
cess and combine data-driven (e.g., information obtainedhe DS framework. Insight into the relationship between
from observed events) and knowledge-driven (e.g., infor-DS theory and probabilistic logic is presented in [14]. A
mation provided by domain experts) using different logic belief-function logic that uses DS models and operations
systems. to quantify and estimate uncertainty of logic formulas is

" ! . : . introduced in [15]. This logic system allows non-zero be-
In addition to first-order logic, uncertain representasioh . ; : ,
lief assignments to the empty set, relies on Dempster’s

logic systems have been extended to other types of logic. o Iy A
For example, the work in [6] introduces a multi-agent epis- combination rule as the method for quantifying the prop

temic logic able to represent and merge partial beliefs ofa(‘:]'fjltlon of uncertainty, and is used in deduction systems

multiple agents. This logic system is based on possibilitywhere the logic formulas are in Skolemized normal con-

theory [7], and enhances epistemic logic with parametricj.uncuve form. An application of this system for inference

models to obtain lower bounds on the degree of belief of> described in [16]. Further analysis on DS-based logic

agents. Similarly, an axiomatization of a modal logic using is presented in [17]. A detailed study on uncertain impli-

) ) . ~ cation rules is in [18]. This latter work, however, is not
fuzzy sets and DS belief functions for measuring probabil- : : : . .
. L : focused on ensuring consistency with classical logic, but
ities of modal necessity is presented in [8].

on modeling causal probabilistic relations.

When addressing quantification and propagation of uncer- . - . S
. ) . . .~ In spite of existing research to provide logic with uncer-
tainty in logic reasoning systems, one of the most im-

. o . .. tainty modeled by DS, efforts to date can be improved by
portant approaches is probabilistic logic [9]. Probabilis . . ; . . .
tic logic provides a generalization of logic in which the ensuring consistency with classical logic and reducing the

o 6|umber of assumptions needed for the logic systems to
truth values of sentences are probability values (between O ork. For example. most of the existing methods are based
and 1). A related approach, possibilistic logic [10], de- ) p'e, g

fines mechanisms (based on possibility theory) to asso Dempster's Combination Rule, which, as it is shown in

: : ) ! . ; this manuscript, is not necessarily well suited for logical
ciate classical logic formulas with weights. These weights . e i
. reasoning. In addition, inference processes could benefit
represent lower bounds of necessity degrees. Other ap-

proaches that extend logic reasoning to address uncertaj rom eliminating the condition that logic formulas need to

. . cig'e expressed in normal conjunctive form or as implication
scenarios are many-valued and fuzzy logics. Many-value

. . . rules, as well as eliminating the need for allowing non-zero
logics do not restrict the number of truth values of Proposi-\ ¢ 2csionments to the empty set in a DS model
tions to two. The interpretation of the truth values depends 9 Pty '
on the actual application. Fuzzy logic can be seenasatype.2 Our Contribution: Uncertain Logic

of many-valued logic. Fuzzy I_oglc |s_based_0_n the theoryTO address these issues, and with emphasis on methods to
of fq;zy_sets [11]. In fuzzy logic, the Imprecision in pr‘?b' quantify uncertainty propagation, we introduce uncertain
abilities is modeled.through me_m_bershlp fu_r7(_:t|ons deflnec]Ilogic. Uncertain logic deals with logic propositions whose
on the sets of possible probabilities and utilities. truth is uncertain. The level of uncertainty is modeled with
Although useful in some applications, these approache®S theory. Uncertain logic allows reasoning and inference
are sometimes limited by the way they model uncertainty,using (conventional) first order logic inference rules, but
or simply by the complexity of the problem formulation. also allows for appending uncertainty to the inference pro-
Extensions of these approaches could be strengthened I8€ss.

adding more flexibility in aSSiQ”‘”Q probabilities (6-9-' To describe the uncertain logic framework, we start in Sec-
through intervals) and a more rigorous method of assigny;,, 5 \ith an overview of DS theory. Basic definitions

|ng_p_robab_|llty measures (e._g., one that does not QUM nd notation of uncertain logic are then introduced in Sec-
defining priors or membership functions). tion 3. A set of uncertain logic operators and quantifiers
Regarding the use of intervals as means of representingre described in Sections 4 and 5, respectively. Finally,
uncertainty, it appears in several methods, such as posjnference in uncertain logic is introduced in Section 6.
sibility theory [12] and DS theory. The latter, in addi-

tion, inpprporates a rigorous method_ology for assignin92 DS Theory: Basic Definitions

probabilistic measures based on available evidence [13].

Given the direct relation that exists between DS theoryDS Theory is defined for a discrete set of elementary
and probability (DS belief and plausibility measures cor- events related to a given problem. This set is called the

respond precisely to probabilistic inner and outer mea-Frame of DiscernmenfFoD). In general, a FoD is de-
fined as® = {64, 6,...,0n}, and has a finite cardinality



N = |©]|. Elements (or singletong) € O represent the

logic”. We will represent formulas in propositional logic

lowest level of discernible information. The power set of by lower case greek letters (e.g, ¥). In propositional
O is defined as a set containing all the possible subsettogic, a proposition can be obtained from other proposi-

of ©,i.e.,2° = {A: A C ©}. The cardinality of the
power set o is 2V, Next we introduce some basic def-
initions of DS Theory, as required for building uncertain

logic models. For additional details on DS Theory, we re-

fer the reader to [1, 2].

2.1 Basic Belief Assignment

A Basic Belief Assignment (BBA) ormass assign-
mentis a mappingme(-) : 2° — [0,1] such that:
Y aceme(A) =1 and me(0) = 0. The BBA mea-
sures the support assigned to propositib@ ©. Masses

tions using connectives like (and),V (or), - (not), and
= (implies). Through (classicaif)ference propositions
can be derived from a given a set of propositions (called
premise} using (classical) “rules of inference” such as
“modus ponens”.

PredicateLogic. Predicate logic allows us to look into the
structure of propositions. For example, the fact that some
entity a is aboveanother entityp would be expressed as
Above(a, b),where “Above”is a two-place predicate
symbol and &” and “b” are individual constants. For the

in DS theory can be assigned to any singleton or nontemainder of this paper, we will assume finite domains for

singleton (e.g.{601,02}, {61,603}, {61,02,05}) proposi-
tion. A belief function is called Bayesian if each focal
element in© is a singleton. The subset$ such that
m(A) > 0 are referred to as focal elements of the BBA.
The set of focal elements is the cof@. The triple
{0, Fo, me()} is referred to aBody of EvidencéBoE).

2.2 Belief and Plausibility

Given a BoE{©, F, m}, thebelief functionBel : 2° —
[0,1] is defined asBele(A) = > 54 me(B). Bel(A)
represents the total belief that is committed Aowith-
out also being committed to its complemeat’. The
plausibility function P1 : 2 — [0,1] is defined as:
Ple(A) = 1 — Belg(AY). It corresponds to the total be-
lief that does not contradicd. The uncertaintyof A is:
[Belo (A), Plo(A)].

2.3 Combination Rules

Dempster Combination Rule (DCR). For two focal sets
C C ®andD C © such thatB = C' N D, and two
BBAs m;(-) andmy(-), the combinedn,;(B) is given
by: mjk(B) = ﬁ ZCOD:B;B;&@ mj(C) my (D),
where K. = > onp_gm;(C)mi(D) # 1is referred
to as theconflictbetween the two BBAS/;;, = 1 iden-
tifies two totally conflicting BBAs for which DCR-based
fusion cannot be carried out.

Conditional Fusion Equation (CFE). A combina-
tion rule that is robust when confronted with con-
flicting evidence is theConditional Fusion Equation
(CFE) [19], which is based on the DS theoretic condi-
tional approach [20]. The CFE combind$é BBAs as
[19]: m(B) = 3231, 3 4,ea,7i(A) mi(B|4;), where
S S aea, vi(Ai) = 1. Hered; = {A € F; :
Bel;(4) > 0}, ¢ = 1,..., M. The conditionals are com-
puted using Fagin-Halperns’ Rule of Conditioning [21].

3 From Propositional Logic to Uncertain
First-Order Logic

Propositional Logic. Recall that goropositionis simply

the interpretation of predicate logic formulas (i.e., indi
ual variables ranges over a finite number of entittes).

First-Order Logic. First Order Logic extends predicate
logic by theuniversal quantifier(V) and theexistential
quantifier (3). Quantified formulas provide a more flex-
ible way of talking about all objects in the domain (i.e.,
elements in our universe of discourse) or of asserting a
property of an individual object.

Uncertain Logic. Uncertain logic deals with propositions
(p1, 2, ...) whose truth is uncertain. The level of uncer-
tainty is modeled with DS theory and is bounded in the
range[0, 1]. In general, we will consider formulas with
free variables that range over individuals from some finite
domain®x = {z1,...,z,}, withn > 1, for example

(1)

wherep(z) is a formula with the only free variablerang-
ing over elements i® x and|«, 5] it the corresponding
uncertainty interval witl) < o < 3 < 1.2

(x), with uncertaintya, 3],

To emphasize the fact that uncertain logic models uncer-
tainty of the true value of a proposition, we define kbg-
ical FoD as follows.

Definition 1 (Logical FoD) Given a logic proposition
o(x) with = ranging over entities if® x, and a true-false
FoD ©;_; = {1, 0}, the logical FODO ;) (1,0} IS given
by:

Ou(z)x{1,0y = {¢(@) x 1,9(x) x 0}. 2)

1When referring to propositional and predicate logic, wéofelthe
conventions and definitions provided in [22] and [23].

2We can define this first-order logic expression more formadiyiol-
lows: Consider a quantifier-free first-order formudz) from a (not
necessarily finite) set of formulak in some first-order language with
z being the only free variable ip. Moreover, let® x = {z1,...,zn}
be a non-empty set of individuals under observation witpeesto for-
mulas in®. Throughout this paper, we may represent the logic for-
mulap(x/x;), the property expressed lgy for the individualz;,7 =
1,...,n, with the abbreviated notatiop(z;), i.e., o(z;) = p(x/x;).
In addition, the DS models that we define for a quantifier-frest-order
formula ¢(x) extend to the sets of formulas(z;),i = 1,...,n, de-
fined on the corresponding logical FoDs. This extension éslus Sec-

a statement such as “this is an introduction to uncertainton 5, where we define models for existential and universahdjfiers.



When no confusion can arise, we will employ the follow- 4.1 Uncertain Logic Negation

ing notation: Consider a logical Fo® () = {¢(x), ¢(Z)} and a BBA
m(-) defined as:
mw(x) = g mw(T) =1-5 msa(gnp(z)) =fB—-a. (5)
A DS theoretic model that would capture the information
in (1) is: A complementary BBA for (5) is given by [25]:
e(@) : mlp(x)) = o mg(z) = 1= 8; mg(T) = a; m,(Op(x)) = f—a. (6)
m(e(T)) =1-6; ,
. Based on the complementary BBA, we can define an un-
m(Oy ) =6 — o, ®3) o :
certain logic negation as follows.
defined over the logical FoBy(z), »(Z)}. In order to  Definition 2 (Logical Not in Uncertain Logic) Givenan
simplify the arguments in the mass assignments, we mayincertain propositionp(x) as defined in (1), and its cor-

() = p(z)x1;0(T) = 0(2)X0; Oy (2) = Op(a)x{1,0}-

use the following alternate notation: responding DS model defined by (4), the logical negation
o) : my(z) = a;my,(T) = 1=3;my(Op ) = B—a. of p(z) is given by:
(4) —p(x), with uncertaintyl — 3,1 — o]. 7

Semantics. In classical logic there are two truth values, We utilize the complementary BBA corresponding to (4) as
“true” and “false”. An expression that is true for all inter- the DS theoretic model forp(z), i.e.,
pretations is called a tautology {”). An expression that

is not true for any interpretation is a contradiction_{). —o(x) : m(x) =1-0;
Two expressions are semantically equivalent if they take me (%) — o
on the same truth value for all interpretations. ® ’

In uncertain logic we extend these definitions. The truth
value of an expression corresponds to the support thaPefinition 2 satisfies an important property: Given a
is projected into the true-false Fo®,;_; = {1,0}. A propositiony(x), the BBA corresponding to its double-
BBA (3) defined byj, 5] = [1, 1] correspondsto the clas- negation is the same model as the one associated with
sical logical truth. A BBA (3) defined byr, 3] = [0, 0] ©(z). In other words, Definition 2 satisfies—p(z) =
corresponds to the classical logical falsehood. ©(zx), which is a basic property in (classical) logic.

The notions of tautology and contradiction in uncertain 4.2 Uncertain Logic AND/OR

logic are extended following an approach similar to that Definition 3 (Logical And & Or in Uncertain Logic)

n [24]- In particular, given a generic proposmdnch_ar- Suppose that we have logic propositions, each provid-
acterized by the uncertainty interval= [«, 5], we define  ing a statement of the following type regarding the truth
a o-tautology asT, = ¢ V —¢, and ac-contradiction  of z with respect to the propositiop; (-):

as l,= —p. It follows that T = T,_;; 1, and . . .

T [¢]A ¥ [1.1] ¢;(x), with uncertaintyjo;, 3], i = 1,..., M.  (9)

—-0=[0,0]"

The corresponding DS theoretic models are
i i pi(z) : My, (z) = au My, (T)=1-B4 m%’z(@sal(m)) =
4 Uncertain Logic Operators G; —ay, fori = 1,2,..., M. We propose to utilize the
The AND and OR operators are, together with the logicalfollowing DS theoretic models for the logical AND and
negation, the basic operators in classical logic. Thisss al OR of the statements {8):
the case in uncertain logic, as any other operator can be M M
defined using combinations of these three basic operators. /\ wi(x): m() = ﬂ My, (+);
. . . . ? . Pi )
In order to ensure consistency with classical logic, uncer- =1 =1
tain logic operators should satisfy at least the following: M M c
(@) (p1(z) V pa(z)) and—(=yp1(z) A =p2(x)) must have and  \/@i(@): m()={(\ms.()| . (@0
identical DS theoretic models; (1 (z) A p2(z)) and im1 i=1
—(—1(z) V —p2(x)) have identical DS theoretic models;
(c) in the general case, the DS model for AND and OR where() denotes an appropriate fusion operator.
operathns ar_e distinct; (d) in the absence of uncert?"myi 3A similar model can be obtained for the case of AND/OR opera-
uncertain logic models converge to those of conventionakions of a set of expressionsp(z;)} with uncertainty[o;, 8;], ; €
logic; (e) in a probabilistic scenario (i.ey, = 3), uncer- {"Elljv\'/r% e (wn)} In thi(s)case{\r%;l w(:viz ):) m(-r)] =Nty me (),

; ; T o and\/7_; p(z;) : m() = 7, mS(-))°. This case represents
tain |Og|C models are also prObapIIIStIC’ (f) Uncertamﬂng_ AND/OleodeIs applied to the tru%hfuﬁ]ess of elemefits} satisfy-
AND and OR Operf'ﬂo.rs mUSt be idempotent, commutativeng a property,, whereas (10) analyzes the case:aatisfying multiple
associative, and distributive. properties{(; }.




Table 1: DCR-Based Logical AND and OR. Note that the DS mofitgl&ND and OR are identical, which suggests that
DCR is not an appropriate fusion operator for consisteritlogerations. Note that, in both cases, the masses should be
normalized byl — K, with K =1 -3, > m(A) = a1(1 = B2) + (1 — f1)az.

Focal Set v1(x) A pa(x) v1(x) V pa(x)

x ai1fB2 + (1 — ai)az aifls + (f1 — ar)o

z (1-=51)1—az)+ (B —a)(1—0B2) | (1=51)1—az)+ (B —a1)(l—B2)
O (p1-02)(2) (B —a1)(B2 — az) (b1 — 1) (B2 — a2)

4.3 DCR-Based Uncertain Logic
When the fusion operat@n in (10) is DCR, the AND op-

—Iféd1 +62 =0,i.e.,a1 = 51 andas = B2:
a—7(0) (1 +a2)

eration in this model is equivalent to the conjunctive rule v(x) = D) ;
of combination in [17]. In this subsection we go further . (1—a)—8(0)(2— a1 — a2)
and explore the viability of using DCR as the fusion oper- (@) = 2 ;

ator in uncertain logic.

Consider the two-source/two-propositiong{ M = 2)

~v(©) = arbitrary.

- . b. Logical OR:
case. Table 1 contains the DCR-based logical AND and
OR operations for this case. Notice that the mass assign- = If01 4+ 02 # 0
ments for the AND operation.€., gl(:c) A o)) are ex- _ 1 B2—ar—as)—a(2— b — Ba)
actly the same as the ones obtained for the OR operation V(z) = 5 2081 + 02) ;
(i.e, v1(x) V ¢1(x)). Having identical models for both _ =
AND and OR operators suggests that, although DCR may 7 (F) = (B +2B(26) Jf;‘;l + O‘2);
work as a fusion operator for certain operations, it does not _ e
render models that satisfy important properties for all the v(©) = 5 6 =
1+ 02

logical operations defined in this paper. More particularly
DCR-based uncertain logic does not satisfy the “unique-
ness of the model” property. As an alternative, we propose

—Ifé1 + 62 =0,i.e.,a1 = 51 andas = B2
a—7(0)( +a2)

using a more appropriate fusion strategy, such as the CFE, y(z) = 5 :
which is analyzed next. - (1—@) - 8(6) (2 a1 — az).
4.4 CFE-Based Uncertain Logic NE) = 2 '

Recall (from Section 2) that CFE-based fusion requires the 7(©) = arbitrary.

definition of coefficientsy;(-). For uncertain logic, we in- W

troduce the Logic Consistent (LC) strategy, which ensuresi h hef.\n”use_d foég‘: ANszeratqun,At‘hfe Lt(; st;ate_zgy([_rendirs
consistency with logical operations. € foflowing (see Appendix A for the derivation o

this BBA):
Definition 4 (Logic Consistent (LC) Strategy) For the
caseM = 2 in (10), let us defingx min(aq, az);

= v1(x) Apa(z): m(z

=q;

B = min(B1, f2); @ = max(ai,az); f = max(Bi, f2);
S=PF—o;b=PF—a;d=F—qandd =3 —a.
Then select the CFE parameters as follows:

71(2) = 72(2) =7(2); N(T) =12(@) =7@);
71(0) =12(0) =+(0),

where the CFE parametergz), v(Z), and~(O) are se-
lected in the following manner.

a. Logical AND:

—f 61+ 62 £0:

a(f1 + f2) — Bloa + a2)
(x) = 3001 T 03) ;
B2—a1—az) —a2—p1—f)

2(81 + 62) '

Y@ =5 -

N =

)

51+ 02

¥(©) =

g

)
m(T) =1-4; and

M(Oinps) @) =B —a.  (11)

When used for the OR operation, the LC strategy renders
the following BBA:

e1(z) V2(z) : m(z) =
m(T) =1-3; and
m(@(tpl Vsaz)(m)) = B —a. (12)

In general, the CFE-based models for the logical AND
and OR are notidentical (the exception would be a particu-
lar combination of uncertainty parametétis 3] rendering
identical models), as is the case when DCR is used. There-
fore, CFE-based fusion is better suited for uncertain logic
than DCR. Indeed, referring to the conditions at the begin-
ning of Section 4, the CFE-based operationscamsistent



Table 2: CFE-Based AND/OR Operations: Uncertainty wherez € O x = {z1,22,...,zx}. Let us define an ex-

parameters are defined so that they represent complete cetended logical FoDB x» = {¢(z1), p(x2), ..., o(zn)} X
tainty on the truth (or falseness) of each proposition. {1,0}. Then, we define the DS theoretic model for (14)
Parameters My Ao (1) || Moy vies (¢) as: N
a1, B1] | (o2, Bo] |2 |Z | © |z |T| O . 15
0.0 0.00 Jol1]oflol1]0 i:\/lw(m (15)
0,0 1,1 011]0)J1]0]0 over the FoDO x-, subject to the constraint:
[1,1] M1 [[1Jofof1]ofo0 N
m(1) =3 myei) =
Table 3: CFE-Based Logical AND/OR Operations: Prob- N o
abilistic Scenario[(y;, ;] = [a, as], i € {1,2)). m(0) = Zi:l my(T;) =1—0;
Logical AND Logical OR m(Ox) =f - a. (16)
m(z) =a m(z) =@ This model is an alternative to Skolemization [23]. This
m(T)=1—a m(T) =1—-a model, however, does not rule out the use of Skolemiza-
M(O (o rpa) () =0 | M(O4,ves) () =0 tion, as there might be scenarios where the latter technique

is a better alternative. Note that if the uncertainty of at
. . ] ) N least one of the propositions(z;) in (15) is [«, 5], and
with classical logic. Referring to the same conditions, (a) the uncertainty of every other proposition[is 0] (or, in
and (b) can be verified by checking Definition 3; (c) is ver- general[o;, 3;], with o; < «, 3; < B, andi # j), then
ified by (11) and (12) above; (d) is proved in Table 2; (€) the DS model corresponding to (15) is equivalent to the

is shown in Table 3; (f) is proved in Appendix B. DS model corresponding to (14) when the OR operations
are computed as indicated by Definitions 3 and 4. Also, al-
4.5 Other Uncertain Logic Operators though an infinite number of solutions satisfy (16), a use-

Based on the uncertain logic definitions and operators deful solution (e.g., for existential instantiation on inéeice
scribed above, it is possible to extend them and create newroblems) is given byn,(z;) = «; m,(7;) = 1 — 3; and

operators. As an example, consider implication rules. my({z;, 7)) = B —a,i = 1,2,...,N. This solution

Definition 5 (Logical Implication in Uncertain Logic) can be proven by successively applying the idempotency

Given two logic statements; (-) and @5 (-), an implica-  Property to the OR operator.

tion rule in propositional logic has the property: Definition 7 (Universal Quantifier in Uncertain Logic)
Consider the statement:

o1(x) = @a(y;) = ~p1(xi) V oa(y;) Va o(z), with uncertainty|a, 3], a7
== (p1(wi) A ~p2(yy)) wherexz € ©x = {x1,29,...,2zn5}. Then, we define the

DS theoretic model for (17) as:

wherez; € ©x andy; € ©y. Consider the case where

the antecedeng; (x;) and/or the consequept (y;) arefis N
uncertain. Furthermore, suppose that said uncertainty is /\ o(s), (18)
represented via the DS theoretic models (-) andmy (+) i=1
over the logical FoDgp(z;), o(77)} and{(y;), ¢(7;7)},  over the FoDOx: = {p(z1),p(z2),...,p(zn)} x
respectively. Then, the implication rulg (z;) = {1,0}, subject to the constraint:
©2(y;) is taken to have the following DS theoretic model: N
m(1) = my(ri) = o;
m‘PX"‘PY(') = (m§< \ mY)() N B
= (mx Am§ (), (13) m(0) =Y my(T)=1-p;
m(Ox:) = —a. (19)

over the Fo i), o(T7)} % i), 0(T;)}- , . -
e, ol@)} x Lo (i), ¢ @)} Note that if the uncertainty of every propositigsn(z;)

in (18) is[«, 8], then the DS model corresponding to (18)

5 Uncertain Logic Quantifiers is equivalent to the DS model corresponding to (17) when
We define existential and universal quantifiers in uncertainthe AND operations are computed as indicated by Def-
logic as follows. initions 3 and 4. Also, although an infinite number of

solutions satisfy (19), a useful solution (e.g., for univer
Definition 6 (Existential Quantifier in Uncertain Logic) sal instantiation on inference) is given by, (z;) = «;
Consider the statement: me(T;) = 1 — B, andm,({z;,%;}) = f— a,i =
1,2,...,N. This solution can be proven by applying
Jz p(z), with uncertaintyla, 3], (14) idempotency to the AND operator.



6 Inference in Uncertain Logic rules of inference are: AND elimination (AE), AND intro-

Inference in uncertain logic shares the fundamental prin-duction (Al), universal instantiation (Ul), and existeti

ciples of classical logic, and adds the possibility of ditac instan_tiation_ (EI). The definition of th_ese T”_"?S of infer-
ing, tracking, and propagating uncertainties that mayearis ence s strmghtforward ba_\sed on the" _def|n|t|on f(_)r con-
on premises and/or rules. Due to the extensive number Oyennonal logic, and is not included in this manuscript.
methods for logic inference, the scope of this section isExample. Consider the following problem, originally in-
limited to the introduction of some of the most fundamen- troduced in [22]. We know that horses are faster than dogs
tal inference rules, along with some basic examples thand that there is a greyhound that is faster than every rab-
illustrate uncertain logic inference. For an extended defi-Pit. We know that Harry is a horse and that Ralph is a
nition of these rules and their application for inference in '@PPit. We also know that greyhounds are dogs and that

the context of classical logic, we refer the reader to [22]. our speed relationship is transitive. Then:

Va Yy Horsgx) A Dog(y) = Fastefz, y) (21a)
Modus Ponens (MP). This rule states that, wheneverthe 3y, Greyhoundy) A (Vz Rabbi(z) = Fastefy,z)) (21b)
logic sentencep — ¢ andy have been established, v, Greyhoundy) = Dog(y) (21c)

then it is acceptable to infer the sententas well. MP
extends to uncertain logic as follows. Consider:

1 (), with uncertaintyf{a, 41];

w2 (y), with uncertaintyjas, 52]; and

o1(z) => a(y), with uncertaintyar, Bg]. (20)  Using these logic statements, it can be inferred that Harry
is faster than Ralph (i.e., Fastetarry, Ralph) [22].

Vx Vy Vz Fastefx,y) A Fastefy, z) = Fastefz,z) (21d)
HorseHarry) (21e)
Rabbi({Ralph). (21f)

Then, given the uncertain premises(z) = 2(y)

and 01, MP allows us to infer the uncertain expression Now, let us introduce uncertain |OgiC Operations by assum-
©2(y). Note that, if the uncertainty parametérs;, 3] ing that the logic premise (21a) is uncertain, with uncer-
are unknown, their value should be obtained by apply-tainty (a1, 31], and that there is no uncertainty in premises
ing the methodology introduced in Section 4 above. It (21b)-(21f). This represents some uncertainty in the sen-

can be shown that uncertain MP (as well as the infer-tence “horses are faster than dogs”, which may occur if
ence rules introduced this section) leadTtg, with o = we consider cases such as sick or old horses compared

[max(ag, 1 — Br), max(ag, 1 — Br)). to healthy dogs. The steps that are used for inferring
) i . i Faster(Harry, Ralph), as well as the uncertainty in each of

To better understand MP in uncertain logic, consider ane steps of this process are in Table 4. It is easy to verify

example wherey, = 31 = as = 2 = 1. By using  that ifa, = 3, = 1. The initial steps in the inference pro-

the model in Definition 5, we can obtainz = Sr = 1. cegs are simply the reproduction of (21a)-(21f) as premises
Furthermore, given the, (z) = ¢2(y) andei(z), 11 6. Steps 7 to 13 can be obtained from applying EI, Al
then we can infetp,(y) with uncertaintyles = 5] = | and MP rules to premises 2 to 6. In our initial exam-

[1,1]. This case represents a scenario with no uncertaintyp|e (only the first premise is uncertain), the uncertainty in

Now consider a scenario where there is uncertainty in thePremises 2 to 6 i, f;] = [1,1],i = 2,3, ..., 6. Uncer-

rule, in such a way thdtv, 8r] = [0.5,1.0], and assume  tainlogic operations become relevantin steps 14 to 19. For
that we have a model for the uncertaintyaf(z) suchthat ~ €xample, the uncertainty in premise 16 is obtained from
a1 = B = 1. Then, MP allows us to infep,(y), with solving the system of equations shown in the correspond-

the uncertaintya., 3] obtained from the equations; = ing row in Table 4. This system of equations is derived
max(1 — (1, 0) and fg = max(1 — oy, ;). Solving ~ from Definition 5. As a consequence, any change in the
these equations we obtain = 0.5 andg, = 1. uncertainty[as, 41] directly affectsaiq, 516]. Figure 1

) ) illustrates the result in a probabilistic scenario. Nottth
Modus Tolens (MT). This rule states that, if we knowthat ¢ 5 to be able to conclude “Faster( Harry, Ralph )" given
¢ = ¢, then we can infery if we believe thaty e initial uncertaintya, must be larger than;. Similar

is false. MT extends to uncertain logic as follows. As- reqyits can be further verified by modifying uncertainties
sume that the uncertainty on each of the expressions ing, ihe premises, whose values can be computed as indi-
volved in MP are defined by (20). Then, given the uncer- .5iad in Table 4.

tain premisesp; () = 2(y) and—p2, MT allows
us to infer the uncertain expressiom; (y). As with MP 7 Conclusions
above, if the uncertainty parametétis, 32] are unknown,
their value should be obtained by applying the methodol-
ogy introduced in Section 4.

We have introducetlncertain Logi¢ a DS theoretic ap-
proach for first order logic operations. Uncertain logic
provides support for handling variables and quantifiers,
Other rulesof inference. Uncertain logic can be extended in addition to fundamental logic operations (i.e, A, V).

by incorporating new rules of inference that already existThe framework introduced in this paper allows system-
in conventional logic inference. Some examples of newatic generation of mass assignments based on uncertain



Table 4: Steps followed for the inference of the sentenceRé&tarry, Ralph based on the premises defined in (21). The
uncertainty is obtained from applying uncertain logic diéfims and rules to the example described in Section 6.

Logic Formula [ Premises & Rule | Uncertainty

1  Vz Vy Horsqz) A Dog(y) = Faste(z, y) A a1, B1]

2 3y Greyhoundy) A (Vz Rabbi(z) = Faste(y, z)) A ez, B2] = [1,1]

3 Vy Greyhoundy) = Dog(y) A as, B3] = [1,1]

4 Vz Vy Vz Fastefz, y) A Faste(y, z) = Fastefz, z) A g, B4]

5 HorsgHarry) A as, Bs]

6 Rabbi{Ralph) A ag, Bs] = [1,1]

7 Greyhoun@Greg) A (Vz Rabbi(z) —> Faste(Greg z)) 2,El a7, B7] = [1,1]

8 GreyhoundGreg) 7, AE as, Bs] = [1,1]

9 Vz Rabbi(z) = Faste(Greg z) 7, AE g, Bo] = [1,1]

10 RabbifRalph) — Faste(Greg Ralph) 9, Ul @10, f10] = [1,1]

11  FastefGreg Ralph 10, 6, MP a1, f11] = [1,1]

12 Greyhoun@Greg) — Dog(Greg 3, Ul a2, B12] = [1,1]

13 Dog(Greg) 12,8, MP «13, ﬁlg] = [1, 1]

14  HorséHarry) A Dog(Greg — Faste(Harry, Greg) 1,Ul a4, f14] = [a1, B1]

15 Hors€Harry) A Dog(Greg) 5,13, Al ai1s, Bis] = [as, Bs)

16 FastefHarry, Greg) 14, 15, MP [ee16, B16] Obtained from solving
a14 = max(1l — Bis, a16)
B14 = max(l — a1s, B16)

17  FastefHarry, Greg A Faste(Greg Ralph) — Faste(Harry, Ralph) 4, Ul a7, B17] = (o4, B4]

18 FastefHarry, Greg) A Faste(Greg Ralph) 16, 11, Al lae1s, B1s] = [a16, Bi6]

19 FastefHarry, Ralph 17, 18, MP [ee19, B19] Obtained from solving
a17 = max(l — Bis, @19)
B17 = max(l — a1s, B19)

Uncertainty (a,, = B, ) when premises 1 and 4 are uncertain (probabilistic scenario)
1 T T T

Substituting the CFE coefficients for the AND operation, ras i
dicated by Definition 4, in (22):

m() = 2v(z) +29(0) (a1 + az).

e Whend; + 92 # 0:
05 TTL(:Z?)— Q(ﬂl +ﬂ2)—ﬁ(a1+a2) é(a1+a2)
B 61 + 92 01 + 02
= 55 (aBi +aBs — anf — asf + 8(on + az)).
Sinced = § — a:
m(z) = 55 (@b + af — a1 — a3

+a1f+ a2 — a1a — a2q)

= —5141“;2 (af1 + afls — a1 — a20x)

Figure 1: Uncertainty in Premise 19 of Table 4. = ﬁ(g(gg —az+ B —m)). (23)
Substitutingds = (1 — a1 andds = B2 — ae in (23):
first order logic formulas. Furthermore, by using appropri- m(z) = o
ate fusion operators, higher-level applications are jpessi e Whens, + 6, = 0, and makingy(©) = 0:

within this framework, such as inference and resolution

based on uncertain data models. m(z) = 2y(z) = &

The massn(T) is given by:
Acknowledgements m(T) =1 (@) +71(O)m1(T) + 712(T) + 72(0)ma(T). (24)
Substituting the CFE coefficients as indicated by Definitdon
This work is based on research supported by the US Ofin (24):

fice of Naval Research (ONR) via grants #N00014-10-1- m(Z) = 2v(Z) + 27(0)(2 — B1 — Ba).
0140. and #N00014-11-1-0493, and the US National Sci- _
ence Foundation (NSF) via grant #1038257. o Whend, + 62 # 0:
L 01+62—PB2—0a1—az)+a2- 01— F)
. m(@) = 51+ 02
Appendix A. BBA for LC CFE-based AND 52— By — o)
Based on the definition of the CFE fusion operator: _ 51i52 (61 4 62 — B(2 — a1 — az)

m(z) = 71(2) + 71(O)mi (@) +72(x) +72(O)ma(2). (22) +a2=F =52 +8(2 =i = ).



Sinced = 3 — a:

m(f) = 51+52 (51 +d2 — ﬂ( — Qa1 — 052)
+a2-p1—B2)+(B—a)(2—B1—B))

= 51+5 (01462 = B2 —a1—az =2+ b1 + ()
= 5755 (01 + 02 = B(Br — o + P2 — a2)).

Substitutingd; = 81 — a1 andde = B2 — aw in (24):
m(z) =1- 3.
e Whend; + §2 = 0, and makingy(©) = 0:
m(T) =29ZT)=1-a=1-4.

Finally, m(©) = 1 —m(x) — m(z) = 8 — a.
Appendix B. Properties of the LC CFE-based
Uncertain Logic operations

Consider logic expressions of the fogafx; ), with 1 < i < N.
Then, the following properties are satisfied:

1. Idempotency This property is defined by: ¢;(z) A
wi(x) = @i(z)Vei(x) = ¢i(z). Inthis case:
ma(z) = a = min(a;, @) = @
= max(a;, ;) =@ = mv(x
ma(T) =1—F=1—min(;, 8;)
=1-—max(B;,8;)=1- 3= mv(:c);
ma(@) =B —-a=0 —a

2. Commutativity This property refers to satisfying:: () A
p2(z) = p2(x) A pr(z),
and ¢1(z) V p2(x) = pa2(x) V @i1(z). Let us call
My, ne, (+) the BBA resulting fromyp;(z) A ¢;(x), i =
{1, 2}. Then, for the AND operation:

My ngo () = min(au, az2)

= min(az, a1) = Meyre; (T)
My Aps (T) = 1 — min(B1, B2)

=1—min(B2, B1) = Mpyne, (T)
My Ay (©) = min(B1, B2) — min(ai, az)

= min(f2, /1) — min(az, 1)

= Mpsne, (O).

A proof for commutativity for the logical OR operation is
obtained by following a similar procedure.

3. Associativity The associative property is defined by:

e1(x) A [p2(x) Aps(@) ] = [p1(x) Apa(x) ] A p3(x),
and i(z) V[ pa(z) Vpa(x) | = [ ¢i(a) V
p2(xz) ] V ps(x). Let us callps(-) the model gener-
ated byp2(x) A ¢3(x), andes(-) the model generated by
w1(z) A2 (). Also, let us caling, ny, (-) the BBA result-
ing fromp;(z) A p;(x), i ={1,...,5}. Our goal (for the

AND operation) is to show that the model fpg (-) A a4 (+)
is equivalent to the model fa@ps () A p3(-):
Moy Ay () = min(or, min(ag, az))
= min(min(a1, @2), ®3) = Mg aps (T)
My nps(T) = 1 — min(Br, min(B2, B3))
=1 — min(min(f, B2), 33)
= Mesnps (f)
My, /\904(9) = min(ﬂlv min(ﬂ% ﬂ‘i))
— min(ay, min(az, as))
= min(min(81, B2), B3)
— min(min(a1, a2), @3) = Mesres (O).

A proof for associativity for the logical OR operation is
obtained by following a similar procedure.

. Distributivity: Distributive ~ operations  satisfy:
o1(mi) A [ p2(s) Vops(ze) | = [ pr(@i) A
w2(x) ] V [p1(x:) Aps(z;) |, andpr(z:) V [ p2(x5) A
w3(z) | = [p1(zs) Vp2(z;) | A [@r(zs) V ps(z;) ).

Let us call ¢4(-) the model generated by
p1(z) A [p2(z) V ps(z)], and ps5(-) the model gen-
erated by{p1 (z) A @2(x)] V [p1(z) A @s3(zy]. Our goal is
to show that the model fap4(-) is equivalent to the model
for @5 (+). In general, these two models are:

My, () = min(aq, max(az, @3));
M, (T) = 1 — min(B1, max(B2, B3));
M, (0) = min(fr, max(Bz, fs));

— min(a1, max(az, a3)); and

My () = max(min(aa, a2), min(a1, as));
My (T) =1- max(min(ﬁly /82)7 min(ﬂlv ﬂ3))7
My (©) = max(min(S1, B2), min(B1, B3))

— max(min(a1, a2), min(ai, as)).

Now, consider the focal set. We have three cases (other
possible cases are equivalent to these three after applying
the commutativity rule): (ajuy < as < as; (b) a2z <

ai < as; and (€)az < as < ai. The mass associated to
the focal setr is:

() Mey (1’) = Q1 = Me; (:E),
(b) my,(z) = a1 = my;(z); and
(©) Mey (1’) = Q3 = Me; (:E),

i.e.,me, () = my,(x) in all the cases. For the focal set
T we also have three basic cases: fa)< (B2 < fs; (b)
B2 < (1 < fs;and (c)B2 < (3 < f1; which render:

(@) My, (T) =1 — B1 = my; (T);
(b) mAO4( ) =1—[1=me, (f)v and
(€) My, (T) =1 — B3 = my; (T);

Based on the cases above, it can be shown that also
My, (O) = mey (©), proving distributivity for the logical
AND operation. A proof for distributivity for the logical
OR operation is obtained by following a similar procedure.
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