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ABSTRACT

Zero resource spoken term discovery in continuous speech is the dis-
covery of repeated patterns in acoustic signals without any higher
level linguistic information. These patterns are then combined to de-
fine the compositional units of that speech. We describe and imple-
ment an algorithm that tags similar subsequences among sequences
of acoustic features. We then discuss the use of this algorithm as part
of a complete spoken term discovery system. Our implementation
leverages parallelization via modern GPUs, allowing many indepen-
dent comparisons to be executed concurrently. This parallelization
enables the described system to analyze large data sets in tractable
time frames. The accuracy and performance of our approach are
compared to existing approaches as well as human transcriptions on
two corpora of continuous natural speech. Our system improved on
published results for multiple metrics.

Index Terms: spoken term discovery, zero resource speech segmen-
tation, similarity measures, GPU computing

1. INTRODUCTION

Traditionally, the goal of speech recognition is to classify segments
of speech into preexisting categories (words, phrases, etc.). Thus,
traditional speech recognizers must be trained using a combination
of speech examples and the corresponding linguistic categories. In
contrast, in the zero resource setting, the raw speech training data is
not accompanied by any linguistic information. Thus, the linguistic
categories themselves must be estimated during training [1]. Meth-
ods for discovering linguistic categories are valuable both for their
potential application, and their theoretical insight. In extreme cases
such as aboriginal languages where there is a limited amount of tran-
scribed data for a language, spoken term discovery mechanisms can
even lay the foundation for the development of further speech pro-
cessing technologies [2, 3, 4]. Additionally, humans are faced with
the task of zero resource spoken term discovery in their infancy, and
insights about effective artificial methods may aid in the develop-
ment of models of human cognition [5].

The task of spoken term discovery in continuous speech is de-
scribed in [6], which proposed a method called segmental Dynamic
Time Warping (S-DTW). The high level structure of the S-DTW
approach has been retained by subsequent methods [7, 8, 9]. Re-
peated subsequences in the acoustic feature space are discovered in
pairs. Similar sets of these pairs are then grouped into larger clus-
ters. These clusters are used to define linguistic units and create a
transcription of the data from which they were derived.
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Discovering repeated patterns in continuous natural speech re-
quires the ability to recognize which parts of a pair of speech se-
quence are similiar and which are different. Segmental-Dynamic
Time Warping (S-DTW) [6] is used in many spoken term discovery
approaches because it can find alignments of common subsequences
in pairs of feature sequences [7, 8, 9]. The Acoustic DP-Ngram
algorithm (DP-Ngrams) is another method for finding common sub-
sequences [10]. Both are based on the dynamic programming al-
gorithm Dynamic Time Warping [11]. While S-DTW determines
predefined start and end points for comparison and then finds the
most similar areas along those predefined paths [6, 12], DP-Ngrams
calculates the similarity of all possible alignments and then deter-
mines alignment boundaries based on changes in similarity among
neighboring elements [10]. Previously DP-Ngrams has been used
to discover sub-word units, focusing on fine differences in data sets
that contain many examples of a small set of words [10, 13]. In our
approach it is modified to focus on coarser differences, discovering
word/phrase level units in data sets which have large numbers of cat-
egories with few members.

We present an extension of the DP-Ngrams designed for use in
place of S-DTW in zero resource spoken term discovery systems.
Additionally, we propose a novel implementation that improves per-
formance, enabling use in real-time settings. Naively finding all re-
peated subsequences in a stream of continuous speech requires com-
paring all subsequences to all subsequences, requiring O(N?) com-
parisons. This complexity becomes prohibitive as more and more
subsequences are detected. Our approach does not aim to reduce
this complexity, as was done in [7], but rather increases the effi-
ciency of comparisons by exploiting the inherent parallelism present
in the task. At high level, we leverage the assumption that no dis-
covered linguistic unit will contain silence of more than a certain
duration [6]. Because of this we can treat continuous speech as a
sequence of smaller segments, delimited by silence. Pairs of these
segments can be compared independently and thus in parallel. At
the implementation level, our approach parallelizes previously serial
calculations within DP-Ngrams. These uses of parallelism greatly
reduce the overall runtime compared to a serial approach, reducing
the quadratic runtime by a factor proportional to the number of GPU
threads. To avoid confounding the impact of our algorithm, we opted
not to implement the complexity reductions presented in [7]. The fo-
cus of this work is to evaluate the effectiveness of our extension of
DP-Ngrams in the zero resource spoken term discovery context.

2. METHODS

The proposed system segments raw input data multiple times, start-
ing with cheap heuristics and then increasing computational com-
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Fig. 1. A comparison of quality matrices for two feature sequecnes with raw and smoothed features. Higher quality values represent more

similar sequences. Discovered local alignment paths shown in black.

plexity. The first segmentation is done on the raw audio data, defin-
ing segment boundaries based on regions of silence. Next, we ex-
tract acoustic feature vectors from the audio stream, and then per-
form subsequence discovery on these acoustic feature vectors. Sets
of similar subsequence feature vectors are grouped together to form
clusters which represent discovered linguistic units. The boundaries
of these discovered units are combined with the boundaries from
the initial segmentation to form a complete transcription of the in-
put data. We next present an overview of the system and the most
important parameters.

2.1. Initial Segmentation

The goal of the initial segmentation is to cheaply split the raw data
into a set of smaller segments that can be used for parallelized com-
parisons. To ensure the independence of these parallel comparisons
the boundaries defined by this segmentation must not split any lin-
guistic units. We operate under the assumption that regions of si-
lence do not contain or span any linguistic units [6].

We use an amplitude envelope filter to cheaply detect regions of
silence in the raw PCM audio data. The signal is full wave rectified
and averaged using a sliding window function. If the running aver-
age drops below a threshold value for more than a specified duration,
a boundary is drawn. The next segment start boundary is created
when the average amplitude next crosses the threshold. To ensure
no data is unintentionally lost, the discovered segment start and end
are padded with a constant number of frames. This implementation
is simpler than the envelop filtering done in other approaches such
as [9], but at this stage we favor speed over precision. This segmen-
tation cheaply splits the raw data into smaller units for processing in
parallel and removes redundant computations that would result from
comparing two sequences of silence.

2.2. Feature Extraction

From the segments generated by the initial segmentation we extract
MFCCs with first and second differentials using the standard HTK
implementation [14]. After the features are extracted, the feature
vectors are smoothed using a sliding average with a window size
of 40 ms, where each feature represents 10 ms of the original sig-
nal. We found that this smoothing greatly increased accuracy of the
subsequence comparison phase of the segmentation. The effect of
minor dissimilarities between feature sequences is reduced, allow-

ing for more robust performance. A visualization of the effects of
this smoothing can be seen in Figure 1.

2.3. Subsequence Discovery

Common subsequences in pairs of feature sequences are discovered
using a modified version of the subsequence alignment mechanism
of DP-Ngrams which is defined in its entirety in [10]. This section
contains an overview of the algorithm with emphasis on our perfor-
mance modifications and our novel implementation.

The algorithm compares two feature vectors Uy, V,, by first cre-
ating a distance matrix, D, », composed of the cosine similarity be-
tween every pair of elements in U and V. Cosine similarity is used
to normalize the range of scores to [—1, 1].
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Using the values of D a quality matrix, Qm—1,n—1, is calcu-
lated. The elements of @ hold quality scores which represent the
similarity of two elements form U and V' weighted by the similarity
of their neighbors. The relation between ) and D is defined:

Qi-1,5-1+b- D
Qij—1+ (P Dij—1) - qij—1
Qi—1,5+ (p- Di1,5) - qi—1,5
0

Qi,j = (1)
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where b is a positive bonus weight and p is a negative penalty weight.
These weights constrain the amount which the alignment can be dis-
torted. Our system uses values of b = 1 and p = —.1 (note that
the penalty value is less than the value in [10], minimizing the effect
of the insertion or deletion of frames). This parametrization allows
alignments to account for more variation in the sequences of the data.

As @ is calculated a third matrix, the backtracking matrix
By—1,n—1, is also calculated. B; ; stores the case that had the max
value in the calculation of Q;,;.

Local alignments are discovered in a quality matrix if
max(Q) > gThreshold. Alignment discovery starts at max(Q)i,;
where max(Q); represents the endpoint of the common subse-
quence in U, and max(Q); represents its end point in V. Elements
are appended to the alignment by backtracking through @ using the
indexes stored in B until Q@p;,5; < minThresh (we use imple-
mentation minT hresh = 0.05 - max(Q) and gThreshold = 19).



When the minimum threshold has been reached the alignment
is stored. The elements in () that the alignment spanned are set to
low quality values so they are excluded from future searches. Thus,
when alignment spans [Qs,;, Qi+u,j+v] (Where u and v represent
the subsequence length in number of rows and number of columns,
respectively), all matrix entries in () within that region are set to —1.

The removal of these elements prevents the discovery of over-
lapping and sub-optimal alignments. Our implementation removes
more elements per alignment than the original [10] with the intent
of reducing the total number of computations and eliminating the
occurrence of redundant alignments. This change was motivated by
our more generous warping parameters and use of smoothed fea-
tures, which caused an increase in the number of redundant align-
ments. New alignments are sought while maz(Q) < ¢Threshold.
Alignments shorter than 300 ms are excluded from final results to
reduce the effects of feature averaging on short duration sounds.

2.4. Parallelization

The three matrices created in the subsequence discovery process
are composed of elements derived through many independent op-
erations. In the calculation of D the values of all of the elements can
be computed in parallel. In Q the calculation of an element Q); ; de-
pends on the values of three previously calculated elements (Q;—1,;
Qi,j—1 Qi—1,j—1), so as elements in Q are calculated subsequent
groups of elements can be calculated in parallel. A depiction of the
topography of this relationship is shown in Figure 2. An element in
B, B; ; depends on (Q; ; from the same comparison, so the calcula-
tion of B follows the same topography as Q.

Since the segments being compared are small because of the
initial segmentation, and we know that discovered units will span
more than one segment, we can efficiently fill GPU thread blocks,
limiting each sequence comparison to a single block. With blocks
performing roughly the same number of comparisons we minimize
situations where low percentages of GPU computation capacity are
being utilized. By containing the entirety of a given comparison
within a single block we minimize memory transfer.
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Fig. 2. Topography of Parallel Calculations: Elements in the same
group may be calculated in parallel, but element groups must be
calculated sequentially.

2.5. Clustering and Boundary Refinement

We consider groups pairs of subsequences with a common mem-
ber using the clustering algorithms described in [12, 6, 7]. In cases
where multiple discovered alignments in one cluster come from the
same region of the original data, their start and end indices are aver-

aged. Each alignment is only placed into a single cluster. If there is
a conflict the cluster with higher similarity is chosen.

Subsequence discovery and alignment clustering define the set
of linguistic units that are repeated in the data. The boundaries of the
units in this set are combined with the boundaries generated by the
initial segmentation. Removing their intersection leaves the set of
segments which represent sound that is not repeated elsewhere in the
data. Each of these previously uncategorized segments is assigned
to its own category in the final transcription.

3. EVALUATION

[15] defines a combination of evaluation metrics and data sets
geared toward the development of spoken term discovery systems.
The existence of these standardized metrics and data sets allows for
specific components of term discovery systems to be evaluated, and
provides reference points for their performance.

3.1. Data

[15] provides two corpora. One is in American English, a language
that has large amounts of transcribed data. The other is in the African
language Tsonga, for which there exists very little transcribed data.
The English corpus is composed of casual conversations selected
from [16]. There are 12 speakers (6 male, 6 female; 6 young, 6
old), for a total of 634 minutes of recordings. The Tsonga corpus
is composed of read speech from 24 (12 male, 12 female) speakers,
totaling 444 minutes, selected from [17].

3.2. Metrics

The toolkit described in [18] contains metrics for the evaluation of
various parts of term discovery systems. In general, discovered lin-
guistic unit boundaries are compared with a gold set of units gener-
ated by human transcription.

The toolkit uses the following metrics: Matching measures how
well the system can find similar sequences of speech across the
whole corpus. Normalized Edit Distance (NED) is a more gener-
alized measure of similarity, it equals O when all of the elements in
a sequence are the same, and 1 when they are completely different.
Coverage represents the percentage of the complete set of matching
pairs that is present in the discovered set. Grouping measures the ho-
mogeneity of the discovered clusters. Type also measures cluster ho-
mogeneity, but only includes clusters that are completely present in
the gold set. Token scores compare discovered segment boundaries
to gold set boundaries. Boundary measures the amount of discovered
gold unit boundaries. Each metric (excluding NED and Coverage) is
composed of three scores: Precision, Recall and F-Score.

Precision(discovered, gold) = | discovered O gold |

| discovered |
| discovered N gold |

| gold |
2 x discovered x gold

Recall(discovered, gold) =

F — Score(discovered, gold) = discovered + gold

3.3. Results

Table 2.5 contains the results of the toolkit evaluation described in 3
conducted on our system, baseline [15, 7], and reported scores [8, 9].
Topline scores from human transcribed data from [19] are included
as a reference for the best possible performance in a given category.



NED | Cov Matching Grouping Type Token Boundary
P R |F | P]R|F | P[RJ]F | PJ[RJF]|P][R]TF

English

T | 0.0 100 | 98.3 | 185 | 31.1 | 99.5 | 100 | 99.7 | 50.3 | 56.2 | 53.1 | 68.2 | 60.8 | 64.3 | 88.4 | 86.7 | 87.5

B | 219 | 163 | 394 | 1.6 31 | 214 | 846 | 333 | 6.2 1.9 29 5.5 0.4 08 | 44.1 | 47 8.6

R | 70.8 | 424 134 | 157 | 142 | 141 | 129 | 13.5 | 22.6 | 6.1 9.6 | 75.7 | 33.7 | 46.7

L | 612 | 802 | 6.5 3.5 4.6 3.1 9.2 4.6 2.4 3.5 28 | 354 | 385 | 369

O | 394 | 921 | 51.8 | 0.0 00 | 762 | 100 | 82.7 | 5.6 5.1 53 | 102 | 1.9 32 | 71.1 | 225 | 342
Tsonga

T | 0.0 100 | 100 | 6.8 | 12.7 | 100 | 100 | 100 | 15.1 | 18.1 | 16.5 | 34.1 | 49.7 | 404 | 66.6 | 919 | 77.2

B | 120 | 162 | 69.1 | 0.3 05 | 52.1 | 774 | 622 | 32 1.4 20 | 2.6 0.5 08 | 223 | 5.6 8.9

R | 63.1 | 94.7 10.7 | 3.3 5.0 2.2 6.2 33 23 3.4 27 | 292 | 394 | 335

L | 432 | 894 | 21.2 | 3.8 6.5 49 | 188 | 7.8 22 | 126 | 0.8 | 188 | 64.0 | 29.0

O | 396 | 955 | 357 | 0.0 0.0 | 19.1 | 100 | 31.7 | 1.6 22 1.9 1.5 0.5 0.8 | 499 | 27.6 | 355

Table 1. Selected results from spoken term discovery systems: topline (T) from human transcription, baseline (B) [15, 7], [8](L), [9](R), the

system described in this paper (O). Notable scores in bold.

To save space, only selected results are shown from [8, 9]. Specif-
ically, the oscillator configuration from [9], and the ConnComp-
FDPLS configuration from [8] were chosen because they contained
the most improvement on the baseline scores.

For the Grouping metric our system shows improvements for
both corpora. High recall scores here suggest that members of a
given cluster are only present in that cluster, while the precision
scores reflect how similar the clustered elements are. We also see
improved results in the Boundary category for the Tsonga corpus,
and relatively high results on the English corpus. Higher scores here
suggest that many of the unit boundaries discovered by the system
are also found in the human transcription.

More notable are the results from the matching related metrics
(NED, Coverage and Matching) and the relationship between them.
They highlight trade-offs between being able to discover a large
number of units with limited accuracy and a small number of units
very accurately. Our system produces the highest Coverage scores of
all reported systems, meaning it discovers the largest portion of the
set of repeated patterns. For both corpora our system has the second
highest NED. Our system has the highest Matching precision on the
English corpus, and second highest on the Tsonga corpus, with zero
Recall and F-Scores in both cases. These results suggest that the dis-
covered matches have high similarity, but do not directly correspond
to the gold transcription. The baseline scores which have lower NED
on both corpora and higher Matching precision on Tsonga, have
slightly higher Recall and F-Scores and much lower Coverage. The
other systems have lower Coverage and Matching scores, in addition
higher NED. In comparison to these other reported results our sys-
tem is able to discover large numbers of units while maintaining a
relatively high level of precision.

4. DISCUSSION

Our system achieved significant improvements in performance over
existing algorithms for several of the measures defined by the eval-
uation toolkit. However, as with all standardized corpus-based eval-
uations the risk of overfitting is ever-present. The algorithms dis-
cussed in this paper have a large number of user-defined parame-
ters that determine the type and quality of the results they produce.
The parameter values in our system were modified for performance
on this specific task. The most relevant of these parameters were:
feature smoothing window size, DP-Ngram quality threshold, and
DP-Ngram bonus and penalty weights. We determined the effects

of these parameters through the evaluation of a small number indi-
vidual DP-Ngram comparisons where the ground truth was known.
The results of our evaluation suggest that our parameter values are
robust and apply across discovery domains, as evidenced by simi-
lar performance for English and Tsonga, two languages with differ-
ent phonologies). Future work will extend the current evaluation to
include additional languages and investigate the effects of various
parameterizations on the overall characteristics of the results.

In terms of performance, our system took 346 minutes to gen-
erate the complete transcription of the English corpus which is ap-
proximately 634 minutes long and 67 minutes for 244 minutes of
Tsonga data. These runtimes were recorded on a computer using 16
GB RAM, Intel Core i7-3820 CPU with 8 cores at 3.60GHz, and
NVidia Titan X GPU with 3072 CUDA cores at 1.0GHz and 12 GB
VRAM. The parallelized version of our implementation produced a
3200x speedup over the serial CPU implementation.

Other studies have attempted to achieve speedups by improving
other aspects of the computation. [8] sought improvements through
graph clustering, and [9] through acoustic preprocessing before se-
quence comparison. [7] reduced the total number of sequence com-
parisons required during discovery. An ideal system would utilize
improvements in all of these areas. Notably, our approach is the first
to focus on improving the accuracy and speed of the comparisons
themselves. The effectiveness of the algorithms presented in this
paper hints at its potential in other settings where subsequence dis-
covery is required. Possible applications include key word spotting
and recognition of repeated out-of-vocabulary utterances.

5. CONCLUSION

We described an extension of DP-Ngrams using a novel implemen-
tation which allowed it to be applied to the new domain of zero re-
source spoken term discovery. It was thoroughly evaluated on two
spoken language corpora using a standardized set of predefined met-
rics. The proposed algorithm performed better on several metrics
than various state-of-the-art systems. The proposed algorithm and its
GPU implementation are important steps towards enabling real-time
term discovery which is important in many future agent-based ap-
plications (e.g., autonomous agents that have to learn new words on
the fly). Future work will attempt to further improve the efficiency
of the proposed algorithm (e.g., by including various approximation
methods) without sacrificing its high level of accuracy.
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