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I. INTRODUCTION & MOTIVATION

Natural human activities involve using and manipulating
objects, often several at a time, simultaneously and continu-
ously. For example, changing lanes while driving requires
using a steering wheel and pedals, all while observing
the road and making sure that lanes are clear. Not only
are we recognizing these objects, but we know what to
do with them (i.e., we can perceive object affordances).
We use our imagination and invoke mental simulations to
construct variations of objects and actions to learn these
affordances. Learning how to use objects is a highly desirable
skill for robots, as well. Unfortunately, although robots are
proficient at recognizing object features, they are less-skilled
at recognizing what can be done with these objects.

In this paper, we sketch a novel approach based on
Dempster-Shafer (DS) theory [1] and uncertain logic for
inferring object affordances using a mental simulation frame-
work. As part of this effort, we are in the process of
developing a computational model for affordance that can
represent complicated activities and can account for the
dynamic and continuous nature of real-world scenarios.

II. BACKGROUND

Gibson introduced the concept of affordance to represent
the relationship between an agent and its environment [2].
In cognitive science, Barsalou et al. expanded this work and
attached causality to function and affordance [3]. In cogni-
tive robotics, Montesano et al. have developed statistically-
inspired causal models of affordance using Bayesian Net-
works (BN) to formalize the relationship between object
features, actions and effects [4].

Despite these efforts, affordance-learning faces many chal-
lenges that have not been overcome in the previous work
including: integrating multi-modal cues in real-time (natural
language, vision, gesture, mental simulation); accounting for
situational information and how an object may be used in
a given context; representing complex affordance relation-
ships in dynamic environments consisting of a sequence of
situations; inferring causal, non-causal and counterfactual
relationships from highly-limited data; and representing un-
certainty in knowledge and beliefs.
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ITII. OUR APPROACH

Much like the previous work, our efforts begin with
Gibson’s definition of affordance as a relationship between
an agent and its environment. However, we diverge from
the previous work in our representational and computational
approach to modeling affordance.

We propose a model, illustrated in Fig. 1, in which an
object’s affordance (F) and the perceived feature of the
object (O) depend on the context (C). The perceived feature
of the object (O) also depends on affordance (F).

We use Dempster-Shafer (DS) theory for inferring affor-
dance (F) from object features (O) in contexts (C), and
conversely, for generating objects (O) during mental simula-
tion from affordances (F) in contexts (C). DS theory is an
uncertainty processing framework often interpreted as a gen-
eralization of the Bayesian framework. A Bayesian approach
for inferring P(F|O,C) by way of P(O|F,C), P(F|C), and
P(C) is not practical because we do not have a probability
distribution for all the affordances for an object. Instead,
we use rules of the form oAc¢ = [4p)f that captures
the affordance behind an object in particular contexts, where
[er, B] is a confidence interval contained in [0, 1], which can
be specified for the rules independently. These rules are very
versatile and we can employ DS-theoretic modus ponens to
make uncertain deductive and abductive inferences which
cannot be made in a mere Bayesian framework.
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Fig. 1. Object’s affordances (F)) depends on the context (C). The perceived
features of the object (O) depends on the context (C) it is being perceived
in and on the affordance (F). For example, in the context of hammering a
nail (C), the elongated end of a hammer is perceived as being a “handle”
(0) as a result of it being “grabable” (F). Other parts of the hammer may
be perceived as serving as a “handle” in different contexts. For example,
we may grab the head of the hammer and use the elongated end as an
extender to reach something otherwise out of reach. In this context, the
head of the hammer is perceived as being the handle O, with the affordance
of “grabable” (F) in the context of reaching (C).



IV. HANDLING UNCERTAINTY

Consider the example of robot learning how to tighten
a screw. We would like for the robot to understand this
task from an intuitive standpoint such that even in the
absence of a screwdriver, it can reason through alternatives
and find another substitute. While demonstrating the task,
a human teacher explains the she is “holding the handle,”
“inserting the flat-head end into the screw,” and the “turning
the screw clockwise to tighten.” In this example, the semantic
representation of the screwdriver may be described as a series
of predicates:

Shape(elongate)
EndFeature(*flathead”, flat)
BodyFeature(“handle”, textured)
EndFeature(“top”, round)

The robot may infer a number of rules about this task from
the human, as well. One rule may be: that given a goal to
tighten a screw, and given a flat-head end feature, the screw
can be tightened by inserting the flat-head into the screw
and turning clockwise. This rule can then be represented in
DS-theoretic uncertain logic a follows:
r?aRO Bryl —

(EndFeature(“flathead”, flat)) A Goal(sel f,tighten, screw) —>

Tightenable(screw,action(insert, flathead, screw), action(turn, clockwise))

The robot’s past knowledge (which it may have acquired
from other unrelated demonstrations, mental simulations and
real-world exploration) may include an additional set of facts
about knives and coins as shown in Table 1:

TABLE I
KNOWLEDGE BASE

Knives Shape(elongate)
EndFeature(“sharpedge”, flat)
BodyFeature(“handle”, smooth)
EndFeature(“top”, square)

Coins Shape(disk)

EndFeature(“thickness”, flat)
BodyFeature(“faces”, heads,tails)

By applying DS-theoretic logic inference rules on this
knowledge base, the robot can deduce how to tighten a screw
by using a knife or coin instead of a screwdriver. Although,
the rules in this example are relatively simple, we do envision
scenarios that involve more complicated rules, or bundles of
rules for a more complex object representation.

V. EVENTS

Real-world scenarios are not static and generally involve a
dynamic and continuous sequence of actions and events. For
example, the act of tightening a screw involves several steps
of finding a screwdriver, grabbing it, and then tightening the
screw. This continuous set of actions can be broken up into

discrete chunks by slicing it at times when events occur.
For example, occurrences such as touching the screwdriver,
or the screwdriver touching the screw, or the screw being
fully tightened are events. We propose extending our DS-
theory based representational framework to account for these
types of events by building joinder rules defining how they
demarcate the boundary between actions. For example, a
touch event of a screwdriver touching the screw might signal
the start of the process of turning the screw.

Under our proposed framework, object features have their
own uncertainty interval. Inference in uncertain logic adds
the possibility of tracking and propagating uncertainties that
may arise on premises and/or rules. Consequently, we can
perform modus ponens, leading us to deducing new facts
(with some uncertainty) about the objects themselves.

VI. CONCLUSION

As part of their interview process, many modern technol-
ogy companies show prospective candidates an object they
have never seen before and ask them to describe what they
think is the object’s function. The purpose of the question
is to test the candidate and probe their intellect to identify
candidates with strong mental representations of affordance.
Clever answers are often rewarded and stand as an example
of human creativity. The ultimate goal of our research is to
endow robots with the ability to find creative ways to use and
manipulate objects and their environment, especially when
there is minimal and uncertain information. Such abilities
will be highly desirable in open-world scenarios such as
search-and-rescue missions.

In this extended abstract, we took the first steps towards
our goal and sketched a novel approach based on Dempster-
Shafer (DS) theory for inferring object affordances. By
example, we provided an overview for how our framework
can handle uncertainties and be extended to include the
continuous and dynamic nature of real-world situations. We
have developed a computational framework for implementing
a DS-theoretic approach in a different context, and we are
currently working to implement those algorithms and archi-
tecture for modeling object affordance. We believe that this,
much richer level of affordance representation is needed to
allow robots to be adaptable to novel open-world scenarios.
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