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Abstract

It has been suggested that early human word learning occurs
across learning situations and is bootstrapped by syntactic
regularities such as word order. Simulation results from ideal
learners and models assuming prior access to structured syn-
tactic and semantic representations suggest that it is possible
to jointly acquire word order and meanings and that learning
is improved as each language capability bootstraps the other.
We first present a probabilistic framework for early syntactic
bootstrapping in the absence of advanced structured represen-
tations, then we use our framework to study the utility of joint
acquisition of word order and word referent and its onset, in a
memory-limited incremental model. Comparing learning re-
sults in the presence and absence of joint acquisition of word
order in different ambiguous contexts, improvement in word
order results showed an immediate onset, starting in early tri-
als while being affected by context ambiguity. Improvement
in word learning results on the other hand, was hindered in
early trials where the acquired word order was imperfect,
while being facilitated by word order learning in future tri-
als as the acquired word order improved. Furthermore, our
results showed that joint acquisition of word order and word
referent facilitates one-shot learning of new words as well as
inferring intentions of the speaker in ambiguous contexts.

Introduction

A hallmark of human word learning is the integration
of cross-situational information even though this informa-
tion is not always reliable as inconsistencies in the word-
referent co-occurrence (e.g., when the referent is absent in a
scene or when distracting referents are present) inject noise
into cross-situational information. It has been suggested
that bootstrapping cross-situational word learning with the
learner’s belief about the referential intentions of the speaker
(Frank, Goodman, and Tenenbaum 2009) as well as boot-
strapping it with learner’s belief about the syntactic regu-
larities of language (Yu 2006; Maurits, Perfors, and Navarro
2009; Alishahi and Fazly 2010; Alishahi and Chrupata 2012;
Abend et al. 2017) allow for disambiguation and should
thus improve word learning. Maurits, Perfors, and Navarro
(2009) bootstrap word learning with the acquired knowledge
of word order in an ideal learner although their model cannot

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

handle variable-length utterances. Alishahi and Fazly (2010)
showed that knowledge of lexical categories improves word
learning results. Yu and colleagues went further and showed
that imperfect knowledge of syntactic regularities learned
in parallel with word meaning improves word learning re-
sults (Yu 2006; Alishahi and Chrupata 2012). Abend et al.
(2017) recently went even further and proposed a truly joint
learner in which the learned meanings are used to refine
the syntactic knowledge, an aspect missing in the previ-
ously proposed joint learners. However, all of these mod-
els studied the problem of joint acquisition in the context
of ideal learners, ignoring the possibility that the memory
and computational limitations of a learner (e.g., an embod-
ied robot) can turn the positive effect of joint acquisition
into a negative effect by injecting noise to it. Furthermore,
they usually assume prior access to syntactic concepts such
as “subjecthood”, lexical categories or more advanced syn-
tactic knowledge such as syntactic parses of the input sen-
tences. Abend et al. (2017) use pairs of utterance and ut-
terance semantic representation as input, and their semantic
representations mirror the syntactic parse representations of
the utterance using lambda calculus. For example, the se-
mantic representation of the sentence “you get a fly” would
be {Aev.v|get(prolyou, det|a(e, n|fly(e)), ev}.

This work explores the possibility of learning word order
before syntactic concepts such as subject, object, or lexical
categories or syntactic parse representations are available
to the learner. It also examines the utility of the acquired
word order in a joint learner where word order knowledge
constrains word learning (syntactic bootstrapping) and vice
versa. We propose that the transitional probabilities of the
thematic roles (in the order of their appearance in the utter-
ance) of the referential words (words with action or event
participant referents) are an invaluable source of informa-
tion for learning word order and that they can provide an
initial understanding of the notion of word order in early
stages of language acquisition in the absence of advanced
syntactic concepts or representations. We utilize an incre-
mental and memory-limited learning algorithm as opposed
to batch learning algorithms, as we are interested in online
learning in embodied agents with computational limitations.
Our model adds the notion of syntax to the word learn-
ing generative story in (Sadeghi, Scheutz, and Krause 2017;
Frank, Goodman, and Tenenbaum 2009) but departs from



previous attempts (Sadeghi and Scheutz 2017) in its design
(graphical model) and the information source used to learn
about word order, which collectively enable the model to not
only learn word order and word referent jointly, but to also
handle real-world variable-length utterances, an important
aspect missing in (Sadeghi and Scheutz 2017).

Model Overview

We assume that the learner is capable of object and action
categorization prior to word learning, but we do not assume
any prior syntactic knowledge. Our model seeks to identify
the referential words (words with action or object referents
in the scene), infer their correct referents and store the cor-
rect word-referent mappings in the lexicon, which is a many-
to-many mapping between words and referents. The input to
the model consists of word learning situations (or trials),
each of which is comprised of a scene description paired
with an utterance. The scene description consists of a list of
semantic predicates corresponding to the unique events hap-
pening in the scene and the utterance as an ordered set of
words. Scene and utterance may be empty lists. The events
listed in the scene description are not necessarily the ones
talked about by the speaker and the model relies on what it
already knows about the words and their referents from its
lexicon to identify the referential intentions of the speaker.
We use the term referential intention in this paper to refer to
the event that is listed in the scene description and that the
speaker is talking about.

Event Representation

A scene description consists of a list of semantic predicates
(or “event representations”). Each semantic predicate corre-
sponds to a unique event occurring in the scene and is repre-
sented as a list of event participant and thematic role pairs.
For example, the event of “mom gave Lily a doll” would
be represented as {(agent MOM) (action GIVE) (patientl
LILY) (patient2 DOLL)} where the action “GIVE” glues
several event participants to each other to provide a certain
degree of detail about who performed the action and how,
when, and where (see Table 3 for more examples).

Early Syntactic Bootstrapping

Here, we propose that identifying the referential words of
the utterance is an important step towards learning struc-
tural rules of language and syntactic bootstrapping. We use
the term “early syntactic bootstrapping” to refer to the kind
of syntactic bootstrapping that can occur in early stages of
acquisition when the concepts of NP, VP, adverbs, determin-
ers and other NP/VP modifiers are unknown to the learner.
Our account of early syntactic bootstrapping assumes that
the concepts of concrete objects and actions are available to
the learner and that the learner begins by learning the label of
objects (event participants) and actions (events). We propose
that tracking the relative order by which event participants
are referred to in sentences allows for learning the transi-
tional or bigram probabilities of the thematic roles, which, in
turn, provides an initial notion of word order. For example,
observing that the word referring to the action performer is

always or often the first referential word in the sentence and
that the action word is most likely to follow the action per-
former in the sentence and not vice versa, facilitates learning
the “SV” part of the prominent “SVO” English word order.
Seeking to learn the labels of the observed objects and ac-
tions allows the learner to filter out other words and notice
the relative order of referential words in the sentence. This
facilitates discovering that English sentences are most likely
to start with a referential word for “action performer”, which
is most likely to be followed by a referential word for “ac-
tion”, which in turn is most likely to be followed by a refer-
ential word for “patient”.

Word Order Representation

The notion of word order © consists of n multinomial prob-
ability distributions 6,.,;., corresponding to n thematic roles
role; known by the learner, where 6,.,;., refers to P(.|role;)
defined over all thematic roles. Therefore, 6;.,;., consists of
n bigram transitional probabilities 7(;oe; |role,) for each the-
matic role role;. The model starts with uniform probability
distributions over all thematic roles for each 6., .

The number and notion of the thematic roles known to
the learner probably should evolve as more situations and
events are encountered, but here we assume a fixed num-
ber of known roles during word learning. Note that this no-
tion of word order does not depend on any prior syntactic
knowledge such as concepts of subject, object, or verb. Also
note that word order acquisition in our model is built on two
assumptions. First, the learner assumes that all utterances
made by the speaker follow a consistent word order. Sec-
ond, the learner tracks the relative order of the referential
words and the thematic roles of their referents.

Models

Here, we present two word learning models. The first model
is M-WO which seeks to learn word order and word referent
jointly. M-WO allows for the acquired word order informa-
tion to constrain the acquisition of words meanings and vice
versa. M-B on the other hand, only seeks to learn the referent
of words and is used as the baseline model to examine the
utility of joint acquisition of word order and word referent.
Fig. 1 represents the design of the M-WO (with ©) and M-B
models (without ©), along with their word learning variables
and their probabilistic dependencies.

The learner assumes that in each situation, the speaker
uses the generative process illustrated in Fig. 1 to produce
an utterance (W) corresponding to the scene (£). The goal
of the learner is to reverse this generative process and in-
fer the lexicon (L) and the word order (©) used by the
speaker. v is a model parameter, capturing the probability
that any word in the utterance may have a referent in the
scene. Pr is the probability by which a particular word in
the utterance may be uniformly chosen from the lexicon to
refer to a particular referent in I;. The probability of non-
referential use of words (PyR), is set to x for words in the
model lexicon (to penalize the non-referential use of refer-
ential words), and is set to 1 for other words. We use two no-
tions of lexicon: (1) (full) lexicon (global hypothesis) and (2)
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Figure 1: Graphical model describing the generation of ut-
terance (W) and its referential words (W) given the inten-
tion (1), lexicon (L) and word order (0) in the context of
one situation (.5). Note that the plate notation signifies that
if multiple situations (C') were accessible in each trial (e.g.,
if the model could remember more than one situation at a
time), the same relations would hold for all S in C'. The in-
tention (1) is drawn uniformly from the events (£ present in
the scene in each situation (S). Wg is a subset of W which
includes only words that refer to an object or action in I.

mini-lexicon (local hypothesis). “Mini-lexicon” refers to the
context-appropriate portions of the full lexicon where con-
text refers to the current situation. The model infers a mini-
lexicon in each situation and the lexicon is built through the
incremental aggregation of the mini-lexica.

M-WO

In each situation the model infers the context-appropriate
part of the speaker’s lexicon (L) which has been used to gen-
erate the current utterance (1) in accordance with I and
O, where context refers to the current situation. In doing
so, the model tries to maximize the joint posterior proba-
bility of mini-lexica and word order hypotheses according
to the Bayes equation and the probability distribution that
the model defines over unobserved lexica (L), word order
(©), and the available context-appropriate evidence (C). In
this paper, C' only includes the current situation, but it can
incorporate multiple situations.

P(L,©|C) « P(C|L,0)P(L)P(O) %)

We assume that P(©) o 1 for different word orders, and
P(L) x eIl serving as a soft mutual exclusivity con-
straint to produce a preference for one-to-one mappings in
the mini-lexica inferred in each situation. Given the prob-
abilistic structure of the model and the fact that speakers’
referential intentions and referential words of the utterance
are not observable, we marginalize over all possible inten-
tions and possible set of referential words in each situation
and rewrite the likelihood term P(C|L, ©) as:

=11 > >

s€CI,CE, WrCW,

P(C|L,0) PWg|I;,Wg, L,©)-

P(I|Es)
2

Assuming that P(I;|Es) o« 1 and that the words of the
utterance are generated independently, we can rewrite the
term P(W,|Is, Wg, L, ©) as:

P(Ws|I;,Wg,L,0) = P(Wg|Is,L,©) - P(Wxg|L)
3)
where Wyg = {Ws — Wg}. P(Wg|I;, L,©) then com-
putes the probability of generating the referential words tak-
ing into account the relative order of their appearance in the

utterance, given I, L, ©.

= II ~ Z|I| r(w;jlei, L):

w;€Wg  xi€l, €]
P(wj_1|ref(w;) = x;, I, L, ©)

If w is the first referential word in the utterance (j = 0),
then:

P(U}j,ﬂ’f@f(wj) =wx;, Is, L, 9) = T(role(x;)|none) &)
Where T (,o1c(z;)none) Captures the probability of the first ref-
erential word in the utterance taking on the thematic role of

x;; otherwise:
P(wj_1|ref(w;) = x;,15,L,0) = Z
e, |f G

PR(wjfl |yk7 L)ﬂ—(role(fclﬂrole(yk))

P(Wnr|L), on the other hand, is the probability of gen-
erating the non-referential words of the utterance given the
lexicon L.

pwyrlL)= J[ «

wrEWNR

(WR|ISa L 6

—7v)Pnr(wi|L) )

M-B

The goal of the M-B model is to find the the MAP
(“maximum a posteriori”) lexicon according to P(L|C)
P(C|L)P(L), where the likelihood term P(C|L) can be
rewritten as:

plLy=1] Y. PWiL, Wg,L)P(L|E,) (8

s€eC I, CEg
and we can rewrite the term P(W;|Is, Wg, L) as:

P(W,|I,,Wg, L) = (Wles,L) P(WynrIL) 9
PWalL, D)= [ + > |”PR (w;|zi, L)-
U)GWR x; €l (10)

P(wj_1|ref(w;) = x;, I, L)
If wj; is the first referential word in the utterance (j = 0)
then:

P(wj_1|ref(w;) = x;,15,L) o< 1 (11)
Otherwise:
1
P(wj_1|ref(w;) = x;, I, L) Z A
yn€l, (12)

Pr(wj-1lyr, L)
P(Wxgr|L) is computed the same way as it is computed in
M-WO.



Incremental Word Learning

We use a variation of the incremental and memory-limited
learning algorithm proposed in (Sadeghi and Scheutz 2017)
which accounts for the real-world constraints faced by word
learners (e.g., infants or robots). This algorithm, to the best
of our knowledge, is the only one which satisfies the set
of constraints we define on realistic incremental learning.
These constraints include: (1) seeing each situation only
once with no iteration over data, (2) using only the ac-
quired knowledge and the current observation for hypoth-
esis generation and evaluation, and (3) maintaining a sin-
gle global hypothesis across different situations motivated
by recent findings in (Medina et al. 2011). Our constraints
exclude the use of many proposed incremental algorithms in
the literature (Liang, Jordan, and Klein 2009; Pearl, Gold-
water, and Steyvers 2010; Borschinger and Johnson 2011;
2012). In the rest of this section we first give a high-level
overview of the incremental learning algorithm, while high-
lighting the differences between our version and the origi-
nal version proposed in (Sadeghi and Scheutz 2017). We re-
fer the reader to (Sadeghi and Scheutz 2017) for the details
shared between the two algorithms.

Analogous to (Sadeghi and Scheutz 2017), our learning
algorithm is composed of two major components: (1) infer-
ring the MAP mini-lexicon in each situation, and (2) inte-
grating the new mini-lexicon in the previous lexicon, us-
ing conflict resolution on conflicting mappings. Inferring
the MAP mini-lexicon, subsequently has two components:
generating mini-lexicon proposals and scoring the generated
mini-lexica. Scoring is performed by computing the relative
posterior probability of the mini-lexicon proposals based on
the Bayes equations described earlier for M-WO and M-
B. Our learning algorithm allows for departing from ideal
learners due to its limited memory of past observations (lim-
ited access to evidence and co-occurrence statistics) as well
as its limited application of Bayesian inference for hypoth-
esis evaluation (scoring). Bayesian inference is only used
locally, for hypothesis evaluation in the context of single
situations. Prior to Bayesian inference, the model needs to
generate several mini-lexica (groups of word-referent map-
pings). The information used for mini-lexicon generation
in each situation, consists of the current situation and the
context-appropriate word-referent mappings in the memory
(i.e., word-referent pairs stored in the lexicon as opposed
to all word-referent pairs encountered so far). Generating
mini-lexicon proposals is guided by semi-stochastic search
techniques analogous to (Sadeghi and Scheutz 2017). The
evidence used for scoring (Bayesian inference) in each sit-
uation consists of only the current situation. Different mini-
lexica are generated during hypothesis generation and eval-
vated during hypothesis evaluation. Then, the mappings in
the best local hypothesis (mini-lexicon) are added to the
global hypothesis (lexicon), performing conflict resolution
using the uncertainty associated with conflicting mappings.
Specifically, the co-occurrence statistics are used as a mea-
sure of the model’s uncertainty in the correctness of conflict-
ing mappings. The model maintains only one global hypoth-
esis in all situations and it only makes local revisions to the
context appropriate parts of the global hypothesis in light of

the current evidence.

Our algorithm departs from the original version in: (1)
how it handles conflict resolution when integrating the
newly inferred mini-lexicon in the previous lexicon, and (2)
the evidence it uses for hypothesis testing in each situation.
Our model uses only the current situation as the evidence
for hypothesis testing in each situation. This is to avoid
the complications that arise from not knowing the roles ful-
filled by a particular referent in the lexicon. In (Sadeghi and
Scheutz 2017), during conflict resolution, alternative map-
pings compete with each other and only mappings with the
highest co-occurrence statistics are allowed to be included
in the lexicon. This strict mutual exclusivity constrain not
only inhibits learning of alternative word-referent mappings
(e.g., “dog”,“dogie”, and “puppy” all refer to the same con-
cept “DOG”), but also destabilizes the learning results. Our
model on the other hand, modulates their strict mutual ex-
clusivity constraint by allowing the addition of alternative
mappings for each object, if their co-occurrence statistics
fall within a certain range of the co-occurrence statistics of
the best existing mapping for that object in memory (lexicon
and the current situation).

Incremental Word Order Learning

Word order learning consists of updating 6,.,;., € © based
on the current best lexicon, and the current role bigram
counts after processing in each situation. We use a symmet-
ric Dirichlet distribution (with parameter J3) as the conjugate
prior for each multinomial distribution 0,.,;,. Large values
of 3 represent a strong prior bias toward nonsparsity and
small values represent a strong bias toward sparsity of 0,,,
(multinomial distributions). The value of each 7(,.o1e;|role;)
at initialization is 3/nf3), where n is the total number of
roles. As the model receives more input incrementally, it up-
dates each m(,olc; |role;) € ©:

Count(rolej|role;) + B3
(rolej|role:) > Count(roleg|role;) + nf

13)

Evaluation Data

We evaluate M-WO and M-B in different ambiguous
contexts using the datasets described in Table 1 (each
dataset consists of 500 trials). These datasets differ from
each other in the source and level of their ambiguity. D1 is
the least ambiguous, D2 is linguistically more ambiguous
than D1, and D3 is visually more ambiguous than DI.
D1 and D3 use similar utterances. D1 and D2 use similar
scenes. D2 utterances are generated by random addition of
two non-referential words (adjective or determiner) from
our data-generation lexicon to half of the D1 utterances.
D3 scenes include the events used in D1 scenes and an
additional event corresponding to an alternative description
of the same event for verbs that allow such possibility. This
type of ambiguity occurs when a particular scene can be
described using (1) both transitive and intransitive verbs
such as “drop” and “fall” in “dad dropped the box” and
“the box fell”, and (2) two different verbs describing the
event from the perspective of different event participants,



such as “give” and “take” in “dad gave mom the key” and
“mom took the key from dad”. This type of ambiguity
adds distracting events to the scene description that have
high degrees of semantic overlap with the target event and,
therefore, are harder to disambiguate compared to distract-
ing events that are added at random or from the nearby
utterances in the data (Fazly, Alishahi, and Stevenson 2010;
Abend et al. 2017). For instance, the above examples
for “take” and “give” share the same objects except that
the role of “mom” and “dad” are different in these two
sentences. We used a probabilistic generative process
to automatically create 500 utterances for D1, with 10
verbs={falls,drops,pushes,pulls,takes,gives,eats,feeds,
drinks,reads} and 20 objects. Our verbs were selected from
the 13 most frequent verbs in the Brown corpus (Brown
1973; Brown and Bellugi 1964) of the CHILDES database
(MacWhinney 2000) and some additional verbs which
allow for alternative event descriptions. For each verb in
our lexicon, we listed a set of possible frames and used a
uniform distribution over them for utterance generation.
Then we selected 20 objects from the Brown corpus which
were most likely to be used in our frames and added them
to our data-generation lexicon. Our data-generation lexicon
also includes five prepositions, ten adjectives and three
determiners. Overall, we used 48 frames (with SVO word
order), a subset of which is depicted in Table 2. After
generating the utterances of D1, D2, and D3, we manually
generated the corresponding event representations for each
utterance while adding distracting events to the scenes of
D3. In addition to the big datasets (D1, D2 and D3), we
use the following three small datasets to evaluate the utility
of joint acquisition of word order and word referent in
facilitating “one-shot” learning: dataset D4 with 10 trials,
new referential words in its utterances and new referents in
its scenes; dataset D5 with five trials, one new referential
word and one new non-referential word per utterance
and one new referent per scene; and dataset D6 with five
trials, one or two new referential words per utterance and
two or three events in each scene. We varied the source
of ambiguity in these datasets to assess the salience of
utility of joint acquisition in facilitating one-shot learning.
Example datapoints from D4, D5, and D6 are demonstrated
in Table 3.

Table 1: Sources of ambiguity in evaluation data.

Data|Distracting Events | Non-Ref Words|Prepositions

D1 [No No 5
D2 |No 1 per utterance
on average
1 for verbs in
b3 {drop,feed,take,give } No 5
Results

All results are averaged over five runs. The choice of best
parameter values to maximize the word learning results de-
pends on the input dataset. We ran M-B on D1, using differ-

Table 2: Example verb frames for “eat”. Except for termi-
nals, the rest of the variables are place-holders for a set of
other terminals, variables or a combination of both.

ID | Frame

1 |Modifier N-animate (terminal ’eat)

Modifier N-animate (terminal ’eat) Modifier N-edible

Modifier N-animate (terminal ’eat) Modifier N-edible
(terminal ’in) LOC

Table 3: Example datapoints from D4, D5, D6 (test datasets)
which correspondingly contain 10, 5, and 5 situations. These
datasets were generated manually using 2 or 3 thematic roles

LL T

including “ag”, “ac”, and “th” which correspondingly refer
to “agent”, “action”, and “theme”. Each scene is a list of
unique events and each unique event is a list of (role REF-

ERENT) pairs enclosed in {}.

DataUtterance [Scene
sister
D4 plays piano {(ag SISTER) (ac PLAY) (th PIANO)}
tall girl eats
chocolate

D5 {(ag GIRL) (ac EAT) (th CHOCOLATE)}

{(ag GIRL) (ac CHASE) (th CAT)}
{(ag GIRL) (ac RUN)}
{(ag CAT) (ac FLEE) (th GIRL)}

girl chases

D6 cat

ent parameter values to find a good set of parameters which
are used in all of our simulations with both M-B and M-WO:
v=0.9,a0a =10,k = 0.1,and 8 = 1 (used in M-WO only).

Word Order Learning Curves

Fig. 2 demonstrates the acquisition of word order in M-WO,
evaluated in different ambiguous contexts. We used the most

LLINNT

likely role fillers for “subject”, “object”, and “verb” which
correspond to “agent”, “theme”, and “action”, to select the
appropriate thematic role bigrams corresponding to syntac-
tic position bigrams (SV,SO,0S,0V,VO,VS). Then, for each
word order such as VSO, we used the product of the appro-
priate bigram probabilities (VS and SO) to report the proba-
bility of the word order. As can be seen in Fig. 2, word order
acquisition in M-WO significantly favors the correct word
order which was used to generate the data over all other pos-
sibilities. Word order acquisition in all ambiguous contexts
starts moving towards the correct word order pretty quickly,
while more ambiguous contexts (D2 and D3) seem to have
a slower improvement rate, as they hit a plateau around the
100th situation.

Word Learning Curves

To evaluate the incremental performance of the model, we
use mean word acquisition score P(object|word) (Alishahi
and Fazly 2010) over all the word-referent mappings in
the gold-standard lexicon used for data generation. Fig. 3
demonstrates the incremental improvement of mean acqui-
sition scores for all the words (nouns and verbs), verbs and
the score differences due to learning word order. As can be
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Figure 2: Word order learning results, running the model on different datasets.

seen, the mean acquisition score improves upon receiving
more data and all learning curves converge, which shows
the stability of the learning algorithm. The graphs of acqui-
sition score difference depict three different phases of the
effect of joint acquisition on word learning results. First, in
early trials where the context ambiguity is high as no word,
object, or action is known yet and the acquired word order is
still imperfect, acquisition score differences due to word or-
der learning are mostly negative, indicating a disadvantage
due to word order learning. This is intuitive as M-WO has
two sources of noise (context and word order), but M-B has
only one source of noise (context) in this phase. The second
phase, starts when a moderate amount of data is received
which facilitates improvement in both the acquired cross-
situational information (context) and the acquired word or-
der. In this phase, cross-situational information alone is not
yet sufficient to converge on the real world statistics and the
integration of the improved word order knowledge results
in better word learning results in M-WO compared to M-B.
The third phase takes places when cross-situational infor-
mation inherent in data alone is sufficient to converge on
real-world statistics; hence, there would be little or no score
difference due to integration of even more improved word
order knowledge. Furthermore, verb score differences seem
to be higher than word (inclusive of verbs) score differences.
It might be an artifact of having fewer verbs (10) compared
to other words (30) and the averaging effect.

One-Shot Learning

We first trained M-B and M-WO with D1 and then presented
these models with the test data in D4, D5 and D6. Fig. 4 in-
dicates better one-shot learning results for M-WO compared
to M-B across different ambiguous contexts. Note that the
reported acquisition scores in Fig. 4 are averaged over all
the words in the training and test data (as the meaning of
the shared words between training and test data are subject
to change during test), which is accountable for the small
score differences in one-shot learning.

Inferring Intention in Noisy Visual Contexts

Fig. 5a depicts two phases of the effect of joint acquisition
of word order on inferring intentions in ambiguous visual
contexts (D3). The first phase starts with better results from
M-B, which has only one source of noise (cross-situational
information) compared to M-WO with two sources of noise

(cross-situational information and word order knowledge).
This phase is followed by the second phase during which
both cross-situational information and the acquired word or-
der are improved as a result of which M-WO results can
catch up with M-B results or get even better. This phase can
be followed by another phase where there would be little or
no difference between the results of M-B and M-WO after
receiving sufficient data on the usage of the words in the
train data. Fig. 5b depicts the late effects of joint acquisition
of word order on inferring intentions in ambiguous visual
contexts (D6), after M-B and M-WO are first presented with
train data (D1). As can be seen, M-WO exhibits higher mean
accuracy in inferring the target intentions across D6 situa-
tions compared to M-B. This demonstrates the advantage of
learning word order in inferring the intentions of the speaker
in ambiguous contexts.

Discussion and Conclusion

We proposed a probabilistic framework in which the knowl-
edge of word order and word referent can be jointly learned
in the absence of any prior syntactic knowledge (e.g., “sub-
jecthood” or lexical categories). The main thesis of our
framework is that transitional probabilities of the thematic
roles associated with the words referring to event partici-
pants (concrete objects) and events (actions) can guide early
acquisition of the notion of word order before syntactic
concepts are available to the learner. Our model learns the
meaning of verbs (unlike (Frank, Goodman, and Tenenbaum
2009; Sadeghi, Scheutz, and Krause 2017)) in addition to
nouns and allows for the addition of synonyms. Naturalis-
tic corpus evaluations were impossible due to the limitations
of available corpus annotations (we need corpus annotations
in which each scene is coded as a list of actions/events).
Hence, we evaluated our model using synthetic data, vary-
ing the source and level of ambiguity in the data which
includes variable-length utterances consisting of function
words, prepositions, adjectives as well as nouns and action
verbs paired with ambiguous (distracting events in addition
to the target event) or unambiguous scenes. We used an in-
cremental and memory-limited learning algorithm which ac-
counts for real-world computational constraints and thus al-
lows for implementations in online learning settings (e.g.,
on a robot). Fig. 2 and Fig. 3 demonstrate the stability and
convergence of the learning algorithm in addition to the suc-
cessful acquisition of the target word order and word refer-
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Figure 5: Inferring the target event meant by the speaker.

ents. Our one-shot learning results in Fig. 4 demonstrate the
advantage of joint acquisition of word order for facilitating
one-shot learning (the difference between M-WO and M-B
scores). Note that we used three different test datasets and al-
though changing the dataset changed the magnitude of score
differences, the differences and the direction of differences
persisted which demonstrates the robustness of the reported
results. Similarly, Fig. 5 demonstrates the advantage of joint
acquisition of word order for inferring the intention of the
speaker in ambiguous contexts where the model allows for
identifying not only which action is being talked about by
the speaker, but also (1) identifying from the perspective of
which event participant the action is being described (e.g.,
“take” or “give”), and (2) how many event participants are
in focus (e.g., an intransitive verb “fall” and a transitive verb
“drop” differ in the number of arguments but can both be
used to describe the same event using sentences such as “the

box fell” or “dad dropped the box”).

Our results suggest that relying on cross-situational in-
formation alone for word learning can be problematic in
the presence of (1) inconsistent word-referent co-occurrence
(e.g., when the perceptual referents are absent in the scene
or when data contains alternative labels), and (2) ambiguity
in identifying the target event (as event boundaries are not
perfect and even if they were, still there are multiple ways
to describe the same event using different verbs and pro-
viding graded levels of details about the event). Therefore,
relying on cross-situational information alone would mean
dealing with lots of ambiguity on many dimensions. Learn-
ing another source of information about language such as
word order, despite adding an additional source of noise to
the process of word learning in the beginning, serves to dis-
ambiguate some of that ambiguity and speed up (one-shot
learning) word learning later on.

Our findings regarding the general utility of joint acqui-
sition of word order in improving word learning results is
aligned with previous computational results (Alishahi and
Fazly 2010; Abend et al. 2017). However, our results differ
from previous work in that they suggest that there is a time
lag for the emergence of the advantage of word order learn-
ing in improving word learning results, inferring intentions,
and facilitating one-shot learning, during which the acquired
word order knowledge is being improved.

In future work, our framework can be extended to accom-
modate learning the structural rules of NPs, by adding an-
other syntactic component such as © y p to capture the rela-
tive order of the type of modifiers used in NPs (e.g., to learn
that color modifiers cannot be followed by size modifiers
but the opposite is likely as in “the large red box”). In ad-
dition to that, computational experiments with different set
of thematic roles, varying the specificity versus generality
of the roles, can shed light on whether adult-like notions of
thematic roles are required for word order acquisition.
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