On Resolving Ambiguous Anaphoric Expressions in Imperative Discourse

Vasanth Sarathy & Matthias Scheutz

Human-Robot Interaction Laboratory
Tufts University
Medford, MA, USA

33rd AAAI Conference on Artificial Intelligence (2019)
Setting the Stage

“Pick up the paper. Give it to me.”

- Anaphors (e.g., pronouns) common in imperative discourse
- Goal: To resolve the real-world referent for “it” by selecting appropriate antecedent referring expression
Real-world is Complicated

Task-Oriented Dialogue Excerpt (Grosz 1978):

(1) E: First you have to remove the flywheel.
(2) A: How do I remove the flywheel?
(3) E: First, loosen the two allen head setscrews holding it to the shaft, then pull it off.
(4) A: OK.
(5) I can only find one screw. Where's the other one?
(6) E: On the hub of the flywheel.
(7) A: That's the one I found. Where's the other one?
(8) E: About ninety degrees around the hub from the first one.
(9) A: I don't understand. I can only find one. Oh wait, yes I think I was on the wrong wheel.

• Multiple choices
• Recency not enough
• Shifting salience
• Syntax unhelpful
• Semantically empty

Let’s Simplify: Enter Blocks World!

D1: “Pick up block1. Put it on block2. Pick up block3. Put it on block1.”

D2: “Pick up block1. Slide block3 under it. Put it down.”
Performance of State-of-the-Art Data-Driven Systems

- At best: distinction between choices statistically insignificant
- At worst: incorrect resolution
Key Contributions

• Characterize the general class of situated anaphora resolution problems

• Construct a proof-of-concept resolver using Answer Set Programming and Dempster-Shafer Theory

• Articulate domain-independent properties of the reasoners
Our Approach

- Imperative discourse consists of speech acts that require the listener to perform (or at least simulate) a sequence of actions.

- Anaphora resolution is the task of associating each action with parameters in a way that “makes sense”.

- “Makes sense” from the perspective of mutual knowledge: information that the speaker and listener both have (Clark and Marshall 2002).

 - Agent’s own capabilities
 - Expectations of its interactants
 - Normative expectations of the community

Reasoning Modes

• Goal: Select *object candidate* that when paired with the specified *action* makes the *most* sense:

• Three “starter” reasoning modes answering questions of:

 1. Plausibility: *Can* the agent perform the *action* on (or with) an *object* candidate?

 2. Speaker Intent: Is the speaker *intending* for the agent to perform the desired *action* on (or with) the *object* candidate?

 3. Normativity: *Should* the agent perform the *action* on (or with) the *object* candidate?
A Quick Note on Reasoning

• Ours is a form of commonsense reasoning

• Different from traditional AI notions of commonsense reasoning used in pronoun disambiguation problems

• Winograd Schemas: Commonsense reasoning about timeless facts (e.g., whether trees are larger than toothbrushes)

• Situated Anaphora Problems: Requires very specific and fluid situational information as well as implicit normative knowledge and social reasoning.
Microtheories

• Microtheories implemented as answer set programs contain relevant knowledge and reasoning capabilities.

 • Initially, a microtheory is incomplete and only contains rules about a domain that it handles (e.g., social norms).

 • Microtheories can then be filled in real-time when situational facts become available.

 • Once the microtheory is filled, a reasoner can iterate over different object candidates.

• Output from reasoners (uncertain evidence for various object candidates) are combined together.
Implementation Choices

• **Why Answer Set Programming:** non-monotonic reasoning, choice rules, negation-as-failure and classical negation, cardinality constraints, incremental logic programming, and declarative specification

• **Why Dempster-Shafer Theory:** extends Bayesian theory, useful for set-valued random variables, no assumptions of priors needed, fuse evidence from heterogeneous sources
Consultant Architecture
Resolving with Uncertainty

- Each ambiguous pronoun has a set of object candidates (e.g., \(O = \{\text{block1, block2, block3}\} \))
- Reasoners provide DS-theoretic masses over these objects.
 - In DS-theory, unlike Bayesian theory, the masses of each object in \(O \) need not sum to 1. The sum of the masses of the power set \(2^O \) must be 1.
- For each reasoner uncertainty (i.e., masses) comes from the proportion of stable models that reference the object candidate against all those that reference the action verb
Domain-Independent Aspects

- All micro theories have a common structure (Generate-Define-Test)
- For imperatives, the crucial relationship is between the *action verb* and the *object (or pronoun)*.
- Each reasoner is defined by the specific relation between the action verb, a, and object variable, O
 - Plausibility reasoner: $occ(a(O), t)$
 - Normativity reasoner: $has(a, \text{permissible}, O)$
 - Speaker Intent reasoner: $has(a, \text{speaker_intends}, O)$
- Generally, facts and definitions in the micro theories have general forms specified by $is(X, Y)$ and $has(X, Z, Y)$ syntax.
Proof-of-Concept

• Microtheories generalized over the following examples:

1. “Pick up the knife. Cut the tomato. Put it down.”

2. [washing dishes/cooking]
 “Pick up the knife. Cut the tomato. Pass it to me”

3. [bowl contains food]
 “Pick up the knife. Cut the tomato. Put it in the bowl”

See paper for ASP code and implementation details
Future Work

• Integration onto the NL pipeline of a robotic architecture, e.g., with Williams (2016)

 • Abstract object representation in an ASP program allows for multimodal information integration.

• Formalizing the syntax and semantics of a high-level microtheory language

• Exploring cases when additional reasoning modes are needed

• Integration with data-driven systems

• Learning Microtheories: Using data-driven approaches to learn the domain-independent rules in the micro theories

Takeaways

• Anaphora (and reference) resolution can require reasoning about situational and embodied knowledge

• We consider the case of disambiguating the pronoun “it” in imperative discourse

• Resolving “it” requires reasoning about the plausibility, normatively and speaker intent associated with the action verb and objects in the discourse context

• We propose a consultant framework and proof-of-concept system for reasoning under uncertainty about object candidates

• We have only scratched the surface and argue for potentially fruitful research direction with practically and theoretically significant implications
Acknowledgments

• ONR MURI for funding this work

• Chitta Baral for reading and providing feedback on early drafts

• My colleagues at the HRI lab at Tufts for letting me talk about this endlessly - yes, it’s just that exciting!
Thank you! Questions?

Mission transcript for NASA Gemini V (1965)

00 01 41 10 CC Gemini-5, this is Houston here. We still haven't received the Command Pilot blood pressure.

00 01 41 15 P He was having a little trouble getting it in. He's got it in now and he's pumping it up.

00 01 41 21 CC Okay, very good.