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THE COGNITIVE-COMPUTATIONAL STORY

Summary. Computationalism is not a new program, but rather the product of the mechanist
views in the 17" century, which has been under attack by philosophers and others every since.
However, recently new attacks were launched from adherents of dynamical systems within
cognitive science suggesting that the computationalist program fails in explaining mind
because computation necessarily neglects the real-time, embodied, real-world constraints with
which cognitive systems intrinsically cope. As a consequence, many researchers turned their
attention away from computationalist models. Yet, an increasing number of researchers are
not willing to give up what has been in nuce a quite successful approach. Rather they are
motivated to reconsider the very notion of computation as well as the whole enterprise of
computing and computational modeling. To get an idea of where this “new
computationalism” might be heading, I will sketch very briefly the “old paradigm” and some
of its historical roots, paying tribute to two of the most influential computationalists: Leibniz
and Turing. I will then offer but a glance at some of the shortcomings for which
computationalism has been criticized, interspersed with issues that a successor notion of
computation will have to address.

Zusammenfassung. Der Computationalismus ist kein neues Programm, sondern ein Produkt
der mechanistischen Sichtweise des 17. Jahrhunderts und wird seither von Philosophen und
anderen attackiert. In jiingster Zeit kommen neue Angriffe vonseiten der Anhinger
dynamischer Systeme innerhalb der Cognitive Science, welche behaupten, dal der
Computationalismus deshalb an der Erkldrung des Geistes scheitert, weil Berechnung
notwendigerweise Echtzeit, Korperhaftigkeit und andere Beschridnkungen der wirklichen
Welt, mit denen kognitive Systeme fertigwerden miissen, vernachlidBigt. Folglich wandten
sich viele Forscher von computationalen Modellen ab. Andererseits ist eine zunehmende
Anzahl von Forschern nicht gewillt, das im Grunde erfolgreiche Program einfach aufzugeben,
sondern vielmehr motiviert, den Begriff der Berechnung sowie das ganze Unternehmen der
Computerei und der Computermodellierung neu zu iiberdenken. Als Vorgeschmack auf die zu
erwartenden Entwicklungen des “neuen Computationalismus” skizziere ich zunichst das “alte
Paradigma” sowie einige seiner historischen Wurzlen, wobei ich zwei der einflureichsten
Computationalisten, Leibniz und Turing, Tribut zolle. Danach stelle ich kurz einige
Kritikpunkte des Computationalismus vor und deute auf Fragestellungen hin, die ein
Nachfolgerbegriff der Berechnung ansprechen miissen wird.
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The notion of computation, upon which the whole research program called

computationalism is built, is undoubtedly one of the central notions of the
last century. Its history traces back to Leibniz and before, when daring



philosophers pondered mechanical systems that could aid humans in
performing calculations, and possibly even calculate by themselves without
any human assistance. The first functioning mechanical calculators were
built in the 17" century, a century that showed interest for all kinds of
mechanical devices.  These calculators were composed of various
mechanical parts (such as of gears, cogs, etc.) with the technology originally
developed by clockmakers for making watches and were used in the
construction of various mathematical tables (such as the table of logarithms).
Leibniz himself constructed various mechanical calculators which could
perform additions and multiplications, one of which is still in working order
today (Williams, 1997, pp. 130). He was convinced that mechanical
calculators would be of great commercial utility, but he also envisioned yet
another much bolder application of calculators, that of ‘“mechanical
reasoners’.

While T will not attempt to explicate Leibniz’ ideas on logic and
reasoning, I would still like to mention two major ideas that, I believe, led to
the concept of a mechanical reasoner:

1. that logic can be viewed as a formal, deductive system in which
reasoning takes the form of deductions (which themselves proceed
according to rules), and

2. that reasoning involves the manipulation of symbols, that is,
representations.

The first idea is intrinsically connected to Leibniz’ view on concepts and
language, maintaining that there are unanalyzable so-called “first terms”,
simple representations out of which all other complex representations are
built. In modern terminology, these first terms are sometimes called
“grounded terms” and it is one of the challenges in cognitive science to
account for how these can be acquired (it seems clear that this cannot happen
through language directly, rather language learning seems to presuppose the
acquisition of such terms). According to Leibniz, words in ordinary
language wusually disguise the relationship between the various
representations. For this reason he set out to devise a universal language
(called “characteristica universalis”), which would formally reflect the
relationship between “simple” and “complex” representations. As an aside, I
might add that Leibniz believed that such a universal language would resolve
any philosophical disagreement, as once a statement has been formalized, its



validity could be checked mechanically: if controversies were to arise, he
said:

“...there would be no more need for disputation between two philosophers than
between two accountants. For it would suffice to take their pencils in their
hands, to sit down to their slates, and say to each other (with a friend to witness,
if they liked): calculemus—Ilet us calculate”. (Leibniz, 1875-90, p. 200)

Leibniz’ idea of a mechanical reasoner—an instance of what today we
might call an “automatic formal system” (Haugeland, 1985)—predates early
efforts in artificial intelligence research. In particular, I would suggest, it is
his view of calculating which already hints at the modern proposal that
semantics will take care of itself as long as the syntax is right.

The second idea, that reasoning in particular, and thinking in general,
involves representations, is also a product of the 17" century (due to
Descartes, Hobbes, Locke, and others) and was supported by the rise of
modern mathematics.  After Vieta had introduced the concept of
“representatives” suggesting that marks should stand in for numbers in
calculations (a method stemming from lawyers’ practice at court),
calculations were done with signs rather than through physical
manipulations. This mathematical practice of using marks and signs as
representations in calculations quickly spread and soon became a paradigm
for thought in general (Pratt, 1987). It led to claims such as Hobbes’ famous
dictum that “everything done by our mind is a computation” (Hobbes, 1994,
p. 30).

The outline of the historical roots of the computation I have compiled so
far is no more than a sketch. Yet, it should suffice to introduce what I would
like to suggest: that the core ideas of present day computationalism had
already been conceived and to some extent formulated in the 17" century,
though not with today’s terminology and not with today’s understanding of
computation. Because of its unique role of being intrinsically connected to
mechanical calculators on the one hand and to cognitive processes such as
calculating on the other, the notion of computation effected a link between
the mental and the physical. And it was this link that eventually gave rise to
the hypothesis that mind, in general, might be “mechanizable”.

Computation at Leibniz’s time was already tied very much to the idea of
manipulating representations, and prototypical manipulators were found in
the mechanical calculators of those days. While many attempts were made
at building mechanical calculators up to the end of the 19™ century (some of
which were quite successful, e.g., see Pratt, 1987, Williams, 1997, or



Augarten, 1985), the computing capabilities of these machines were very
modest. It was only in the 20" century, when we finally witnessed a
quantum leap in the construction of computers and our conception of
computing. This was largely due to two quite independent developments:

1. the thorough logical analysis of the notions “formal system” and
“demonstrability” (i.e., proof by finite means) of formulas in formal
systems, leading to further studies of notions such as “recursive
function”, “effectively computable function”, “algorithm”, “finite state
automaton”, and others, and

2. the rapid progression in the engineering of electronic components (from
vacuum tubes, to transistors, to integrated circuits, and beyond)'

It is worth pointing out that the notion of computation took off in two
different directions at this point, if not earlier. Each of these routes, in turn,
led to a particular view on and interest in computation, one of which could
be called the “logical” or “theoretical” route, the other the ‘“practical” or
“technological” route of computation. The logical route examines the
theoretical limitations of computation, while the technological route explores
issues that arise in constructing actual computers. While both approaches
are concerned with important aspects of computation (and are by no means
incompatible), their use of the term ‘“computation” is subject and interest-
specific. ~ And, moreover, since research can be conducted quite
independently in both disciplines, it is not surprising that these two routes
did not cross very often. Only in recent times do we witness a mutual
interest, as logic became more sensitive to real-world constraints
(considering complexity theory, for example). Alternative conceptions of
computations such interactive Turing machines, games, etc. are thought to
overcome the entfremdung of the classical logical models from worldly
concerns.

COMPUTATION FROM A LoGicAL PERSPECTIVE
The logical side of the history of computation, which started in the Thirties

with different attempts to make the intuitive notion of computation (then
called “effective calculability”) formally precise, was solely concerned with

! The timeline available at IEEE’s web site demonstrates graphically the enormous gain in
momentum of computer development ever since the first transistor was constructed in 1947.
See also Williams, 1997.



what could be computed in principle. This, in turn, required a thorough
analysis of the intuitive notion of computation. The most crucial insight of
the Thirties with respect to the meaning of this intuitive notion of
computation was most likely the fact that three different attempts to
characterize it formally could be proven equivalent: the class of recursive
functions equals the class of A-computable functions equals the class of
Turing machine computable functions. These equivalence results are
possible, because what “computing” means with respect to any of the
suggested formalisms is expressed in terms of functions from inputs to
outputs; and using functions as mediators, the different computational
formalisms can be compared according to the class of functions they
compute.

Later, other formalisms such as Markov algorithms, Post systems,
universal grammars, PASCAL programs, as well as various kinds of
automata were also shown to “compute” the same class of functions, referred
to as recursive functions (e.g., see Hopcroft and Ullman, 1979). The
extensional identity of all these formalisms supports a famous thesis
formulated by Church as a definition:

“We now define the notion [...] of an effectively calculable function of positive
integers by identifying it with the notion of a recursive function on positive
integers (or of a A-definable function of positive integers). This definition is
thought to be justified by the considerations which follow, so far as positive
Jjustification can ever be obtained for the selection of a formal definition to
correspond to an intuitive notion”. (Church, 1936, p. 356, also in Davis, 1965, p.
100)

Using the various equivalent results it follows from “Church’s Thesis”
that any of the above mentioned formalisms captures our intuitive notion of
computation, that is, what it means to compute. Although this thesis cannot
be proved in principle as mentioned by Church himself, it became more and
more plausible as newly conceived computational formalisms were shown to
give rise to the same class of “computable” functions.

What is common to all these computational formalisms besides their
attempts to specify formally our intuitive notion of “computation”, is their
property of being independent from the physical. In other words,
computations in any of these formalisms are defined without recourse to the
nature of physical systems that (potentially) realize them. Even Turing’s
machine model, the so-called “Turing machine”, which is considered the
prototype of a “mechanical device”, does not incorporate physical



descriptions of its inner workings, but abstracts over the mechanical details
of a physical realization.

Interestingly enough, Turing (1936) invented his machine model of
“computation” in order to capture the human activity of “computing”, i.e.,
the processes a person (the “computer”) goes through while performing a
calculation or computation using paper and pencil. He was not concerned
with digital computers at all or the foundations of computing.! Rather, he
focused on the problem of analyzing and modeling what the possible
processes are that people go through when they “blindly” follow rules to do
computations. In his analysis of the limitations of the human sensory and
mental apparatus five major constraints for doing “automatic computations”
crystallize (I follow the presentation in Gandy, 1988):*

1. Only a finite number of symbols can be written down and used in any
computation

2. There is a fixed bound on the amount of scratch paper (and the symbols
on it) that a human can “take in” at a time in order to decide what to do
next’

3. At any time a symbol can be written down or erased (in a certain area on
the scratch paper called “cell”)

4. There is an upper limit to the distance between cells that can be
considered in two consecutive computational steps

5. There is an upper bound to the number of “states of mind” a human can
be in and the current state of mind together with the last symbol written
or erased determine what to do next

Although there are certainly some steps in Turing’s analysis of an
abstract human being performing calculations that seem rather quick and not
well supported, one can summarize the above in Gandy’s words as follows:

“The computation proceeds by discrete steps and produces a record consisting of

! Although Turing used the term “computer” to refer to whatever is doing the computations,
he did not intend it for a digital computer, but for a human person doing computations—at
that time digital computers did not yet exist.

? Note that “Turing’s account of the limitations of our sensory and mental apparatus is
concerned with perceptions and thoughts, not with neural mechanisms. And there is no
suggestion that our brains act like Turing machines.” (Gandy, 1988, p. 87)

3 This requirement does not exclude an arbitrary amount of scratch paper. It just delimits
the range of perception, i.e., the amount of information the human “computer” can use at any
given time to determine the next step in the computation.



a finite (but unbounded) number of cells, each of which is blank or contains a
symbol from a finite alphabet. At each step the action is local and is locally
determined, according to a finite table of instructions.” (Gandy, 1988, p. 81)

In other words, by “abstracting away” from persons, scratch paper, etc.,
Turing (1939) claimed that all “computational steps” a human could possibly
perform (only by following rules and making notes) could also be performed
by his machine. In this way the Turing machine became a model of human
computing, an idealized model to be precise, since it could process and store
arbitrarily long, finite strings of characters. It is worth pointing out that
Turing, as opposed to Church, did not only state a “thesis” regarding the
intuitive notion of computation, but he actually proved a theorem (see also
Gandy, 1988, p. 83, who restates Church’s Thesis as Turing’s Theorem):
“Any function that can be computed by a human being following fixed rules,
can be computed by a Turing machine”.

Turing also believed the converse, that every function computed by a
Turing machine could also be computed by a human computer (although
this, again, does not take time and space restrictions seriously, but rather
assumes an abstract human computer not subject to such worldly
limitations). In particular, Turing was convinced that “the discrete-state-
machine model is the relevant description of one aspect of the material world
—mnamely the operation of brains”. (Hodges, 1988, p. 9, see also Jack
Copeland’s chapter). The origins of Turing’s claim can be found in the
intrinsic connection between the notion of “computability” and Godel’s
notion of “demonstrability” (of a proof in a formal system): that which can
be “demonstrated” using “definite methods” amounts to what can be done by
a Turing machine (see Turing, 1936). By relating the limitations of formal
systems as pointed out by Godel to the limitations of his machine model,
Turing

“[...] perceived a link between what to anyone else would have appeared the
quite unrelated questions of the foundations of mathematics, and the physical
description of mind. The link was a scientific, rather than philosophical view;
what he arrived at was a new materialism, a new level of description based on
the idea of discrete states, and an argument that this level (rather than that of
atoms and electrons, or indeed that of the physiology of brain tissue) was the
correct one in which to couch the description of mental phenomena” (Hodges,
1988, p.6)



THE BirRTH 0F COGNITIVE SCIENCE

The independence of computations from their physical realizers was one
major source of attraction for some psychologists in the late Fifties. Another
was the potential of computers to process information—an ability thought to
underlie human cognition. The information processing capabilities of
computers and the possibility of specifying by virtue of programs exactly
how information is processed, opened doors for an interesting thought:
maybe cognition viewed as information processing could be understood in
terms of computations? Maybe cognitive functions are computations. If so,
explanations of mental processes in terms of programs would be
scientifically justifiable without having to take neurological mechanisms into
account. The wetware would simply be viewed as a computer on which the
software “mind” is running (or if not mind itself, then at least all the
cognitive functions that constitute it). Consequently, this position would go
a long way in establishing cognitive psychology as a serious area of
scientific research.

The analogy underlying the usage of the terms ‘“computer” and
“program” in cognitive psychology, the so-called “computer metaphor”, can
be succinctly summarized by saying that “the mind is to the brain as the
program is to the hardware” (Searle, 1980, or Johson-Laird, 1988). The
guiding ideas of this metaphor became so prominent, originally in
psychology, later in artificial intelligence, as to establish “computationalism”
(also called “the computational claim on mind”) as a genuine research
paradigm. This paradigm was the midwife assisting in the birth of what we
nowadays know as cognitive science (e.g., see Gardner 1985).

To pinpoint the various positions and claims subsumed under the notion
computationalism would be a research project in its own right. Just to give
you an idea of what can be found in the literature, slogan-like phrases such
as “the brain is a computer”, “the mind is the program of the brain”,
“cognition is computation”, or “the mind is a computer”, are not uncommon,
and these are only a few. Note that in a phrase like “cognition is
computation” the interpretation of every single word matters, “is” included
—do we interpret “is” as “extensional identity” or “extensional inclusion”?
Or do we read it intensionally, etc.? Such statements are necessarily
condensed and cannot be taken at face value; for if they were read together,
they would equivocate essentially distinct notions (such as program and
process, mind and cognition, etc.).



There are other descriptions of computationalism that emphasize the
information processing capabilities of computers. For example,
computationalism has been characterized as the conjunction of the following
three theses “thinking is information processing”, “information processing is
computing (is symbol manipulation)”, and “the semantics of those symbols
connect mind and world”.

In any case, computationalists have been content with notions of
computation as provided by formal logic, thus respecting the delimiting
results of the 30ies and 40ies (such as Turing machines, Post correspondence
systems, Markov Algorithms, A-computable functions, recursive functions,
PASCAL programs, etc.), and in particular, the Church-Turing thesis. By
taking computationalism as “the hypothesis that cognition is the computation
of functions” (as Dietrich, 1990, for example, suggests in his computational
manifesto  entitled  “computationalism”),  this  dependence  of
computationalism on classical notions of computation, that is, on what it
means to compute a function, becomes apparent.

Two main assumptions are buried in the computer metaphor: 1) that the
mind can somehow be “understood as a computation” or be “described by a
program” (this will require the adoption of a notion of computation or
program, respectively), and 2) that the same kind of relation that obtains
between programs and computer hardware (i.e., the implementation relation)
obtains between minds and brains too. Assumption 1) has led to fertile
research in psychology as well as artificial intelligence collecting evidence
for its truth, while assumption 2) by and large remained at the level of an
assumption.'

Expanding a bit on assumption 1), to get a better idea of how to think of
the mind as being described by a program, computation can be viewed as the
rule-governed manipulation of representations. After all, this is what
computers do: they manipulate symbol tokens (e.g., strings of bits), which
themselves are representations of the subject matter the computation is about
(compare this to Newell’s notion of “physical symbol system’). This way of

! This is so, presumably, because neither Al researchers nor psychologists need to pay
attention to it. Al researchers, who build computational models, implicitly deal with the
implementation relation of software on computer hardware on a daily basis, but are not
concerned with the implementation relation of minds on “brain hardware”; nor are
psychological studies, which remain at the level of “program description”. Neuroscience
would probably be the closest discipline concerned with implementation issues of brains.
Yet, neuroscientists do not attempt to relate program-like descriptions to brain areas, rather
they attempt to study the functional role of these areas (with respect to the rest of the brain)
directly by virtue of their physiological functions.



thinking of computation as rule-governed manipulation of representations is
typical of philosophers (e.g., see Fodor, 1981, or Haugeland, 1985). The
representations, on which computations operate, have both formal and
semantic properties; the formal properties are the ones being manipulated by
the computations, as the semantic properties are not causally efficacious.

The representational capacity of computations is only one of the many
reasons, why computation is such an attractive candidate for explaining
cognition (others include the potential of computational processes to have
semantics, the causal efficacy of computations, the algorithmic specifiability
of processes, etc.). Another important reason is that the notion of
computation is a logically heavily studied, well-worked out notion, in
particular, the notion of “Turing machine computability” (whence the
reliance of most computationalists on these “classical” notions of
computation). Yet another major plus of computations is that we know how
to implement them, i.e., how to connect an abstract description of processes
(in terms of programs) to a concrete physical system (i.e., the computer
implementing the program)—assumption 2) underlying computationalism
from above.> Finally, as already mentioned in the beginning, it is the crucial
idea that programs, or more generally computations, somehow “mirror” the
causal structure of computers (=hardware) in particular, and physical
systems in general, which plays a central role in any computationalist
account.

REcENT ATTACKS ON COMPUTATIONALISM

Computationalism has always been under attack from various directions
even before it was officially recognized as such. As I pointed out before, the
idea that mind could be at least in principle mechanizable, is not a product of
this century, but goes back at least to the time of Leibniz. Yet, the
possibility of using formal methods to characterize the notion of
computation, especially the notion of “effective procedure”, enabled critics
of computationalist views to utilize results from formal logic (Godel’s
incompleteness theorems being the most commonly quoted) in order to make
their points more rigorously (see Lucas, 1961). Of course, there were other

2 Cp. this to Brigdeman’s statement about the subject matter of artificial intelligence:
“Artificial intelligence is about programs rather than machines only because the process of
organizing information and inputs and outputs into an information system has been largely
solved by digital computers. Therefore, the program is the only step in the process left to
worry about.” (Bridgeman, 1980).



objections, not based on formal logic (e.g., Searle’s Chinese room thought
experiment), but none of them seemed to endanger the computationalist
program as much as recent attacks coming from a completely different
angle, and most importantly, from within cognitive science itself.

In particular, connectionists and dynamicists have tried to replace the
notion of computation with alternatives arguing that the
symbolic/computational level of description so crucial to computationalism
cannot be taken for granted. While some connectionists believe that
symbolic activity should emerge from a ‘“sub-symbolic level” (e.g.,
Smolensky, 1988), most dynamicists find the symbolic level of description
superfluous altogether and argue instead for an explanation of cognition in
terms of dynamic systems (e.g., Port and van Gelder, 1995). Others—
biologists and neuroscientists, for example—are trying to “go in under” the
computational level to understand the mind directly at the level of the brain.
Diversely, some social theorists and roboticists have argued that the essence
of intelligence is to be found in situated interaction with the external world,
rather than in a purely internal world of symbol manipulation.

The new objections supplementing the old ones are based on a broad
spectrum of different reasons such as problems with the notion of
representation (including inappropriate applications of the concept to various
cognitive phenomena), wide notions of content and supervenience, universal
realization results, etc. just to name a few. Yet, one of the major lines of
attack on computationalism is advanced by the so-called dynamicists, who
criticize the non-dynamical nature of computational systems. For example,
van Gelder (1998) argued that what is essential to computation is the notion
of an effective procedure, and essential to that is the notion of discrete steps
in an algorithm. He claims that this discreteness, in both its temporal and
non-temporal aspects, prevents computation from explaining many aspects
of cognition, which he considers to be a fundamentally dynamical
phenomenon.

Hence, instead of using any of the standard computational formalisms,
one ought to use dynamical systems in describing cognitive functions, the
idea being that every real-world system (and thus cognitive systems as well!)
involving change can potentially be modeled by a dynamical system—this is
what dynamic systems have been designed to do. According to the
respective system, this will happen at different levels of description, at the
very low level of fields (take Maxwell’s equations), or the very high level of



Dynamical systems are collections of mathematical equations, -either
differential or difference equations, depending on whether time is taken to be
discrete or real-valued. Independent of the assumptions on time, the values
of the variables for each relevant physical dimension can also either be
discrete or real-valued. So there is a total of four combinations, all of which
are possible: all variables can be either discrete or continuous, but it is also
possible to have a system with discrete variables for physical dimensions, yet
a real variable for time. And the fourth option is to have time discrete, but
all variables for physical dimensions continuous. Which option is used
depends solely on the kind of physical system, the behavior of which one
wants to describe as a dynamical system as well as pragmatic assumptions
and constraints (such as “exactness of measurements”, “required degree of
precision”, etc.). Dynamic systems are not committed to any particular
physical quality either (the same way they are not committed to the discrete-
continuous distinction). They are not committed to particular notions of
physical states, nor are they committed to a realist or instrumentalist
interpretation of a theory’s entities. Whatever changes over time, can be
modeled, and it does not even have to be time, because in case of difference
equations all that matters is order! For that very reason, dynamical systems
are sometimes viewed as encompassing computational systems, although
exactly how they “encompass” them is what all the theoretical weight hinges
upon (e.g., see Scheutz, 1999).

human decision making (take Busemeyer and Townsend’s decision field
theory).'

Another attack, also advanced by dynamicists, challenges the role of
representation in cognitive science in general, and a forteriori can be seen as
a challenge to the role of computation in cognitive science. Especially
psychologists have argued that certain allegedly ‘“cognitive” tasks have
nothing to do with cognition proper, but are really motor control tasks that
can be explained and modeled in the language of dynamical system without
resorting to manipulations of representations (e.g., see Thelen and Smith,
1994). As a consequence, the following question arises: to what extent does
the notion of representation have to be involved in explaining cognitive

! To describe a physical system, one needs to introduce a variable for each relevant physical
dimension and consider it as a function of time. The simplest way to specify the behavior of
the physical system would be to provide graphs of each such variable over time, that is, to
have a set of functions X;(¢), X»(?), ... , Xu(t) where Xi(f) yields the “state” of the relevant
physical dimension X; at time ¢. This set of functions will determine the behavior of the
system for all times. However, it does not reveal the possible dependencies of the X; on each
other. This is where differential equations come in handy. They provide a way of specifying
the various interdependencies of different variables in such a way that graphs of each variable
can be obtained from them, yet the interdependencies are also brought to the open. The
nature of these interdependencies will become a crucial factor in an explanation of the
behavior of the system, and the mathematical theory of dynamical systems seems well-suited
to describe quantitatively systems that exhibit such interdependencies, or in Clark’s terms
(1997) “continuous reciprocal causation”.



abilities; and furthermore: is it possible to invoke the concept of
representation within dynamical system theory itself when needed, thus
bypassing the “classical representational=computational” level of description
(see the various articles in Port and van Gelder, 1995)?

Quite a few attacks against computationalism have also been launched
from a philosophical direction. For example, it has been argued that some
mental states are relationally individuated (Putnam, 1975), while
computational states are not (Fodor, 1981). Moreover, philosophers have
argued that traditional notions of computation are conceptually inadequate
and at best incomplete (Smith, forthcoming).

Some, for example, claim that various questions about the nature of
computing as we see it in computational practice will not receive a satisfying
answer, if computation is viewed as computation of an input-output function.
For example, there are questions about the implementation of a computation,
that is, how a function is computed: does computing a function imply
“following rules” or “executing an algorithm”? Does the computation of a
function have to be productive or would non-algorithmic methods, for
instance, that arrive at the same results count as well? Other more general
concerns regarding the reductive approach of viewing computation as the
computation of a function itself have been voiced: is it true that every
computation can be explained as the computation of a function? Consider,
for example, Arcade video games. What input-output functions do they
compute? Or take operating systems. They are specified by programs,
which are designed to never halt. Contrast this with the classical approach,
where such so-called “divergent” functions are neglected.

Another worry is with the notion of implementation: how do we establish
that a computational description does indeed describe the processes in a
physical system? Motivated by computational practice, it is widely held that
this mirroring is established by setting up a functional correspondence
between computational and physical states. For example, there is a tight
correspondence between parts of the architecture of a von Neumann CPU
and expressions of the assembly language for that CPU. Another example
would be a logic gate (e.g., an AND gate), whose “computational capacity”
is described by a Boolean function, the values of which in turn can be related
to physical magnitudes in the physically realized circuit.

While we can more or less easily establish such a functional
correspondence between physical and computational states for certain
artifacts (i.e., devices we have designed to allow for computational
descriptions), it is unclear that this can be done for natural kinds (such as



brains) too. In particular, one has to be aware that any such correspondence
depends crucially on “adequate” physical states:*> computations “mirror” the
causal structure of a system under a given correspondence function between
computational and physical states only relative to the choice of the physical
states. Computational explanations of the behavior of a given physical
system, therefore, depend essentially on those physical states of the system
that can be set in correspondence to some computation. This dependence,
per se, is not problematic as long as one can assume ‘“appropriate physical
states” of a system (e.g., as in the case of electronic devices). If, however, it
could be shown that for any computational description one can find
“physical states” of a given system, which can be set in correspondence with
the computational ones and are, furthermore, appropriate (in a certain sense
of “appropriate” which will depend on the underlying physical theory), then
computational explanations would be in danger: every system could then be
seen to compute! In other words, computationalism would be vacuous if
every physical system could be viewed as implementing every computation.
And, indeed, it has been argued that any (open) physical system, for
example, can be seen to implement any finite state automaton, or that walls
implement the Wordstar program (as has been suggested by Putnam, 1988,
and Searle, 1992, respectively) under an intuitive notion of implementation.
If that is so, then something clearly must have gone wrong with our
intuitions, since such a view of computation and implementation is not
tenable, neither from the theoretician’s nor the practitioner’s perspectives.
While all of the above-mentioned critiques of computationalism vary,
they share a common theme: computation fails as an explanatory notion for
mind, because computation necessarily neglects the real-time, embodied,

% In the case of electronic devices the appropriate physical states can be determined either
by asking the engineers who designed the devices or by looking at the blueprint and
comparing it to the computational description of the device. In the case of biological systems,
however, such states are not clearly defined. Consider, for example, physical states of a
pyramidal cell: which of those states could correspond to computational states such that the
respective computation captures essential parts of the causal structure of these cells? It has
been suggested that “firing” vs. “not firing” would be “natural” candidates (e.g., by
McCulloch and Pitts, 1943), but it turns out that this computational model is too reductive as
essential temporal processes (such as temporal integration of signals, maximal firing rates,
etc.) are completely neglected. Hence, more factors about pyramidal cells need to be taken
into account, yielding more physical states that have to correspond to computational ones, etc.
Artificial neural networks seem to be promising candidates for such computational
descriptions, but the issue has not to my knowledge been resolved. It might well be that in the
end the complex behavior of pyramidal cells defies a computational description, but this is
obviously an empirical issue.



real-world constraints with which cognitive systems intrinsically cope. This
is a consequence of assuming computation to be defined solely in abstract
syntactic terms (abstracting over physical realization, real-world interaction,
and semantics).

How can we continue to hold on to computationalism, it is asked, when it
seems, for example, that digitality is restrictive, formal symbol manipulation
is not sufficiently world-involving, and Turing machines are universally
realizable to the point of vacuity? It should not come as a surprise that these
issues together with recent progress made by dynamicists (while the classical
approach prima facie appears stagnant), led many cognitive scientists to
abandon computationalism altogether.

A New COMPUTATIONALISM?

Despite the dire prospects for computationalism currently envisioned by
some dynamicists, an increasing number of researchers are not willing to
give up what has been in nuce a quite successful approach. Rather they are
motivated to reconsider the very notion of computation as well as the whole
enterprise of computing and computational modeling. These researchers are
inspired by their recognition of the fact that real-world computers, like
minds, also deal with issues of embodiment, interaction, physical
implementation, and semantics. This recognition allows them to consider
the possibility of classical computationalism failing not because computing
is irrelevant to mind, but because purely “logical” or “abstract” theories of
computation do not to address real-world aspects that are vital to both (real-
world) computers and minds. Perhaps, so it is speculated, the problem lies
not so much in computing per se, but in our present understanding of
computing, in which case the situation could be remedied. If such a
successor notion of computation can be defined (respecting the real-world
nature of computers and computing), the resultant rehabilitated
computationalism may still be the best bet for explaining cognition.

Note that if contrary to common (mis)perception computationalism and
“dynamicism” are not mutually exclusive, it might be possible to combine
the strengths of each. Some attempts have been made to combine both
approaches, in particular, with respect to the notion of representation (e.g.,
based on results from neuroscience, the idea of “emulators”, i.e., dynamical
circuits that serve as models of parts of the outside world and thus “stand in”
for these parts, plays a prominent role in finding a dynamic substitute for the
classical, symbol oriented notion of representation; e.g., see Clark and



Grush, 1999). While some of the “hybrid models” (i.e., models that include
dynamical as well as computational components) successfully integrate both
formalisms, they are silent about the general relationship between
computations and dynamic systems. Rather, they simply demonstrate that in
this very specific instance, computational and dynamical systems methods
and explanations can be combined in a particular way. This leaves
unanswered, however, what the general relationship of both modeling
paradigms is. What is lacking in these individual symbiotic attempts is a
thorough analysis of the advantages and disadvantages of each approach
together with their interplay on a conceptual as well as an applied level. A
new notion of computation more closely tied to the real-world constraints
imposed by the implementing systems might be able to elucidate the relation
between computational and dynamical descriptions.

Other issues that will have to be addressed by a successor notion of
computation are the program/process distinction, the notion of
implementation and questions of physical realization, real-time constraints
and real-world interactions, the use and limitations of models, relations
between concrete and abstract, the proper interpretation of complexity
results, the relation between computation and intentionality, “wide” notions
of computation, computational practice, and so on. I believe that all of these
aspects of computation will eventually play a role in a notion of computation
that can serve as a firm foundation for cognitive science in the new century.
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