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ABSTRACT
In the recent past, several different methods for coordinating
behavior in multi-robot teams have been proposed. Com-
mon to most of them is the use of communication to co-
ordinate behavior. For many practical applications, how-
ever, communication might not be an option (e.g., because
of energy constraints of embedded platforms, limited com-
munication range of wireless transmitters, security risks of
potential interception of messages in hostile territory, etc.).

In this paper we examine alternative, low-complexity, low-
cost strategies without communication for coordinated agent
behavior. Specifically, we investigate the utility of a “social
preference mechanism” and a “pairing mechanism” in terri-
tory exploration tasks (with many practical instantiations,
e.g., two robots with different sensory capabilities investigat-
ing rock formations on a remote planet), where agents have
to explore their environment to find and visit k checkpoints,
which only count as “visited” when n agents are present at
them at the same time. Both mechanisms are intended to
increase the likelihood of two agents being at a same check-
point at the same time. Experimental results indicate that
pairing is the better strategy, thus raising interesting ques-
tions about tradeoffs between agent complexity and group
size (e.g., whether fewer but more expensive agents that
have sufficient resources to visit checkpoints individually are
a better choice than more less expensive agents).

1. INTRODUCTION
Efficient performance of multi-agent tasks often requires

some form of coordination between agents. Even in seem-
ingly simple tasks, where agents perform autonomously with-
out the need for help from others, agents may work at odds
with one another, leading to wasted effort and reduced effi-
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ciency. More complex tasks may even require coordination
in order to perform them. Communication is often used to
facilitate coordination in multi-robot tasks, yet it may not
always be feasible to include communication. Other investi-
gations use behavior coordination among robotics agents to
study the utility of communication. Arkin and Hobbs [3, 2,
10], for example, compare results on robotic retrieval tasks
between agents with and without communication. Commu-
nication was found to be beneficial if agents communicated
their states, which could cause other agents to join in the
task. Werger et al. [12, 13], on the other hand, found com-
munication to be unnecessary to achieve task formation in a
system which uses behavior-based mechanisms to generate
cooperative behaviors, as did Quinn et al. ([8]). While some
of these results are in line with the conclusions of this paper,
the tasks involved are very different from MATE-n tasks.

Clearly the benefits of communication are inconclusive.
Factors in determining the feasibility of communication for
multi-robot exploration teams include weight (communi-
cation will require additional equipment), communication
range, the cost of transmitters, and the energy required to
communicate and process communicated information (i.e.,
communication in itself is useless without some process that
utilizes the extra information). In many cases, these addi-
tional factors eliminate communication as an option for co-
ordination, so a low-cost, low-complexity strategy is needed
for coordination instead. Such a strategy would avoid the
high cost of communication, but must provide sufficient co-
ordination to allow good task performance.

In this paper, we present two coordination mechanisms, a
“social preference mechanism” and a “pairing mechanism”
for multi-agent coordination. We test these new mechanisms
in multi-agent territory exploration (MATE-n) tasks, which
require a group of agents to visit all checkpoints in the en-
vironment. In order for a checkpoint to count as “visited,”
n agents must be present simultaneously (consider a task
in which extraplanetary landers with heterogeneous equip-
ment must explore the terrain, but may not be able, indi-
vidually, to accomplish scientific goals at interesting sites).
When n > 1, the degree of coordination required to ac-
complish the task efficiently is substantial. Experimental
results (presented below) show that, while the social prefer-
ence mechanism is able to improve performance, the pairing
mechanism is the better choice for coordination in MATE-n
tasks.



This paper proceeds as follows: first MATE-n is specified
in detail. Then the methods used are described, including
the agent model that serves as a base for the experiments, as
well as the experimental setup used. Then experiments and
results are presented for the base agent, social preference
agents, and pairing agents.

2. THE MATE-N TASK
The multi-agent territory exploration (MATE-n) task is

inspired by biological foraging tasks, but finds many appli-
cations in other domains. Agents explore their environment,
looking for marks indicating the presence of a checkpoint.
When enough agents (n) are present at a checkpoint, its
mark is removed and the agents continue the task, explor-
ing the environment until all checkpoints have been visited
by n agents simultaneously (note that agents do not need to
arrive at the checkpoint simultaneously, only to be present
simultaneously). More formally:

Definition 1: A MATE-n task T (Cn, A, R, D) requires a
group of agents A, each with sensory range R, to visit a set
of checkpoints C, each of which requires n agents present
to remove its mark, in a 2D environment where agents and
checkpoints are placed according to a probability distribu-
tion D.

Performance is defined as the time it takes to remove all
checkpoint marks from the environment.1 Thus, unlike
many natural foraging tasks, agents in MATE-n tasks are
working as a group. Individual agents’ performances are
important insofar as they contribute to the group’s perfor-
mance, but individuals are not rewarded for good perfor-
mance.

Typically, agents do not have a priori knowledge of the
distribution D; both agents and checkpoints are distributed
randomly in the environment, requiring agents to explore
to locate checkpoints. If this information is available, it is
possible to calculate an optimal offline solution by exhaus-
tively searching the entire space of checkpoints assigned to
each agent, along with the order in which each agent vis-
its its assigned checkpoints. Such a solution, however, is
computationally intractable.

MATE-n tasks are similar in some ways to Traveling
Salesman Problems (TSP) [5], and even more so to multi-
Traveling Salesman Problems (MTSP), in which some mem-
ber of a sales team is required to visit each city. The de-
livery scheduling problem is an instance of MTSP for which
approximations exist [6, 4, 11, 1, 7, 9]. However, because
TSP variants require agents to return to their initial posi-
tions, no TSP approximation fits exactly the MATE-n task;
the optimal visit order is affected by requiring a round trip.

3. METHODS
We begin by investigating the performance of a base agent

model in a MATE-n task, then add a new (coordinating)
feature F to the architecture and compare the performance
of the new agent kind with the performance of the old. The
remainder of this section describes the base agent model
used to obtain absolute performance, and the experimental
setup employed.

1Other measures of performance could be the total distance
traveled by all agents in A, or the difference in length be-
tween all agents’ paths (as in a load balancing goal)

3.1 Agent Model
The simplified sensor model employed by the agents ig-

nores sensor modality, assuming that agents can sense all
checkpoints in a full 360◦ radius within a sensory range of
R. The agent’s sensory input S is combined with its inner
states I to produce behaviors according to the agent func-
tion F . F is a mapping F : 2S × I → D, where 2S is the
power set of sensory data given as pairs < d, α > of dis-
tances d ∈ [0, R] and angles α ∈ [0, 2π], I is a set of inner
states (possibly empty), and D ∈ [0, 2π] is the set of possible
directions the agent will move in.

The base agent model represents the best-performing aso-
cial architecture from previous work: the timeout agent. For
MATE-1 tasks, a simple agent that targets for collection the
closest checkpoint detected is sufficient for reasonably good
performance. When n > 1, however, these simple agents are
susceptible to ‘deadlock’ states in which each agent moves to
the nearest checkpoint and waits for another agent to arrive;
when all agents have found (distinct) checkpoints, the task
cannot proceed. Timeout agents incorporate a wait timer
w that is started when the agent arrives at a checkpoint
and expires after a fixed duration W . At that point, the
checkpoint is added to the agent’s filter set, which forces
the agent to ignore the checkpoint. Effectively, the agent
does not perceive a checkpoint that is in its filter set. After
a fixed cycle count, the checkpoint is removed from the filter
set, and the agent can once again perceive the checkpoint
(if it is within sensory range).

The following ruleset comprises the agent model for time-
out agents:

Rule 1: if no checkpoint is perceived (S = ∅), perform a
random walk RW (rwd, β) (i.e., move in the direction
of the current heading θ for rwd cycles, then change
heading randomly to some value in [θ − β, θ + β])

Rule 2: if some checkpoint C is within visiting distance
and there are n agents within visiting distance of C,
remove the checkpoint’s mark and reset w to 0

Rule 3: if some checkpoint C is within visiting distance,
there are fewer than n agents at C, and w = W , reset
w to 0 and add C to the agent’s filter set

Rule 4: if some checkpoint C is within visiting distance,
there are fewer than n agents at C, and w < W , in-
crement w

Rule 5: if no checkpoint is within visiting range but some
checkpoints are perceived (S 6= ∅), go directly towards
the closest checkpoint (the direction is given by α such
that min

d
[〈d, α〉|〈d, α〉 ∈ S])

These simple agents employ a random walk mechanism
that changes their heading after rwd cycles without per-
ceiving a checkpoint. The value of rwd was determined for
each combination of group size and sensory range employed
by systematically exploring the space of values and selecting
those with the best performance. Additionally, the environ-
ment is bounded; agents “bounce” off of the edge of the
environment with a small amount of random error. Agents
will move directly to the nearest perceived checkpoint (when
there is one) and wait there for a total of n agents to arrive.
After waiting for W cycles, the checkpoint is added to the
agent’s filter set and the agent can then target other per-
ceived checkpoints or begin foraging via the random walk
mechanism. The value of W was determined similarly to



rwd: a systematic exploration of the performance space of
each group size/sensory range combination yielded the value
of W with the best performance; this is the value of W for
that combination. A counter is associated with each mem-
ber of the filter set that is incremented at every cycle. When
the counter reaches f , the checkpoint is removed. The value
of f is fixed at 200.

3.2 Experimental Setup
To begin exploring coordination in MATE-n we must

choose a reasonable value for n. While there is some de-
gree of coordination required when n = 1, for the most part
it comes down to keeping out of each other’s way; coop-
eration is not required in visiting individual checkpoints in
MATE-1. MATE-2 provides a task in which agents must
actively coordinate checkpoint visits if efficient performance
is expected. The chances of two agents being at the same
checkpoint simultaneously are small if there is no coordi-
nation effort. The challenge is similar in kind for n = 3,
n = 4, etc., albeit with increasing difficulty. Hence, for this
paper we select n = 2 for the number of agents that must
be present at a checkpoint.

Each experiment reported in this paper consists of 40 ex-
perimental runs using different randomly generated initial
conditions in a continuous 2D world, which is limited to an
800 by 800 square region. Sensory range is varied from 25 to
250 in steps of 25, and from 300 to 800 in steps of 50. Group
size is varied from 2 (the minimum size required to success-
fully complete the MATE-2 task) to 10. The same set of 40
initial placements of checkpoints (|C| = 10) is used for all
experiments. Moreover, the same 40 initial placements of
agents is used for all experiments with identical group size
(i.e., all experiments with |A| = 2 will use the same 40 initial
conditions, regardless of sensory range or agent type, as will
all experiments with |A| = 3, etc.). This allows us to com-
pare directly between agent types and sensory ranges. The
results reported here are the average cycles to completion
of each experiment set for each architectural configuration.
Agents are allowed 10,000 cycles within which to complete
the task; after that point, the experimental run is considered
a failure, and its value is set at 10,000. Thus, 10,000 cycles
is the ceiling for performance.

4. TIMEOUT AGENTS
The first set of experiments measures the performance of

the base architecture, the timeout agent. Recall that this
agent forages for checkpoints in the environment and goes
to the nearest one it sees. If there is another agent at the
checkpoint, the mark is removed and the agents move on.
Otherwise, the agent waits at the checkpoint for W cycles,
or until another agent arrives and the mark can be removed.

4.1 Results
The performance results for timeout agents are presented

in Figure 1 (left). Overall, the trends are predictable: as
sensory range increases, performance increases (i.e., average
cycles to completion decreases), to a point. When sensory
range is greater than 300, performance levels off, and there
is little benefit to increased range. Similarly, performance
increases with group size, but improvements diminish as size
increases so that, for example, there is little difference in
performance between |A| = 9 and |A| = 10.

A two-way 9x21 ANOVA with group size (2-10) and

sensory range (25-800) as randomized variables and
average cycles to completion as the dependent vari-
able shows highly significant main effects for group
size (F (8, 7371) = 1983.8795, p < 0.001) and range
(F (20, 7371) = 207.4370, p < 0.001), confirming that in-
creasing group size and sensory range improves performance.
There is also a highly significant interaction between group
size and sensory range (F (160, 7371) = 5.8574, p < 0.001);
this confirms that larger groups increase performance faster
as sensory range increases, reaching earlier the point at
which added sensory range is of no benefit. These results are
exactly what one would expect; essentially we are increas-
ing the resources available, and should, therefore, expect
performance to increase. Similarly, we should expect that
there would come a point at which more resources will be
of little benefit. These are independent of the type of agent
tested, so this pattern will be repeated in subsequent results.
Therefore, while we will continue to report the values for the
randomized variables group size and sensory range, we will
not discuss them specifically in subsequent results, except
when they interact significantly with other variables tested.

4.2 Analysis
As expected, two trends are evident in the results:

larger groups outperform smaller groups, and higher sen-
sory ranges outperform smaller sensory ranges. Several ad-
ditional functional roles are displayed, each of which is a
contributor to poor performance:

Jilted Groom: an agent at a checkpoint whose wait timer
expires (the bride never arrives)

Jilted Bride: an agent that targets an occupied check-
point, but the occupying agent’s wait timer expires
before the “bride” arrives

Lonely Bachelor: an agent that spends a prolonged pe-
riod searching for a checkpoint

Unlucky Bachelor: an agent caught in a cycle of waiting
for the full length of the wait timer and then forag-
ing again for another checkpoint, only to have its wait
timer expire again

Dedicated Bachelor: similar to the unlucky bachelor, ex-
cept that there are other occupied checkpoints within
sensory range, but the agent continues to target unoc-
cupied checkpoints (seemingly preferring to remain a
bachelor)

Bridesmaid: an agent that targets a checkpoint that is al-
ready targeted by two nearer agents, and so is destined
to arrive late, after the checkpoint has been visited
(“always a bridesmaid, never a bride”)

With low sensory range, agents tend to spend a lot of
time as lonely bachelors because of the difficulty of locating
a checkpoint. Moreover, once they do locate a checkpoint,
they tend to play the part of the jilted groom, because the
other agents have the same difficulty locating the occupied
checkpoint due to their own low sensory ranges. The wait
timer expires and the groom moves on, returning to the
bachelor role. As sensory range increases it becomes easier
to locate checkpoints, and the lonely bachelor is seen less
often, while the frequency of the groom role increases.

When the number of agents is small, agents have similar
difficulties: when they do locate a checkpoint, there is often
no other agent in a position to play the role of bride. Instead
they tend to assume the unlucky bachelor role, a prolonged
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Figure 1: Left: Average performance of timeout agents for two to ten agents and sensory ranges from 25 to
800. Right: A difficult situation for timeout agents to handle: the default behavior of Agent 2 is to move to
Checkpoint 2, as a result of Rule 2. However, with Agent 1 at Checkpoint 1, a better strategy would be to
move to Checkpoint 1.

cycle of jilted groom episodes. This is because they are un-
likely to be placed near each other in the environment, so
there may be a long distance between them that a poten-
tial bride will have to traverse. Note that increasing sen-
sory range does not address this problem. Timeout agents
target the closest checkpoint detected, and there will often
be checkpoints between them, preventing potential brides
from arriving before the wait timer expires. Fortunate ini-
tial placement can mitigate this problem, and agents may
drift toward one another, allowing them to eventually break
out of the unlucky bachelor role. However, in the case of
2-agent groups, this seldom happens.

The simulations are limited to 10,000 cycles, as described
above. The results for 2 agents in Figure 1 (left) show that
they do not even approach 9,000 cycles. This is because
they fail to complete in most cases, regardless of the sen-
sory range. 3- and 4-agent groups improve, but still fail in
many experimental runs. 5 agents appear to be sufficient to
overcome the unlucky bachelor problem.

4.3 Discussion
The timeout mechanism was designed to break deadlocks

by limiting the amount of time agents spend waiting at
checkpoints for other agents to arrive. The mechanism is
not perfect (e.g., there are times when an agent’s wait timer
will expire just before another agent arrives, giving rise to
the jilted bride), but overall performance is improved. For
timeout agents, some wait cycles are inevitable; the first
agent arriving at a checkpoint must wait for another agent
to arrive (unless we expect them to arrive simultaneously–
highly unlikely!). However, some wait cycles are especially
wasteful.

Figure 1 (right) presents a scenario in which Agent 1 is
waiting at Checkpoint 1 but Agent 2 is closer to Check-
point 2. In this situation, Agent 2 will move to Checkpoint
2 and wait W cycles. This is less efficient than moving to
Checkpoint 1 in most cases, because Agent 1 will wait until
its timer expires to leave Checkpoint 1. Furthermore, it is
possible that Checkpoint 2 will be in Agent 1’s filter set, in
which case it will not move there to join Agent 2. Finally,
it is possible (and, in our observations, frequently the case)
that Agent 2’s timer will expire before Agent 1 arrives, in
which case they may enter a cycle of flipping between check-

points without marking any visited. These are examples of
the dedicated bachelor functional role, in which Agent 2 ap-
pears to intentionally avoid targeting a checkpoint with a
waiting groom, although this behavior is really a result of
the same control architecture that would require Agent 2 to
move to Checkpoint 1 if it were nearer.

As a measure of how often agents make the dedicated
bachelor mistake, we tracked redundant wait cycles. A re-
dundant wait cycle is one spent by an agent waiting at a
checkpoint while another agent is waiting at another check-
point in sensory range. The average number of redundant
wait cycles for all agents in a simulation is the measure of
Redundant Wait Cycles (RWC) for the simulation:

RWC =

P|A|
n=1 RedundantWaitCycles(a[n])

|A| (1)

Figure 2 (upper left) shows the proportion of the total cy-
cles in Figure 1 that timeout agents spent redundantly wait-
ing. The proportion is substantial, particularly for smaller
groups with higher sensory range. Agents in larger groups
are not as susceptible to redundant wait cycles because there
is more frequently another agent near enough to target the
checkpoint at which an agent is waiting. Similarly, when sen-
sory range is low, agents are not as likely to perceive other
checkpoints, including other checkpoints with agents wait-
ing. A direct coordination mechanism that targets redun-
dant wait cycles for reduction should be particularly useful
for increasing performance in MATE-2 tasks, particularly in
small groups with high sensory range.

5. SOCIAL PREFERENCE AGENTS
One simple, and seemingly natural, architectural enhance-

ment is to modify the timeout architecture so that the agent
takes into account states of other agents, preferring occu-
pied checkpoints over checkpoints with no agent. The agent
model is modified by changing Rule 5:

Rule 5a: if no checkpoint is within visiting range, at
least one checkpoint is perceived (S 6= ∅), and
there is another agent waiting at a perceived check-
point, go directly towards the closest checkpoint with



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800

Re
du

nd
an

t W
ait

 C
yc

les
(a

s p
er

ce
nt

 o
f t

ot
al 

cy
cle

s)

Sensor Range

Redundant Wait Cycles: Timeout Agents

2 Agents
3 Agents
4 Agents
5 Agents
6 Agents
7 Agents
8 Agents
9 Agents

10 Agents

 0

 2000

 4000

 6000

 8000

 10000

 0  100  200  300  400  500  600  700  800

Pe
rfo

rm
an

ce
 (A

ve
ra

ge
 C

yc
les

 to
 C

om
ple

tio
n)

Sensor Range

Timeout vs. Social

2 Timeout
4 Timeout
6 Timeout
8 Timeout

10 Timeout
2 Social
4 Social
6 Social
8 Social

10 Social

 0

 2000

 4000

 6000

 8000

 10000

 0  100  200  300  400  500  600  700  800

Av
era

ge
 R

ed
un

da
nt 

Wa
it C

yc
les

Sensor Range

Redundant Wait Cycles: Social vs. Timeout

2 Timeout
4 Timeout
6 Timeout
8 Timeout

10 Timeout
2 Social
4 Social
6 Social
8 Social

10 Social

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500  600  700  800

Av
era

ge
 Fu

tile
 Ta

rge
t C

yc
les

Sensor Range

Futile Target Cycles: Social vs. Timeout

2 Timeout
4 Timeout
6 Timeout
8 Timeout

10 Timeout
2 Social
4 Social
6 Social
8 Social

10 Social

Figure 2: Upper left: Portion of total cycles spent in redundant wait. Upper right: Average performance
of timeout agents and social agents. Lower left: Comparison of redundant wait cycles for timeout agents
and social preference agents. Lower right: Futile target cycles for target-closest agents and social preference
agents.

an agent (the direction is given by α such that
min

d
[〈d, α〉|〈d, α〉 ∈ S])

Rule 5b: if no checkpoint is within visiting range, at least
one checkpoint is perceived (S 6= ∅), and there is no
other agent waiting at a perceived checkpoint, go di-
rectly towards the closest checkpoint (the direction is
given by α such that min

d
[〈d, α〉|〈d, α〉 ∈ S])

This modified ruleset constitutes the agent model for so-
cial preference agents. Social preference agents will ignore
nearer checkpoints when there is an agent at another check-
point within sensory range. This modification addresses the
inefficiency in Figure 1 (right); social preference agents avoid
the dedicated bachelor role in most cases, although they are
more susceptible to becoming bridesmaids.

5.1 Results
Social preference agents prefer as targets checkpoints with

another agent present. This simple modification leads to
dramatically increased performance–in most cases. Figure 2
(upper right) is a comparison of timeout agents and social
agents. In virtually all cases, social agents outperform time-
out agents. A three-way 9x21x2 ANOVA for group size (2-
10), sensory range (25-800), and agent kind (timeout and so-
cial preference) as randomized variables with the dependent
variable average cycles to completion finds highly significant
main effects for group size (F (8, 14742) = 3433.6255, p <
0.001), sensory range (F (20, 14742) = 741.4416, p < 0.001),
and agent kind (F (1, 14742) = 998.0511, p < 0.001). This
confirms that there is an absolute performance difference be-

tween groups. There are highly significant two-way interac-
tions between group size and sensory range (F (160, 14742) =
20.6668, p < 0.001), between group size and agent kind
(F (8, 14742) = 211.8039, p < 0.001), and between range
and agent kind (F (20, 14742) = 20.1746, p < 0.001), and
a highly significant three-way interaction between all three
factors (F (160, 14742) = 6.7453, p < 0.001). The interac-
tions confirm the prediction (based on Figure 2, upper left)
that small groups with high sensory range would benefit
most from the social preference mechanism. Interestingly,
the performance of large groups with high sensory range is
actually harmed by the social preference modification.

5.2 Analysis
Social preference agents outperform timeout agents over-

all, with the interaction between group size and agent kind
confirming that the mechanism is more effective in small
groups, and the interaction between sensory range and agent
kind confirming that it is most effective for higher sensory
ranges. Performance is nearly identical at small sensory
ranges for all group sizes, because in those cases there is
rarely an opportunity for Rule 5a to fire; few checkpoints
are detected, with or without agents. As sensory range in-
creases, social preference agents soon become better.

The performance advantage of social preference agents is
explained by the coordinating effects of the preference mod-
ification. Figure 2 (lower left) compares redundant wait cy-
cles of social preference and timeout agents. In most cases,
social agents experience fewer.

It may seem surprising that social preference agents ex-



perience any redundant wait cycles. If they ignore closer
checkpoints when they perceive another agent at a check-
point, the only situation in which two agents should be at
different checkpoints within sensory range is when they ar-
rive at their checkpoints simultaneously. This would cer-
tainly be the case if agents perceived all checkpoints within
sensory range. However, there is an interaction here between
the timeout mechanism’s filter set and the social preference
mechanism. Consider a situation in which agent A1 is at
checkpoint C1 and agent A2 comes within sensory range.
A2 will move toward C1, whether there are closer check-
points or not. In the meantime, A1’s wait timer expires. A1

leaves C1, placing it in its filter set. While A1 is traveling
to C2, A2 arrives at C1, but A1 does not perceive C1, so it
does not turn around. When A1 arrives at C2, redundant
wait cycles begin to accrue.

5.3 Discussion
Social agents see little benefit when sensory range is low,

because agents are less likely to see two checkpoints at the
same time and, therefore, less likely to be in a situation
where their added capability is beneficial. When sensory
range is high, agents have more information at any given
time to which they can apply the preference. This suggests
that the primary obstacle to agent performance is acquir-
ing information; coordination is of little use in the absence
of sufficient information about the environment. Once the
information hurdle has been overcome, however, the benefit
of coordination can be seen in small groups.

Similarly, there is little benefit when group size is high,
because there are enough agents in the environment to min-
imize the need for coordination; agents are not as likely to
be penalized by “wrong” decisions, because there is likely
to be another agent nearby to visit the occupied checkpoint.
Increasing group size is one way to increase the probabil-
ity that two agents will target the same checkpoint. The
value of |A| at which increasing group size is no longer ben-
eficial will depend on the size of the environment and the
number of checkpoints that must be visited. In the environ-
ments studied, the benefit of introducing the social prefer-
ence mechanism into groups of eight or more agents is prob-
ably not worthwhile. However, for |A| < 8, social agents
significantly outperform their communicating timeout peers.
When group size is small, it will often be the case that there
is only one additional agent within sensory range of an occu-
pied checkpoint. In such cases it is important for the second
agent to make a good decision, because it is unlikely that
another agent will happen along.

Social preference agents are more susceptible to becoming
“bridesmaids” because, while they do take the state of the
groom into account, they pay no attention to other potential
brides. Hence, they spend time futilely targeting a check-
point when they have no chance of being the bride. A cycle
is considered futile if the agent targets a checkpoint but sub-
sequently fails to visit it (i.e., because another pair of agents
arrives first). More formally, the measure Futile Target Cy-
cles (FTCcyc

A ) for a simulation run is the average number of
futile target cycles for all agents in A in the simulation run
(of cyc cycles):

FTCcyc
A =

P
a∈A FutileTargetCyclescyc(a)

|A| (2)

where FutileTargetCyclescyc(a) is the total number of fu-
tile target cycles of agent a in the given simulation run
of cyc cycles. The average of FTCcyc

A for all simulation
runs can then be taken as a measure of how susceptible the
agents were to wasting cycles targeting ultimately unvis-
itable checkpoints.

As noted, social preference agent performance becomes
worse than normal timeout agent performance in large
groups with high sensory range. As Figure 2 (lower right)
indicates, this is due to an increase in futile target cycles.
When all social preference agents perceive most or all check-
points in the environment, any time an agent arrives at a
checkpoint, every agent will target that checkpoint, even
when it is remote and the agent has no chance of arriving
before another agent. This distracts agents from foraging lo-
cally, requiring them to return in order to visit checkpoints
left behind. Note that, while the difference in scale between
the graphs for redundant wait cycles and futile target cycles
makes then look similar, the impact of futile target cycles
is a much smaller factor in overall performance. However,
when resources are plentiful (i.e., large groups with high
sensory ranges), the social preference mechanism harms per-
formance even without taking its added cost into account.
This inefficiency could be dealt with, at least in part, with
the addition of mechanisms that observe and use the states
of other brides when making control decisions. However, we
decided to try a different approach, presented in the next
section.

6. PAIRING AGENTS
As we mentioned before, MATE-n tasks for n > 1 re-

quire greater degrees of coordination than MATE-1 tasks,
because when n = 1, there is no need to coordinate actual
checkpoint visits. Any time an agent arrives at a checkpoint,
it is visited. This suggests a different approach to improving
performance on MATE-2: rather than adding increasingly
more complex mechanisms to attempt to deal with coordi-
nation inefficiencies, we can design agents that change the
character of the task itself, superimposing a different, sim-
pler task on the original one. Specifically, MATE-2 can be
reduced to MATE-1 by simply allowing the agents to “team
up” and proceed in pairs. After the initial pairing off phase,
agent pairs should be perfectly coordinated: there will never
be a wait cycle if both agents always arrive simultaneously.
We created pairing agents that do this, to see how effective
explicitly teaming up can be. The following ruleset consti-
tutes the agent model for pairing agents:

Rule S1: if role = scout and no other agent is perceived,
perform a random walk RW (rwd, β)

Rule S2: if role = scout, some other agent A is perceived,
A’s role = scout, and A’s leadership characteristic L is
greater than own, role = follower and leader = other

Rule S3: if role = scout, some other agent A is perceived,
A’s role = scout, and own leadership characteristic L
is greater than A’s, role = leader

Rule F1: if role = follower, follow the leader
Rules L1–L5: if role = leader, proceed with rules 1–5 for

timeout agents, given above, with W = 10000

A pairing agent can be in one of three states: scout, leader,
and follower. The scouting phase is when the agent is look-
ing for a partner. During this phase, the agent disregards
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Figure 3: Upper left: Average performance of pairing and social agents. Upper right: Redundant wait cycles
for pairing agents and social preference agents. Lower left: Futile target cycles for pairing agents and social
preference agents. Lower right: Average performance of 1 to 5 timeout agents in MATE-1 and 2 to 10 pairing
agents in MATE-2.

checkpoints, searching only for other agents. When another
(scout) agent is located, they compare their leadership char-
acteristic to determine who will be the leader. Whichever
agent’s leadership quotient is higher leads, the other follows.
If more than two agents are within sensory range, the top
two pair off, then the next two, etc. Any odd agent is left
out and continues to scout for a partner.

Once agents have formed a team, one enters the lead-
ing phase, while the other enters the following phase. In
the leading phase, the agent effectively becomes a timeout
agent. It explores the environment looking for checkpoints
and moving to them when detected. In the following phase,
the agent ignores all checkpoints, blindly following the leader
wherever it decides to go.

6.1 Results
Figure 3 (upper left) compares pairing agents with non-

communicating social agents. The performance improve-
ments in small groups is quite good, although large groups
of social agents perform as well as or better than pairing
agents at low sensory range. A three-way 9x21x1 ANOVA
was conducted with group size (2-10), sensory range (25-
800), and agent kind (social and timeout) as the randomized
variables and cycles to completion as the dependent variable.
Group size (F (8, 14742) = 2357.9752, p < 0.001), sensory
range (F (20, 14742) = 2039.0519, p < 0.001), and agent kind
(F (1, 14742) = 1692.0771, p < 0.001) were all found to be
highly significant main effects for cycles to completion, con-
firming that, overall, pairing agents outperform social pref-
erence agents. There is a highly significant two-way interac-

tion between group size and agent kind (F (160, 14742) =
47.7577, p < 0.001), confirming that increases in sensory
range are most effective in smaller groups, another highly
significant two-way interaction between group size and agent
kind (F (8, 14742) = 276.9290, p < 0.001), confirming that
the greatest performance differences between social and
pairing agents are to be found in smaller groups, and a fi-
nal highly significant two-way interaction between sensory
range and agent kind (F (20, 14742) = 13.9703, p < 0.001),
confirming that the performance differences between social
and pairing agents varies with sensory range. Finally, a
highly significant three-way interaction (F (160, 14742) =
8.1646, p < 0.001) is a result of the social agents having
greater performance in large groups with low sensory range,
but worse performance in the remaining configurations.

6.2 Analysis
Pairing can almost be viewed as the ultimate in coordi-

nation for tasks like MATE-n. Once a pair has teamed up,
the effect of the above coordination issues is minimal. Fig-
ures 3 (upper right) and 3 (lower left) confirm this. These
demonstrate that the two sources of inefficiency are virtu-
ally eliminated by the pairing mechanism, thereby leading
to improved performance. Note that they are not elimi-
nated completely; it is still possible for two leaders to target
the same checkpoint, leading to futile target cycles for the
second pair. Similarly, leaders and followers do not always
arrive at a checkpoint simultaneously,2 so it is possible, par-
ticularly with high sensory range, for two leaders within sen-
2 They can arrive separately at the first checkpoint they



sory range to be waiting for their followers to arrive. Note,
however, that these redundant wait cycles do not have any
negative impact on performance.

7. DISCUSSION
The experimental results presented here show that the

pairing mechanism is a good solution for coordination in
MATE-n, without the need for communication. The de-
gree of coordination achieved is high, after the initial pairing
phase. The jilted groom role is eliminated, because agents
do not target checkpoints until they have paired with an-
other agent, which will arrive simultaneously, except possi-
bly the first checkpoint visited (see Footnote 2). Similarly,
the leader will not leave the checkpoint before the follower
arrives, eliminating the jilted bride role. The lonely bachelor
can still be a problem, in both the scout and leader/follower
phases, when sensory range is low, but this is unavoidable
and not a coordination issue. There are no dedicated bach-
elors, because, again, agents do not begin targeting check-
points until they are paired with another agent. The final
detrimental functional role, the bridesmaid, is the only one
that still negatively affects pairing agents, in this case when
one pair of agents arrives at a checkpoint before another
pair. However, the magnitude of its impact is significantly
decreased (especially at high sensory ranges) relative to so-
cial preference agents, which are particularly susceptible to
playing the bridesmaid under these circumstances.

The bottom right graph in Figure 3 compares the perfor-
mance of pairing agents in MATE-2 with the performance
of timeout agents in MATE-1, for the same environmental
conditions. The MATE-1 results are for 1–5 agents, whereas
the MATE-2 results are for 2, 4, 6, 8, and 10 agents. If
we compare the performance of a particular group size A
in MATE-1 with the performance of 2 · A-agent groups in
MATE-2, we can get a close approximation of the initial cost
of teaming up for pairing agents. The figure shows that,
while performance of pairing agents in MATE-2 is similar
to the performance of timeout agents in MATE-1, there is a
substantial penalty for the initial teaming up period. This
suggests that, if it were possible to construct single agents
that are capable of performing the task at a checkpoint indi-
vidually at a reasonable cost, it would be beneficial to do so
(thereby completing the reduction of the task to MATE-1).
What is a “reasonable cost?” If the new agent kind were
to cost less than or equal to twice what the old agent kind
cost, this would clearly be a win. Moreover, given the cost
of pairing shown in Figure 3, the cost of the enhanced agent
could actually be somewhat more than twice that of the
original MATE-2 pairing agents, and still achieve a better
performance-cost ratio than the pairing agents.

8. CONCLUSION
In this paper we demonstrated that a simple mechanism

like pairing can give rise to very high performance in MATE-
n tasks. This is not only a good alternative to solutions with
communication in situations in which communication is ei-
ther not possible or is too expensive, but may actually be
the better solution overall. Degenerate forms of leadership
strategies like this one may in general provide good alterna-
tives to communication for even more complex tasks than

visit, because when they initially pair up, they are at a dis-
tance R from each other.

MATE-n. Future work will investigate this hypothesis for

the

n[
k=1

MATE−k tasks, in which checkpoints require from

1 to n agents, and there may be no way to predict the value
of k for any particular checkpoint without being within sen-
sory range of the checkpoint, where agents can perceive what
kind of checkpoint it is (i.e., where they can figure out k).
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