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Objectives

(1) Simulation results from ideal learners suggest that it is possible
to jointly acquire word order and meanings and that learning
is improved as each language capability bootstraps the other.

(2) A good theory of word learning needs to give clear
accounts for hypothesis generation as well as hypothesis

evaluation and the information used for these computations,
while staying tractable as input size grows. 

(3) We study the utility of joint acquisition of simple versions of
word order and word meaning in early stages of acquisition

in a memory-limited incremental model. We believe that
only memory-limited models qualify as scalable models which

remain tractable as the amount of data grows.
(4) We allow for the acquired word order information

to constrain the acquisition of word’ meanings and vice versa. 



Input Representation

scene:

Utterance: “Jack is biting the apple”

situation=<utterance,scene>

Utterance = WS= {jack, is, biting, the, apple}
Scene = ES ={SIT<JACK, CHAIR>,
                       SIT<SARAH,CHAIR>,
                       SIT<JACK>,
                       SIT<SARAH>,
                       BITE<JACK,APPLE>
                       PICK<SARAH,APPLE>}

IS = BITE<JACK,APPLE>



Word Order Representation

 � = {�arg1,�arg2,�pred}                                      
 �arg1 = P(.|arg1) = <πw1|arg1,πw2|arg1,πw3|arg1> 
 �arg2 = P(.|arg2) = <πw1|arg2,πw2|arg2,πw3|arg2>
 �pred = P(.|pred) = <πw1|pred,πw2|pred,πw3|pred>

English word order used for artificial data generation 
 �arg1 = <1,   0,   0>
 �arg2 = <0,   0,   1>
 �pred = <0,   1,   0>
                                                                                          

Syntactic positions = {w1,w2 ,w3}
 
Roles = {arg1, arg2, pard}
             {agent, patient, action}
                                



 Model Design and Generative Process

ES = {SIT<JACK, CHAIR>,
         SIT<SARAH,CHAIR>,
         SIT<JACK>,
         SIT<SARAH>,
         BITE<JACK,APPLE>
         PICK<SARAH,APPLE>
        }

IS = BITE<JACK,APPLE>

M-WO: The model with �

M-B: Baseline model without �
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Reversing the Generative Process: Bayesian 
Inference

Posterior ∝ Likelihood  ⨉
Prior 
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M-WO: The model with �

M-B: Baseline model without �
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Bayesian Inference in M-WO



Bayesian Inference in M-B



Incremental and Memory-Limited Learning 
Algorithm

Model’s memory:
The knowledge in its lexicon and current situation.



Incremental and Memory-Limited Learning 
Algorithm

Incremental Word Learning:
(1) It only sees one situation at a time (no iteration over data).
(2) the model can only use the knowledge in its memory for 
hypothesis generation and hypothesis evaluation.
(3) The model maintains a single global lexicon (hypothesis) 
across situations.
(4) The model makes local revisions to the global hypothesis by 
integrating the inferred mini-lexicon in the global hypothesis.
(5) Bayesian inference is only applied locally in the context of 
single situations based on context-appropriate word-referent 
pairs available in the memory (current lexicon and current 
situation)



Incremental Learning: Updating Lexicon

Inferring the MAP mini-lexicon in each situation:
(1) Generating mini-lexicon proposals (hypothesis generation) 
…......Stochastic Search Techniques
(2) Scoring (hypothesis evaluation)
......…Relative posterior probability

Merging the new mini-lexicon with the current lexicon:
(1) Applying mutual exclusivity constraints to produce a preference 

for one-to-one mappings in the output lexicon.



Incremental Learning: Updating Word order

 Using a symmetric Drichlet distribution prior with parameter α  



Update Algorithm



Results: Word Order Learning Curves
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Results: Word Order Learning Curves

Strong sparsity 
bias for word 

order 
distributions �i

Strong non-
sparsity bias for 

word order 
distributions �i
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Results: Word Learning Results
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Conclusion and Discussion

(1) We proposed a memory-limited incremental model of word
learning, in order to study the utility of joint acquisition of
information in realistic situations under which infant word

learning occurs.

(2) Please use the discussion section of the paper to add more 
elements here

(3) ...



Thank you!

Sepideh Sadeghi
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