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Abstract

Classical approaches to studying insight problem-solving
typically use specialized problems (e.g., nine-dot problem,
compound-remote associates task) as stimuli together with
verbal reports from subjects during problem-solving to re-
veal their thought processes, possibly adding other task-related
metrics such as completion rate and physiological measures
like eye fixation and neural activity. This approach has led
to the claims that insight and creative thought require impasse
and mental restructuring. What is missing from this literature
is a cognitive process model of insight, and one reason for the
lack of such a model is the lack of a unified, scalable, and tun-
able experimental framework with which to study human cre-
ative problem-solving with higher fidelity. In this paper, we
introduce ESCAPE, an experimental paradigm using puzzle
video games as stimuli which allow for the collection of pro-
cess data that can serve as a basis for computational models.
We have specifically developed a set of puzzle games based
on this paradigm and conducted experiments that demonstrate
the utility of the approach by revealing a set of computational
principles that need to be accounted for by a theory of creative
problems and the computational models based on it.
Keywords: insight problem solving; discovery

Introduction and Motivation
An open problem in creative problem-solving research is
the understanding of the underlying cognitive processes and
building “process models” of various intelligence-related ca-
pabilities – process in the sense of Marr’s algorithmic level
(Marr, 1982). For instance, in insight problem solving1, we
know that humans can and do restructure their problem rep-
resentations to overcome constraints that may have been self-
imposed (Kounios & Beeman, 2014). This led to useful con-
ceptualizations of the process of insight from initial problem
representations to reaching an impasse and then to restruc-
turing the problem representations (MacGregor, Ormerod, &
Chronicle, 2001; Oellinger, Jones, & Knoblich, 2014; Lan-
gley & Jones, 1988; Hélie & Sun, 2010). However, despite
nearly a century of insight research (Maier, 1931), there has
been little to no illumination of the underlying processes and
computational aspects of how we restructure a problem rep-
resentation, or for that matter what cognitive processes are
involved in managing and overcoming an impasse. In other

1Insight Problem Solving is a distinct family of problem-solving
that overlaps with creativity. Here, we will use insight and cre-
ative problem-solving somewhat interchangeably, recognizing and
respecting that they are indeed different. We believe the contribu-
tions in this work will benefit both insight and creative problem-
solving researchers more generally.

Figure 1: Screenshot from the puzzle platformer “Braid”3.
We propose leveraging puzzle games like this as a basis
for understanding the cognitive processes underlying creative
problem-solving. Here, the user must restructure the notion
of time to discover and use game mechanics. To avoid prior
knowledge biases associated with visual cues in Braid, we
have developed our own abstract puzzle game.

words, we do not know how, algorithmically, we humans
solve insight problems, and when we do not solve them, what
our strategies and approaches entail – i.e., how we conceptu-
alize and approach a problem.

A process model is critical because it helps us develop
a deeper understanding of the computational properties of
problem-solving, which in turn will allow us to stimulate
this behavior in humans and also build smarter AI. Current
approaches to AI – particularly those involving large lan-
guage models – have shown tremendous promise in a num-
ber of applications and even displayed emergent reasoning
and problem-solving capabilities (Yao et al., 2023; Xie et al.,
2023; Besta et al., 2023; Tian et al., 2023; Naeini, Saqur,
Saeidi, Giorgi, & Taati, 2023). They are however incapable
of lifting inductive biases present in their training data, some-
thing which humans as well as non-human animals are read-
ily able to do. Changing our perspective, restructuring a
representation, lifting constraints that we thought were rel-
evant, etc., are all different capabilities required for creative
problem-solving that modern-day AI cannot do because of
the significant weight of pretraining (Steed, Panda, Kobren,
& Wick, 2022). While training with large amounts of data

3Courtesy: https://store.steampowered.com/app/26800/Braid/



endows LLMs with certain emergent capabilities, it also for-
tifies underlying biases. To get past these challenges, we will
need new computational models (potentially inspired by hu-
man problem-solving) to unlock these additional capabilities.
Current research in insight and creative problem solving is
limited in many different respects: specific, bespoke tasks
(Tulver, Kaup, Laukkonen, & Aru, 2023), limited scalability,
they track performance and not actions, to name a few. Thus,
understanding human problem solving requires a restructur-
ing of how we conduct creative/insight problem research it-
self. In this paper, we propose a new paradigm for conducting
human-subject research in creative problem-solving using an
Experimental Setup for Capturing Problem-solving Experi-
ence (ESCAPE).

ESCAPE uses a sequence of puzzle video games4 as task
stimuli of the sort shown in Figure 2. We propose that these
computerized puzzles limit (and standardize) the space of hu-
man actions, thereby enabling scaling and comparison across
a broad range of populations, allowing researchers to equalize
across the subject pool. They enable precise temporal map-
ping of actions, their preconditions and effects, world states
and goals – all aspects of the problem representation. They al-
low researchers to calibrate across different subject expertise
by systematically escalating the difficulty of puzzles, thereby
enabling finding the sweet spot of puzzle difficulty. This al-
lows the researcher to move past the prior knowledge of in-
dividual subjects and ensure that the experiment is at the ap-
propriate level of difficulty for the subject.

In the rest of the paper, we will provide an overview of
the framework, with a specific set of puzzle video games we
designed together with some preliminary results showing the
promise offered by the ESCAPE paradigm.

Background and Related Work
The phenomena of insight is often associated with the “Aha!”
experience and represents a clear and somewhat sudden un-
derstanding of how to solve the problem (Kounios & Beeman,
2014). The emergence of insight has been associated with not
only creative processes (e.g., incubation) but also the process
of restructuring or representational change (Ohlsson, 1984,
1992), where an initial problem representation will need to
be revisited and transformed to arrive at a solution.

Insight problem solving has been traditionally studied with
specific, bespoke tasks called insight problems which are de-
signed to trigger insight. A few examples of these problems
include the 9-dot problem, 8-coin problem, matchstick prob-
lems and more recently compound remote associates (CRA)
task (Tulver et al., 2023; Danek, Wiley, & Öllinger, 2016;
Oellinger, Fedor, Brodt, & Szathmary, 2017). Typically a
combination of verbal protocol and post-problem question-
naires are used to assess whether or not the subject solved
the problem with insight. Task completion rates are often
used to calibrate and measure difficulty. Despite the success

4Readers are encouraged to try solving the puzzles here:
http://tinyurl.com/insight-puzzles. We do not capture any data.

of this paradigm, it has several limitations: several tasks are
more conceptual and do not allow for timed capture of be-
haviors leading to insight. Moreover, while all these tasks
elicit insight, they are not functionally the same, and as such
making it more difficult to glean insights about how we can
capture the computational essence of the particular processes
of restructuring and post-impasse behavior. There is also no
clear way of scaling the generation of puzzles so that new
variations can be systematically tested. There is no notion
of complexity levels associated with these puzzles and so re-
searchers are unable to calibrate puzzles for different individ-
uals who come in with different expertise and prior knowl-
edge and bias. Finally, besides the CRA task (limited to word
problems), other classical insight tasks are not readily useable
within experimental paradigms such as fMRI.

Video games have been used in cognitive science for sev-
eral decades including crucial contributions in the 1990s with
the use of Space Fortress Game (Donchin, 1995) to present-
day use in studying the impact of prior knowledge biases
in human problem solving (Dubey, Agrawal, Pathak, Grif-
fiths, & Efros, 2018). Much of the cognitive science use
of video games has focused on the transfer of training from
video games to other aspects of cognition or perception, us-
ing video games as interventions to improve problem-solving,
measuring the role of game expertise, using games to mea-
sure other aspects of intelligence, and of course studying the
impact of video-game playing on cognitive function (Boot,
2015; Kachergis & Austerweil, 2023; Zhang, Shen, Luo, Su,
& Wang, 2009). We have yet to find a substantial body of
work on using video games as core stimulus in human sub-
ject experiments to understand aspects of problem-solving.
We have yet to find any work on using puzzle video games,
specifically, to elicit insight or study creative behavior, and
comparing against machine models.

Historically, AI research has used video games as a stan-
dard by which to measure progress in the field. Video games
serve as a useful testbed to develop AI algorithms because the
domain is limited making it easy to focus on specific aspects
of the intelligence capabilities needed in a game, and there
are human experts against which these algorithms can be pit-
ted to measure success. There has also been recent work in
developing environments for evaluating AI (particularly RL)
algorithms in puzzle games (Renz, 2015; Bamford, 2021).
However, using these puzzle video game environments for
studying human creative problem-solving behavior has not
been studied.

ESCAPE Framework
To facilitate discussion around our proposed framework, we
will ground our discussion around a specific game: a 2D ver-
sion of an escape-room puzzle that we created.

Puzzle Types
Figure 2 shows a set of 12 puzzles we use in our experiments
as an illustration of the ESCAPE paradigm. These puzzles



Figure 2: Twelve puzzle levels (left-to-right, top-to-bottom) of escalating difficulty together with an interpretation of the objects
and their affordances that we, the developers, used when designing the levels. For each level we show the number of steps for
the shortest plan (| π |). However, because the walls (brown squares) are a false constraint, until level 11, the solver can simply
walk directly to the goal through the walls in about 14-16 steps. The numbers for | π | shown in levels 1-9 are for solvers
assuming the wall is real and therefore must make the required discoveries.

fall into six broad classes of puzzles, that capture the different
aspects of the above-mentioned dimensions:

T1. Simple: The puzzles immediately induces the correct so-
lution plan (E.g., Puzzles 1 and 2).

T2. Tedious: These puzzles typically do not readily evoke
a solution plan. They consist of a large search space and
require the solver to search the space of solutions, often
backtracking (E.g., Puzzles 4, 8, 9, 13B). The classic push-
box game, Sokoban, is another example of such puzzles.

T3. Insight: These puzzles induce a wrong initial prob-
lem representation (and undue self-imposed constraints),
making the solution seem impossible at first. But once
a correct representation is identified, the puzzle is imme-
diately deemed solvable, at least at a high level, with a
simple or tedious solution plan needing to be worked out.
These puzzles require restructuring the mental representa-
tion of the problem (E.g., Puzzle 10 requires the wall to
be (re)conceptualized as passable). Publicly available puz-
zle video games like Braid, Talos Principle, and Witness
feature such insight puzzles.

T4. Discovery: These puzzles go beyond insight puzzles
and require discovering something new about the world,
which means the solver must explore their environment and
find a hidden mechanic – a (novel) object, property, rela-
tion, affordance, or action effect (E.g., Puzzles 3, 5, 8 and
9). Video games like Braid, Infinifactory and Minecraft
incorporate aspects of discovery.

T5. Higher-Order Insights and Discoveries: These puz-
zles combine elements of discovery, insight, and tedium,
and often require the solver to compose together prior in-

sights and discoveries (E.g., Puzzles 9, 11, 12).
T6. Unsolvable: These puzzles are designed so they cannot

be solved. There are several reasons why we might need
to study them: (1) it is not always practical (and typically
undecidable) to know if a particular problem is unsolvable
(Sarathy & Scheutz, 2018), (2) insight and discovery prob-
lems are often deemed solvable initially, followed by an
impasse when they appear unsolvable, and when a solution
is found, they appear trivial in hindsight (Sarathy, 2018).
Without understanding this perception of (un)solvability,
we cannot understand the cognitive processes underlying
mechanisms like constraint formation, impasse detection,
and restructuring (E.g., Puzzle 13B).

Dimensions of Problem-Solving Complexity
What makes a puzzle similar or different from another puz-
zle? What makes a puzzle difficult for a person? Here, we be-
gin conceptualizing a set of dimensions or features that cap-
ture some crucial aspects of what makes certain puzzles more
difficult than others. Generally speaking, puzzles or puzzle
sequences that induce more constraints or require more re-
structuring are more difficult. As we designed these puzzles,
we have begun developing a list of dimensions or potential
metrics to analyze a puzzle’s complexity.

D1. Number of steps in optimal or near-optimal solution:
If the subject5 were told the exact procedure to solve the
problem, how many actions would they need to perform.
This serves as a lower bound but glosses over important

5We use the term “subject” to broadly capture AI, human, and
non-human animal problem-solvers.



questions of how the subject can arrive at the plan, how
easy it is for the subject to execute the plan, and the like.

D2. Number of first-order discoveries that will need to be
made through direct interaction with the environment. Not
all objects or environmental states are perceivable by the
subject initially. The subject might need to perform a spe-
cific series of actions to uncover a required object, prop-
erty, or affordance. The subject might need to use one ob-
ject in conjunction with another to acquire a new ability.

D3. Number of higher-order discoveries that build on prior
discoveries and their distance from perceivable aspects of
the environment.

D4. Likelihood of prior knowledge constraining prob-
lem representation. Certain problem elements and objects
might come burdened with semantic significance, their vi-
sual appearance may trigger certain associations that in-
duce problematic problem representations.

D5. Size and fidelity of the action repertoire available to
the subject. A large number of action possibilities will de-
crease the likelihood of finding the “right action”.

D6. Number of solution paths. Similar to the above dimen-
sion, this too relates to how difficult it will be for the sub-
ject to find the correct solution.

D7. Number of new objects that need to be constructed
from available resources, and the number of such objects
that, in theory, can be constructed.

The ESCAPE framework together with the set of puzzles
allows us to explore human performance on different puzzle
types and begin to unpack how our cognitive processes are
influenced by the puzzle dimensions.

Empirical Case Studies
We presented 13 puzzles (12 from Figure 2 and 1 from Figure
3) to 50 subjects in an online study run via Amazon MTurk.
The puzzles were designed by us using Puzzlescript, an on-
line puzzle-making tool6. Of the 50 subjects 28 identified
as male, 21 as female and 1 as other. There were 42 Cau-
casian/White, 4 Black or African American and 4 Asian sub-
jects. 49 subjects identified as not having any colorblindness
and 1 subject was with deuteranomaly. The average age of
subjects was 36.8 (std dev. 12.3), ranging from 21-74 years.

Method and Data
Following an introduction and consent page, each subject was
presented with a series of 13 puzzles, one at a time.7 Every
puzzle had an instruction “go to the green square” along with
a description of available actions: arrow keys (up, down, left,
right), “Z” to undo the last move (with unlimited undo’s), and
“R” key for resetting the puzzle to the start state. Each sub-
ject was allowed five minutes to complete the task. They were
also shown a countdown timer. If they either completed the
task (i.e., reached the green square with their white square)

6https://www.puzzlescript.net/
7Participants were not explicitly told that there would be unsolv-

able puzzles. But that puzzles will vary in difficulty.

Figure 3: Thirteenth puzzle for each of the two conditions.

or were timed out, they would be shown the next puzzle and
the timer would restart. After twelve puzzles, the subjects
were divided into two conditions A and B. In condition A,
they were given a difficult but solvable puzzle and in condi-
tion B, they were given an impossible puzzle – one that is
by design unsolvable, even if it might not seem that way at
first. After attempting each of the 13 puzzles, the subjects
were given a questionnaire asking about how they felt while
solving the puzzles, how difficult certain puzzles were, and
whether they could solve additional puzzles. In this paper,
we will not be able to discuss all aspects of the experiment
or its results. Instead, we will focus on a few interesting phe-
nomena to highlight the potential value of the proposed ex-
perimental paradigm. We have made all the (anonymized)
data publicly available together with the code to facilitate re-
producibility and transparency.8

Results (Summary Statistics)

As seen in Table 1, the completion rate for the puzzles drops
significantly for levels 10, 11, and 12. Up until puzzle level 9,
very few discoveries are combined and even those made are
not required. Interestingly, for these levels, there are signifi-
cantly more “undos” or physical backtracking by the subjects.
We also observe large increases in elapsed time in solving
these more difficult puzzles. Finally, it is worth noting that
the idle time is also increased in these puzzles, which repre-
sents the time that the user is not pressing any keys (i.e., either
thinking and engaging mental processes or having walked
away from the puzzle). We also observed strong performance
jumps (higher completion rates, lower elapsed time, undos
and restarts) in puzzles 5, 6, 7 and 8. Interestingly, these were
where discoveries needed to be made, suggesting that either
the subjects successfully made these discoveries or they by-
passed making these discoveries by walking through the fake
wall (brown) that might have been discovered in prior lev-
els. To better understand the types of hypotheses that can be
raised and tested in this framework, we will next take a closer
look at two subjects.

8https://github.com/vasanthsarathy/puzzle-games-as-insight-
problems.



puzzle completion rate no. of restarts no. of undos elapsed time (s) idle time (s)

1 0.98/ 0.14 0.36/ 2.01 0.24/ 1.04 12.41/ 39.29 6.6968/ 7.57
2 1.0/ 0.0 0.56/ 3.96 0.68/ 4.81 5.97/ 4.52 4.8192/ 4.4
3 0.94/ 0.24 0.36/ 0.8 2.34/ 15.4 50.98/ 67.96 31.885/ 25.94
4 0.94/ 0.24 0.06/ 0.42 2.48/ 15.87 37.64/ 70.21 19.91/ 26.38
5 1.0/ 0.0 0.0/ 0.0 0.0/ 0.0 5.71/ 2.69 4.1954/ 2.2
6 1.0/ 0.0 0.0/ 0.0 0.0/ 0.0 10.39/ 6.76 7.6452/ 6.26
7 1.0/ 0.0 0.04/ 0.2 0.0/ 0.0 8.94/ 7.19 6.902/ 6.83
8 1.0/ 0.0 0.12/ 0.48 0.44/ 1.77 15.62/ 20.23 13.4598/ 19.89
9 0.98/ 0.14 0.2/ 0.93 1.56/ 9.94 34.64/ 60.61 23.8296/ 41.65

10 0.86/ 0.35 0.56/ 2.68 15.84/ 78.45 67.47/ 104.55 29.9206/ 53.84
11 0.64/ 0.48 1.8/ 2.95 13.16/ 52.92 163.15/ 117.44 64.705/ 68.57
12 0.24/ 0.43 5.04/ 4.86 33.5/ 102.99 268.73/ 52.77 86.4944/ 79.67

Table 1: Average/standard deviation for various metrics for all 50 subjects across both conditions.

Qualitative Analysis - The Tale of Two Subjects
Subject 62 and 31 were selected for further analysis. Both are
Caucasian females without any colorblindness impairments.
Subject 62 (46 y.o) considers themselves to be more experi-
enced in puzzle game solving than Subject 31 (29 y.o).

Different Approaches to Problem-Solving
We visually analyzed the video playback of the performance
of these two subjects for all puzzle levels9. Subject 62 pro-
ceeded systematically through each level, making each of dis-
coveries 2 and 3. Subject 62 did not explore the possibility of
the brown walls being fake until Puzzle 10. They also did
not appear to make discovery 4. They did not solve Puzzle
10 and Puzzle 13A within the allotted time of 300 seconds.
However, they solved all other puzzles, including 11 and 12.
In contrast, Subject 31 made discovery 1 (fake walls) early in
Puzzle 2, and used it in subsequent Puzzles to walk through
walls. As a result, they did not make discoveries 2, 3, or 4
through Puzzle 10. In Puzzle 11, they eventually made dis-
covery 2, allowing them to solve the level. However, they
failed to solve Puzzles 12 and 13A.

Some Qualitative Takeaways
Two-sides of Fake Walls: Solving Puzzle 10 requires
walking through the fake wall directly to the goal and ignor-
ing all other objects. Our results (see Table 2) show that not
only did Subject 62 not solve Puzzle 10, but they also had
significantly more restarts and spent more time idling in this
puzzle than Subject 31. Subject 62 was likely constrained by
not having made discovery 1. Subject 62 was likely also dis-
tracted by items and objects that they previously used, believ-
ing those to be necessary here. This is supported by post-trial
survey responses in which they said they were attempting to
“extract the yellow block.”. Even when they lifted the fake
wall constraint, they were constrained by the other objects.

Subject 31 on the other hand faced none of these challenges
as they directly walked through the fake wall and reached the
goal, suggesting that the fake wall was not a constraint. That
said, it seems that at one point in time, Subject 31 did have

9We have built a tool to playback the performance of any subject,
which we will also make available in our github repo

Subject 62 Subject 31

Puzzle 10
time (s) 300 4.9
restarts 6 0
idle (s) 215.9 1.9

Puzzle 11
time (s) 37.3 168.7
restarts 0 8
idle (s) N/A 155.7

Puzzle 12
time (s) 278.8 300
restarts 6 8
idle (s) N/A 121.2

Table 2: Comparative analysis of Subject 62 and Subject 31.
Subject 31 discovered the fake wall constraint (discovery 1)
and used it early allowing them to solve Puzzle 10 easily, but
struggled with 11. Subject 62 on the other hand did not make
this discovery until they attempted Puzzle 10, which made
it difficult for them, however, they solved Puzzle 11 easily
because they picked up other discoveries along the way.

to restructure their mental representation – they state in the
post-trial survey that they “figured out that you can leave
the bounds of the brown box,” suggesting that they initially
conceived of it as a box or wall. Our proposed ESCAPE
framework enables deeper dives into such behaviors with the
potential for novel experiments to explore different theoret-
ical frameworks of representation restructuring. Do all sub-
jects who break the wall constraint go on to use it as Subject
31 did? What meaning do we impart on visual cues (e.g.,
if the brown was replaced with blue, would we build a wa-
ter metaphor)? How do stories and metaphors help us make
sense of our perceptions and what biases do those impart?

Overloading Semantics: Solving Puzzle 11 required
breaking the wall constraint (discovery 1) as well as utiliz-
ing the knowledge that the orange square when pushed on
top of the pink square makes the blue square disappear (dis-
covery 2). Our results show that for Puzzle 11, Subject 31
had more restarts and spent significantly more time idling in
this level than Subject 62. This is likely because Subject 31
had not made discovery 2 previously and had to do so in this
puzzle. By the end of puzzle-solving both subjects 62 and 31
had discovered the mechanic associated with discovery 2.

But, unexpectedly, in the post-trial survey, both Subjects



Figure 4: In a post-trial survey we showed subjects this initial
state (top left) and a series of actions and asked them to let
us know which of A, B or C is the correct final state. Here,
“A” is the correct answer as it requires the use of discovery 2,
namely pushing the orange square over the pink square makes
the blue square disappear.

62 and 31 were unable to characterize the mechanic of dis-
covery 2 when asked (see Figure 4 for the survey question).
One possible reason for this is that the function of the “blue
square” was overloaded. Depending on its history, one could
have a blue square from walking over a yellow square (akin
to picking up a key leading you to the state of holding a
key) or one could have a blue square from pushing a blue
square onto an orange square (turning it blue). Depending
on this history, the blue square can be removed differently –
in some instances by pushing an orange square over a pink
square (like in the early puzzles) and in other instances by
pushing the blue square against a light blue square (like in
the later puzzles). The framework opens many questions of
human problem-solving which go beyond imposing simple
constraints to ones in which there are potentially interesting
overlaps in semantics and history of objects and their use.

Solvability and Unsolvability: Puzzle 12 required both
discoveries 3 and 4, which means subjects should have made
an otherwise non-required discovery back in Puzzle 8, which
neither did. Subject 62 solved this puzzle, but Subject 31
did not. There could be many reasons for this – for exam-
ple, Subject 62 could have been a more experienced puzzle
solver (from their self-assessment). Post-trial survey reveals
that Subject 62 was not even sure if they solved it in time and
even if they did “it was just luck when [they] finally got it.”
Subject 31 knew they were unable to solve it but expressed a
possible solution idea indicating they thought it was solvable:
“I know I have to get a dark blue box using the yellow and
that would get through the light blue somehow,” suggesting
while they had made discovery 4, they could not execute on
it in time. Both subjects appear to have believed this level
was possible. We also asked them in a post-trial survey how

difficult they thought Puzzle 13B (the impossible puzzle from
the other condition) would be on a scale of 0 (very easy) to
7 (impossible). Subject 62 believed the puzzle to be a 6,
whereas Subject 31 thought it would be easier 3. A more
thorough analysis would be needed to explain this difference
– however, some possible reasons might include Subject 62
with their prior puzzle-solving experience and their poten-
tially better understanding of our underlying mechanics was
in a better position to evaluate 13B on its face.

Discussion and Conclusion

There is a wealth of useful hints about the necessary ingre-
dients for a comprehensive theory of model human creative
problem solving and computational models based on it buried
in the above experimental data, much more than we could
possibly address in a short conference publication. How-
ever, even the above analysis of the problem solving steps
of two subjects already reveals important principles for com-
putational process models. For example, they must allow for
context-driven variability in exploratory vs. goal-oriented be-
havior and explain when restarts and undos and backtracking
behaviors are initiated and how. They must account for idle
time without any overt behaviors (presumably spent on differ-
ent cognitive tasks such as analyzing impasses and planning
the next actions) and for representational shifts caused by dis-
coveries (both internally and with respect to overt behaviors),
leading to different levels of understanding of the problem.
And stepping back from the model, a theory of creative prob-
lem solving ought to be able to predict whether a given com-
putational model will be able to solve a given puzzle based on
the necessary discoveries and representational shifts it needs
to effect, and thus also predict whether a solution might be
impossible for a given model.

We believe that the proposed ESCAPE paradigm is par-
ticularly well-suited for develping process models in that a
sequence of stimuli in multiple puzzles can be specifically
designed to evoke different parts of the cognitive processes
(constraint formation, impasse detection, restructuring, and
search) by allowing precise control along various puzzle di-
mensions (action space size, solution size, number of discov-
eries, prior knowledge biases). The paradigm allows for a
range of measures from behavioral (actions), to task-related
(completion rate, timing), as well as neural and cognitive (eye
gaze and fMRI). The framework allows us to hone in specif-
ically on what aspect of a domain representation (objects,
predicates, action preconditions, effects, goals etc.) are re-
structured by the human and used in problem-solving. We
can do this by tracking the behaviors and inferring underly-
ing formally described domain representations (MDP, PDDLs
etc.) to infer state and goal descriptions that best explain the
behaviors. This was not possible with classical creative and
insight puzzles in the past. In sum, we believe ESCAPE pro-
vides a fertile ground with which to design a process model
of insight and creative-problem solving in humans, and use
the model to advance AI solvers.
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