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Abstract—Learning the meaning of words in noisy contexts
with multiple unknown words in an utterance and multiple un-
known objects in a scene is a typical part of language acquisition
for infants. However, incremental word learning in ambiguous
contexts is a challenging problem in artificial intelligence. While
past models of cross-situational word learning benefit from full
access to all learning situations and their statistical regularities
to arrive at the right hypothesis, it is cognitively implausible
for children to remember all word learning situations they
encounter. Hence, we present an incremental Bayesian model
of cross-situational word learning with limited access to past
situations and demonstrate its superior performance compared to
other baseline incremental models, especially under conditions of
sensory noise in the speech and visual modalities. Then we embed
our model in a cognitive robotic architecture and demonstrate
the first robotic model capable of incremental cross-situational
word learning.

I. INTRODUCTION

[1] suggested that the process of word learning is guided
by observing referents of words across different situations.
Many computational models of cross-situational word learn-
ing have shown that cross-situational learning is a powerful
and effective mechanism for learning the meaning of words.
The rule-based model of [2] and more recent probabilistic
models [3]–[7] all rely on the regularities of the co-occurrences
of words and meaning elements and successfully learn word
meanings from noisy and ambiguous data. The rule-based
nature of [2] limits its adaptability to new or natural data as
it is not possible to revise the meaning of a word once it is
considered learned, which prevents the model from handling
highly noisy or ambiguous data. [3] uses the original form
of the automatic translation learning algorithm of [8], which,
however, lacks cognitive plausibility as it is non-incremental
and learns through an intensive batch processing of a whole
training data. While these models successfully accounted for
many behavioral phenomena, the correlations between words
and objects is typically noisy as speakers often talk about a few
of objects present in the scene, or objects that are not visible
at the time of utterance. Therefore, word learning is frequently
intertwined with the problem of understanding referential
intentions of the speaker. [7] bootstrap the process of learning
word meanings with the model’s belief about the referential
intentions of the speaker, modeling the problem of word
learning as the joint acquisition of the speaker’s referential

intention and word meanings. They tested their model using
annotated corpus data and demonstrated that it has competitive
results in comparison with other models including the IBM
Machine Translation Model I [8], the statistical machine trans-
lation model [3], and cross-situational word learning using
co-occurrence frequency, conditional probability and point-
wise mutual information. However, it is impossible to use
their model in real-time learning systems, despite its functional
performance and its success in accounting for the behavioral
phenomena, because the model operates in “batch mode”,
ignoring the incremental nature of the input in real time
systems. This also makes the model less cognitively plausible.

In this paper we first present an incremental version of
the Bayesian cross-situational word learning model proposed
by [7] and compare its functional performance with other
incremental models under different noise conditions. We show
that our model demonstrates superior performance and ro-
bustness to noise. Then we integrate our incremental word
learning model in a cognitive robotic architecture (CRA) to
demonstrate that a robot can learn words incrementally and
adaptively from individual word learning situations. In each
word learning situation, the human interactor utters a sentence
in the presence of multiple objects (some of which may be
distracting objects) in the point of view of the robot. We
demonstrate how learning unfolds incrementally as the robots
receives more word learning situations and also study the
effect of noise in vision and speech recognition components
in DIARC [9] (our CRA) on the word learning results.

II. WORD LEANING MODEL

Our model reduces the problem of learning the meaning of
words into the problem of learning the referents of words as
oppose to learning a distributed semantic representation for
each word. Furthermore, the model is limited to learning the
referent of words with concrete object referents. The input
to the model are word learning situations each of which
consisting of a scene paired with an utterance, where the
scene description consists of a list of objects present in the
scene and the utterance corresponds to an un-ordered set of
words (ignoring syntax). Both scene and utterance may as
well be empty lists. The objects listed in the scene description
are not necessarily the ones talked about by the speaker and



the model relies on what it already knows about the words
and their object referents (lexicon which is a many to many
mappings between words and objects) to narrow down the
focus of attention and identify the referential intentions of the
speaker. We use the term referential intentions in the rest of
this paper to refer to the objects that are present in the scene
and the speaker is talking about them.

A. Model Design

The model assumes that the speaker uses the generative
story captured in Fig. 1 to produce the words of utterance in
each word learning situation. The learner has to reverse this
generative story to infer the lexicon used by the speaker. In
doing so, the model has to find the MAP (maximum a pos-
teriori) lexicon by marginalizing over all possible referential
intentions in each word learning situation. Fig. 1 represents the
word learning variables and their probabilistic dependencies.

Fig. 1. The graphical model describing the generation of words (Ws) from
the intention (Is) and lexicon (L), and the generation of the intention (Is)
from the objects present in the scene (Os), where s indexes the situation. The
plate indicates multiple copies of the model for different situations (utterance-
scene pairs). Image from [7].

In each situation, the model uniformly samples a subset
from the power-set of all the objects present in the situation
(Os) as the referential intention(s) of the speaker (Is). Then
for each object in Is, one word is generated using the existing
word-object mappings in lexicon L. Words generated in that
way are referential words, but the utterance can include non-
referential words (generated randomly) as well. Each word
in the utterance is assumed to be used referentially with
probability γ and non-referentially with probability 1−γ. The
non-referential use of words is quantified by PNR, which is
set to κ < 1 for words in the model lexicon (to penalize the
non-referential use of words in the lexicon), and is set to 1
for other words. The referential use of a word wi to refer
to a particular object oj is quantified by PR which is the
probability of wi-to-oj mapping as the outcome of a uniform
draw from all the existing mappings for oj in the lexicon. In
each situation the model infers a mini lexicon corresponding
to the entities (words and objects) in the current situation.
In doing so, the model finds the MAP lexicon according
to the Bayes equation and the probability distribution that
it defines over unobserved mini-lexica (L) and the relevant
corpus of situations including the current situation as well as
the extracted ones from the lexicon (which share some entity

with the current situation). The extracted situations are made
of the existing (in the lexicon) mappings for each word and
object in the current situation.

P (L|C) ∝ P (C|L)P (L) (1)

Given the probabilistic structure of the model and the fact
that speaker’s referential intentions are not observable, we
marginalize over all possible intentions in each situation and
rewrite the likelihood term P (C|L) as:

P (C|L) =
∏
s∈C

∑
Is⊆Os

P (Ws|Is, L)P (Is|Os) (2)

Assuming that P (Is|Os) ∝ 1 and that the words of the
utterance are generated independently, we can rewrite the term
P (Ws|Is, L) as:

P (Ws|Is, L) =
∏

w∈Ws

[ γ ·
∑
o∈Is

1

|Is|
PR(w|o, L)+

(1− γ)PNR(w|L)]
(3)

We employ the equations above to find the MAP mini-
lexicon in each situation to describe the relevant parts of word
learning situations including the current situation as well as the
relevant ones extracted from the lexicon. [7], on the other hand
uses the equations above to find the MAP lexicon to describe
all word learning situations in batch mode.

Another difference between our model and [7] is the func-
tion used to compute the prior probability of lexica. The goal
for the prior is to serve as a mutual exclusivity constraint;
however, the prior probability function used in [7] which takes
the prior probability of a lexicon to be exponential in its size,
generally favors small lexica over larger lexica even when
the mutual exclusivity constraint is not violated. In order to
make sure that we only discount lexica in which the mutual
exclusivity constraint is violated, we take the prior probability
of a lexicon to be exponential in the number of redundant links
for the words of lexicon.

B. Incremental Learning Algorithm

We believe that only models with limited memory and
computational resources qualify as scalable models which
remain tractable as the amount of data grows. Following
this assumption, we limit the model’s memory of past ob-
servations to the word-object mappings stored in the lexicon
and we define a set of constraints on incremental learning
as follows. First, Incremental learning sees each situation
only once (no iteration over data). Second, the model can
only use the knowledge in its current lexicon and current
observation for hypothesis generation and evaluation. Third,
The model can only maintain a single global hypothesis across
different situations motivated by recent findings in [10]. The
model can make local revisions to this global hypothesis
incrementally, as it receives more data. Our constraints on the
data used for hypothesis generation and hypothesis evaluation
may be too strict compared to the resources available to human



learners, but we believe that they are plausible approximation
to the actual constraints that robot learners are subject to.
Furthermore, in order to keep the Bayesian inference tractable,
Bayesian inference is only applied locally for inferring the
MAP mini-lexicon in each situation, where only context-
appropriate word-object mappings available in memory are
used for hypothesis generation and hypothesis evaluation.

Incremental learning has two components in our model:
(1) inferring the MAP mini-lexicon in each situation, (2)
merging the new mini-lexicon with the previous best lexicon
found and resolving the potential conflicts. The process of
inferring the MAP mini-lexicon, subsequently has two distinct
components: (1) generating lexicon proposals, and (2) scoring
the generated lexica. Scoring is performed by computing the
relative posterior probability of the lexicon proposals based on
Eq. 1. Generating lexicon proposals is guided by stochastic
search techniques. The stochastic search in [7] is performed
on all the possible links assuming full access to all word
learning situations as inputs are processed in batch mode. Our
stochastic search instead is performed only on the context-
appropriate word-object mappings available in the memory
(current lexicon and the current situation). Therefore our
stochastic search is focused on small and relevant (to current
situation) parts of the past observations. Focusing on smaller
domains is in line with the “less-is-more” hypothesis [11] and,
furthermore, more cognitively plausible.

Algorithm 1 Algorithm for updating the lexicon incrementally
in light of a new situation.

1: procedure UPDATE(prevLex, situation, globalStats)
2: words← unique(situation.words)
3: objects← unique(situation.objects)
4: entities← union(words, objects)
5: links← initLinks(words, objects)
6: extractedLinks← extractLinks(prevLex, entities)
7: links← union(links, extractedLinks)
8: proposals← initLex(nInit, links, globalStats)
9: bestProposal← bestScore(proposals, situation)

10: situations←
union(situation, extractSit(prevLex, entities))

11: PrevLexPart1← exclude(prevLex, entities)
12: newMiniLex← mutate(bestProposal, links,

globalStats, situations)
13: lexicon← add(PrevLexPart1, newMiniLex)
14: end procedure

Algorithm. 1 demonstrates the required steps for updating
the lexicon learned by the model incrementally in light of
new situations. initLinks initializes all possible word-object
mappings using its input words and objects. extractLinks
extracts the existing mappings of entities from the previous
lexicon. globalStats contains some useful statistical measures
such as point wise mutual information (PMI) of word-object
pairs. These statistical measures are extracted from all sit-
uations observed so far and are incrementally updated as
new situations are encountered. We use PMI of links as a

goodness heuristic for links, employed in initLex and mutate.
proposals is a list of nInit lexica, and each lexicon is a
list of unique word-object pairs. initLex generates nInit new
lexicon proposals in two steps: (1) sampling the length of the
lexicon (we use a uniform distribution overall possible length
values going from zero to the size of links), and (2) for each
proposal, sampling lexiconLen links from links according
to a distribution created by normalizing exponentiated links’
PMIs, where the exponent is the inverse of a temperature
parameter. The temperature parameter can be used to adjust the
stochasticity of the outcome of sampling, where higher temper-
ature values make the outcome of sampling more stochastic.
bestScore computes the posterior probability of its input lexica
(hypotheses) given its input situation as data. Then, it samples
one lexicon as the best one, according to a distribution created
by normalizing the exponentiated un-normalized posterior
probabilities for the input lexica, where the exponent is the
inverse of another temperature parameter. extractSit extracts
the existing mappings of items in entities stored in the previous
lexicon (prevLex) and for each extracted mapping it creates a
new situation with link.word as utterance and link.object as
the scene description. The union of the current situation and
the extracted situations are used as evidence when computing
the posterior probability of mini-lexicon proposals. exclude
removes all the existing mappings of items in entities from the
previous lexicon, (except for those qualifying as the highest
PMI mapping of a word available in memory), and stores
the result in PrevLexPart1. exclude performs a strict mutual
exclusivity constraint on the mappings suggested for each
item in different situations. “mutation” of a lexicon refers to
adding, deleting, or swapping a word-object pair to/from/in
the lexicon. In each mutation step, the model generates 3 new
mutated lexica from the base lexicon, using all three mutation
moves. It, then uses each of the new generated lexica as the
base lexicon for the next “mutation step”. Therefore in two
mutation steps we will have 32 lexica, which are the mutated
versions of the base lexicon. mutate takes bestProposal as the
base lexicon and applies the three mutation moves described
earlier on it recuresively for nStep. After nStep mutations are
completed, it evaluates the mutated lexica (3nStep lexica) as
well as the previous lexicon bestProposal using situations as
data and selects one lexicon as the best one, by sampling
a lexicon according to a distribution created by normalizing
the exponentiated un-normalized posterior probabilities for the
input lexica (the exponent is the inverse of the temperature
parameter). mutate repeats these steps for nIter number of
times and returns the result. Finally, add adds each word’s
mapping in newMiniLex to PrevLexPart1 unless there is an
alternative mapping for that word in PrevLexPart1 with twice
the PMI value of that mapping in newMiniLex.

C. Stochastic Search

The search for the best lexicon is partly guided by a
heuristic search (initLex employs PMI of the links as the
goodness heuristic), and partly by local optimization (mutating
the lexica to maximize the posterior probability in mutate).



This optimization is local since it only tries to maximize the
posterior probability given parts of all observations. The [7]
model differs from our incremental model in that it combines
heuristic based search with global optimization (maximizing
the posterior probability of lexicon given all data). Global
optimization is not a choice in the incremental model as
past data is no longer available. However, the knowledge in
model lexicon serves as model’s interpretation of the past
observations and the incremental model uses such knowledge
as a proxy to past observations, by means of extracting
situations from the previous best lexicon to evaluate the new
proposals and their mutations in light of a new observation.

Our search for the best lexicon is stochastic due to employ-
ing a stochastic accepting criterion (sampling) for selection
of the best lexicon proposal and links to be suggested to the
lexicon. This way of choosing links and lexicon proposals
introduces some stochasticity to the process, meaning that
the model would not always select the links with the highest
PMI value and lexica with the highest posterior probability
in a greedy manner. We use two temperature parameters, one
for lexicon acceptance and another one for link suggestion to
modulate the degree of “greediness” in our model. The inverse
of the temperature values is used as the exponent for the PMI
value and the posterior probabilities when sampling a link or
lexicon accordingly. Lower temperature values would magnify
the score differences of links/lexica and makes the model’s
choices more greedy. On the other hand, higher temperature
values smooths the score differences and makes the model
choices more stochastic.

Unfortunately, the posterior distribution over lexica is highly
irregular and finding the MAP lexicon requires smart ways
of exploring the posterior distribution over lexica. Initializing
new mini lexica in each situation, serves as global search
in the space to perform semi-smart and yet random restarts.
Mutations performed on the best of those mini-lexica serves
as local search in the space around the best random start.
Furthermore, our stochastic lexicon acceptance criterion along
with our random restarts serve to avoid getting stuck in local
maxima.

III. EVALUATION

We integrated our model as a new component in the
cognitive robotic architecture DIARC [9] to be able to perform
two evaluations: (1) a systematically varied noise evaluation,
and (2) an embodied human-robot interaction proof-of-concept
demonstration.

A. Sensory Noise Evaluation

To evaluate the model under various amounts of sensory
noise (i.e., visual object recognition and speech recognition),
we ran a simple DIARC setup consisting of three components:
(1) a simulated speech recognition component, (2) a simulated
visual object detection component, and (3) a word learning
component. During this evaluation, the ground truth of both
the speech recognition and visual detection components was
independently and systematically varied with pre-determined

amounts of noise, i.e., for each visual object detected or word
heard there was a n% chance that the word or object was
misclassified. We considered five noise levels: 0%, 5%, 10%,
15%, and 20%. Table I and Table II show our evaluation
data. We evaluate the word learning results by examining
the precision, recall and F-score of the lexicon found by the
model. To evaluate the incremental performance of the model,
we use average word acquisition score (P (object|word))
[6] over all the words in the gold-standard lexicon as the
performance measure. Fig. 2 demonstrates how incremental
learning unfolds over time using average word acquisition
score as the performance measure. As can be seen, average
word acquisition score improves upon receiving more data and
the learning curve converges to 1, slightly before receiving the
40th situation which indicates the stability of the word-object
mappings learned by the model.

Most cross-situational models assume that infants are capa-
ble of correct object categorization and utterance segmentation
prior to the word learning process, assuming that infants
are capable of ignoring the individual differences between
different instances of an object like DOG and regarding all
instances as a DOG object, which along with the observed
statistical regularities of the word dog and the object DOG,
across different situations, allows for cross-situational word
learning. This is yet another simplifying assumption as the
process of object categorization probably interleaves with the
word learning process. We examined the robustness of our
model to noise in vision and speech recognition by systemat-
ically adding noise to the inputs from these two components
and evaluating the mean F-score of the best lexicon found
by the model, averaged over 10 runs. Fig. 3(a) demonstrates
the behavior of our model under different noise conditions.
The noise percentage value specifies the probability by which
a word in the utterance or an object in the scene may be
recognized incorrectly. Incorrect recognition of a token (word
or object) in speech recognition and vision components refers
to returning a(n) known/unknown token other than the actual
one received by the sensory components.

For the sake of comparison, we implemented several incre-
mental models of cross-situational word learning (association
frequency (Eq. 4), conditional probability P (object|word),
conditional probability P (word|object)) mainly to provide a
baseline expectation for the results produced by an incremental
model. Our baseline incremental models are non-Bayesian
statistical models of cross-situational word learning which
similar to our model do not have full access to all data.

P (word, object) =
Count(word, object)∑

i

∑
j Count(wordi · objectj)

(4)

The best lexica found by the non-Bayesian models are a
collection of word-object pairs with the highest heuristic (i.e,
P (object|word)) score. We varied the number of links in-
cluded in the best lexicon found by these models and reported
the lexicon with the best F-score in zero noise condition. Note
that the F-score reported for the incremental model in zero
noise condition is not the best value, instead it is the average



Fig. 2. Average word acquisition score (over time) for all the referential
words in the dataset used for sensory noise evaluation (when noise=0). The
summary statistics of the lexicon found by the model is precision:0.846,
recall:1, F-score:0.916.

F-score value over 10 runs. For the experiments with non-
Bayesian models under noise, we fixed the length of their
lexicon at the length which gave the best F-score under no
noise condition. Then we ran each model under different noise
conditions for 10 times and used the averaged F-score values
to generate the heatmaps.

Fig. 3(a) demonstrates the behavior of our model under
noise. Fig. 3(b), Fig. 3(c), and Fig. 3(d) demonstrate the
behavior of non-Bayesian models under noise. As can be seen,
our model exhibits more robustness to noise compared to other
non-Bayesian models, as the range of the mean F-scores values
reported in Fig. 3(a) is smaller than that of other models.
Furthermore, the least mean F-score value reported for our
model (0.76) is much higher than that of other models (0.28,
0.55, 0.2) as can be seen in Fig. 3. Another drawback of the
non-Bayesian models is that the performance of these models
depend on the number of links allowed in their lexicon. In a
real time system, where the dataset is not known in advance
and is received incrementally over time, there is no way for
setting the lexicon length to its best value.

Our model is more sensitive to noise in utterance (from
speech recognition) compared to noise in object recognition
(from vision). This asymmetry is due to the fact that in each
situation, the model assumes that all referential intentions
are equally likely. Therefore, when marginalizing over all
referential intentions, the mis-recognition of an object can
be smoothed out by referential intentions which exclude the
mis-recognized object. On the other hand, the mis-recognition
of a referential word with a non-referential word cannot be
smoothed out as the probability by which a word can be
used referentially (γ) is not equal to the probability by which
it can be used non-referentially. We used γ = 0.7 in our
simulations. Similarly, the model which uses conditional prob-
ability P (object|word) as goodness heuristic for choosing
word-object mappings, is more sensitive to noise in utterance,
since utterance serves as independent variable in this model
and noise in that can severely affect the performance. The
model which uses conditional probability P (word|object)
as goodness heuristic for choosing word-object mappings, is
more sensitive to noise in object recognition since scene serves
as independent variable in this model.

B. Robot Proof-of-Concept Experiment

To demonstrate that our model is capable of learning
incrementally in real-world contexts, we embedded the model

TABLE I
THE MINIMUM, MEAN AND MAXIMUM NUMBER OF OBJECTS AND WORDS

IN EACH WORD LEARNING SITUATION FROM THE DATASET USED FOR
SENSORY NOISE EVALUATION. THE DATASET CONSISTS OF 99

SITUATIONS, WITH 33 UNIQUE SITUATIONS REPEATED THREE TIMES. THE
REPETITION OF WORD LEARNING SITUATIONS IS INTENTIONAL TO

EXAMINE AND DEMONSTRATE THE STABILITY OF THE MODEL AS IT
RECEIVES MORE INPUTS.

Min Mean Max
Number of Objects 2 2.45 4
Number of words 2 3.3 4

TABLE II
EXAMPLE DATAPOINTS FROM THE DATASET USED FOR SENSORY NOISE

EVALUATION. EACH ROW REPRESENTS A SINGLE WORD LEARNING
SITUATION. OBJECTS ARE ENCODED IN UPPER CASE LETTERS AND

WORDS IN LOWER CASE LETTERS.

Utterance Scene
bowl next to cup BOWL,CUP,KNIFE
bowl next to cup BOWL,CUP

look bowl BOWL,KNIFE

in a subset of the cognitive robotic DIARC architecture [9]
where we exchanged the simulated speech recognition and
visual object detection components used in the sensory noise
model evaluations with components capable of processing raw
speech [12] and point cloud data. Additionally, we integrated
a speech production component (allowing the robot to provide
verbal feedback) and robot manipulation component (allowing
the robot to point to target objects int the environment). Fig. 4
shows a high-level view of the DIARC configuration.

Our robot demo can be viewed by clicking on Fig. 5 or fol-
lowing the link in the figure caption. This demo illustrates how
incremental word learning unfolds over time. The robot starts
with an empty lexicon (no known word-object mappings).
The human interactor then starts to teach new words through
a series of word learning situations (utterance-scene pairs).
The interactions between the human and the robot fall into
two categories: (1) training and (2) testing. Any interaction
in which the sentence uttered by the human starts with a
word other than “point” is a training interaction (word learning
situation). The robot updates its lexicon each time it receives
a new word learning situation followed by uttering “OK”.
Any interaction in which the human interactor utters “point
to the X” is a testing interaction which is used to examine the
robot’s knowledge of words (e.g., the word X). If the robot
has at least one word-object mapping for the word X in its
lexicon, it uniformly draws one of those mappings and points
to the object in the drawn mapping while uttering “here it is”.
Otherwise, the robot responds “I don’t know what that is”.
The word learning situations used in our demo include single
word utterances (e.g., “knife”) as well as complete sentences
(e.g., “look at the knife”). The human interactor changes the
scene by configuring the objects on the table.

IV. DISCUSSION AND CONCLUSION

We presented an incremental and adaptive word learning
model integrated into our cognitive robotic DIARC archi-
tecture and demonstrated how the model on a robot can



Fig. 3. The heatmap of mean F-score values (averaged over 10 runs) for the lexica found by (a) our proposed incremental model, (b) the association frequency
model, (c) the conditional probability P (object|word) model, and (d) the conditional probability P (word|object) model, under different noise conditions.

ManipulationSpeech Prod

VisionSpeech Rec Word Learning

Environment

Environment

Fig. 4. High-level DIARC architecture for proof-of-concept demonstration.

Fig. 5. Link to the demo: http://tiny.cc/68x5jy.

learn new words incrementally from word learning situations
consisting of utterance-scene pairs. Our model departs from
[7] mainly in its specification of information selection for
hypothesis generation and hypothesis evaluation. The memory
of our model is limited to the word-object mappings stored in
the lexicon and the single situation is sees at each point in
time. Furthermore, to keep the Bayesian inference tractable,
our model is not fully Bayesian (only locally in the context
of a single situation, where only context-appropriate word-
object mappings available in memory are used for hypothe-
sis generation and hypothesis evaluation). We compared the
word learning results of our model with several non-Bayesian
statistical models as baseline incremental models and showed
that the model exhibits superior performance and robustness to
noise in comparison with the baseline incremental models. The
addition of noise in the utterance and scene descriptions injects
noise in the correlations between objects and words which
causes the baseline incremental models to fail. We believe that
our model exhibits more robustness to noise due to two factors.
First, it distinguishes between referential and non-referential
words which allows the model to filter out mis-recognized
words by excluding words from the lexicon that were used
without a consistent referent. Second, the model allows for
each and every object recognized by vision to be either present
or absent in the referential intentions of the speaker. This helps
to filter out the mis-recognized objects for which there is no

reference in the utterance.
In our robot experiment, we used a limited number of

objects (knife, cup, bowl) and words (look, at, the, cup,
bowl, knife), to keep the demo short while demonstrating how
incremental word learning unfolds over time. Further studies
where the human interactor chooses how to naturally teach the
words to the robot are required to examine the fitness of our
model for real-time human-robot interactions. Furthermore, we
plan to extend the current word learning model to learn action-
verbs in addition to the nouns with concrete object referents.
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