Affective Action Salection and Behavior Arbitration
for Autonomous Robots

Matthias Scheutz
Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
nscheut z@se. nd. edu

Abstract: In this paper we suggest an action
selection and behavior arbitration scheme for
autonomous robots, called AASBA (for "affective
action selection and behavior arbitration™), which
uses affective states to select the robot's behavior at
any given time and pass control from the currently
active behavior to the newly selected one. AASBA
views action selection and behavior arbitration as
an integral part of the agent architecture. The
major strength of the proposed scheme is that it can
be employed in a variety of agent architectures and
that it allows for modifications and extensions of the
agent architecture without the need of restructuring
the overall control system. Preliminary evaluations
of the AASBA scheme are performed with a sample
implementation of a two-layered architecture (based
on the AASBA scheme) on an autonomous robot.

Keywords: Behavior arbitration, action selection,

agent architectures, affective states, autonomous
robots

1. Introduction

Action sdlection, the process of deciding which
action to execute next, and behavior arbitration,
the process of taking control away from the
component of an agent architecture executing the
current action, have been investigated extensively
in autonomous agent research (e.g., [2], [3], [5],
[10], [12]). Many action selection schemes have
been compared with respect to various properties
(eg., [9], [10]). But typically, they are not
compared with respect to (1) how behavior
arbitration and action sdlection areintegrated into

the agent architecture, and (2) how agent
architectures with particular behavior arbitration
and action selection mechanisms can be extended.

In this paper we propose a scheme, which
essentially uses affective states of an autonomous
robot (e.g., motivational and emotional states) for
action sdection and behavior arbitration— for
easy reference called AASBA (“affective action
sdection and behavior arbitration”). It views
action sdection and behavior arbitration not as
separate from an agent architecture, but rather
integrates both into the agent architecture in a
unified way. The major strength of the proposed
scheme is that it can be employed in a variety of
agent architectures and that it alows for
modifications and extensions of the agent
architecture without the need of restructuring the
overall control system.

2. Distributed Action Selection and

Behavior Arbitration

Motivated by the classical ethological view of
behavior arbitration (eg., [6]), researchers in
artificial intelligence and robotics have pursued
various ways of implementing distributed action
sdection schemes (eg., [5], [12]), where the
decision of which action to perform next is
reached in various places in parald (i.e, in
many components in the agent architecture) as
opposed to one place (i.e, in a single
component).

In action sdection schemes, the overall
behavioral capacity of an agent is typically
decomposed into a fixed set of individual
“behaviors’, each of which has associated a
numeric activation value and an action that can
be performed by the agent. All behaviors are
implemented in the same kind of components, call
them “behavior nodes’. Behavior nodes are
arranged in a graph connected by various kinds
of links (at the least excitatory and inhibitory
links), which alow them to compete for
activation. Actions are then sdected according
the activation level of each behavior node: only
the node with the highest activation gets to
execute its action. Often, such behavior nodes
are arranged in “ competitive clusters’. Thisisto
allow actions that use different effectors to be
peformed in parald, while ensuring that
mutually incompatible behaviors cannot access
the agent’s effectors at the same time. In
addition, competitive clusters are often arranged
in hierarchies, where higher level clusters are
concerned with more “abstract” actions or action
Sequences.

Behavior arbitration is then achieved by using
an algorithm, which for each competitive cluster
interrupts the action of the current node if its
activation level has dropped below that of
another node, and starts the action of the node
with the higher activation. This algorithm does
not have a representation within in the agent
architecture (i.e, there is no component that
implements this algorithm).

While the action sdection mechanism implicit
in the distributed competition for activation has
several advantages over local action selectionin a
single component (see, for example, [5]), thereis
at least one major disadvantage to an “external”
arbitration mechanism that does not have a
representation within the architecture: it cannot
be modified by the agent—this is a prablem for
any mechanism that is not part of the architecture
per se. Yet, there are many circumstances where
a flexible behavior arbitration mechanism that
can be modified (atered, extended, or even
learned) by the agent would be advantageous.

A common problem with distributed action
sdection as described, for example, is that nodes
with similar activation levels may frequently

cause the arbitration mechanism to switch among
their actions. This may lead to a state of the
system, where actions can never complete,
because they are interrupted too early. Ye, all
actions could have completed, had the respective
nodes only been active for a little longer, say.
With an explicit architectural representation of
the arbitration scheme and a learning modul e that
notices that actions do not complete, the agent
could have learned to “block” behavior
arbitration for this particular competitive cluster
for a short time whenever it is triggered instead
of performing it right away. Furthermore, if the
above method was not successful in a few
exceptional cases, the agent could have learned to
“block the blocking”, and hence apply the
original arbitration mechanism in those cases.

In the following, we will introduce the AASBA
scheme to show (1) how behavior arbitration can
be integrated into an agent architecture using
behavior nodes and (2) how such “blocking” or
“ddaying” of behavior arbitration can be
achieved using simple “affective states’. The
first point is particularly important since we
believe that arbitration schemes should not
enforce architectural designs (e.g., such as the
hierarchical arrangements of behavioral modules
in subsumption architectures [3], which are
required for the behavior arbitration mechanism
implicit in the subsumption design methodol ogy).

3. Affective Behavior Arbitration in

the AASBA Scheme
In the above described distributed action
selection scheme, affective states are typically
implemented as behavior nodes that do not have
an action associated with them, but can modify
and trigger the actions of other nodes. In
AASBA, however, affective states can have an
“internal action” associated with them: a
behavior arbitration operation (in accordance
with our construal of affective states as initiators
and modulators of agent behavior). Consider, for
example, the following simple agent (Figure 1),
which can exhibit two overall behaviors: foraging
and playing.

The agent also has a way of monitoring its
hunger leve, which it will use to decide which
action to perform: if the agent is not hungry, it

will engage in playing, but if it is hungry, it will
look for food. The architecture of the agent
consists of three behavior nodes, one for the
foraging action, one for the playing action, and
one for the affective “hunger” state. While the
first two nodes have the obvious actions
associated with them, the hunger node has an
arbitration operation associated with it, which
constantly monitors the activation level of the
first two states and effectively switches control to
whichever state has the highest activation. Note
that “hunger” is technically speaking its “own
competitive’ group, henceit is active all thetime.

hunger e

competitive cluster

Figure 1. A competitive cluster consisting of the two
complex actions “forage” and “play”, which are
arbitrated by the affective “hunger” state. Arrows
indicate excitatory links, circlesinhibitory
connections. Neither sensory inputs nor motor
outputs are depicted.

The details of the process of taking control
away from one node and passing it to another
node depends on the particular agent architecture
as wel as the nature of the associated action
(e.g9., whether it needs to finish first or whether it
can be interrupted). Yet, common to all
implementations of this process is that they
perform operations on the architecture as
opposed to the effectors of the agent.
Specifically, there are two parts to the AASBA
scheme: (1) the implementation-independent
triggering of the arbitration process, which
occurs by way of the functioning of behavioral
networks (i.e., the “action selection” part) and (2)
the implementation-dependent switching of
behaviors (i.e., the arbitration operation).

While behavior arbitration in the above
example works exactly the same as in other
distributed action sdection mechanisms—the
node with the highest activation gets to execute
its action—the difference between AASBA and
other schemes like contention scheduling ([4],

[8]) can been seen in a dight modification of the
above example. Consider an extended version of
the above agent with a second affective state, call
it “persistence’, which is located in a competitive
cluster together with the *“hunger state’
(arbitration in this cluster follows the rule that
the state with the highest activation will always
be active).! “Persistence’ has no behavior
associated with it and is always reset to a high
activation value when behaviors are switched,
after which it decays slowly. Although there is
no arbitration mechanism associated with
“persistence’, it can effectively block the
arbitration mechanism associated with “hunger”
as long as its activation is higher than that of
“hunger”. Hence, it is possible for “forage’ to
have a higher activationthan “play”, while the
agent remains in play mode until the activation of
“hunger” surpasses that of “persistence’.

The second example shows that it is possible
in AASBA for a behavior node to have the highest
activation in a competitive cluster without
actually being active (i.e, without having its
behavior take control). It also hints at the
flexibility of the AASBA scheme it can
accommodate hierarchical behavior arbitration
(such as voting schemas or the arbitration
implicit in the subsumption architecture) as well
as non-hierarchical combination schemes (such
as schema-based arbitration). Furthermore, it is
possible to modify behavior arbitration without
having to alter the arbitration operation itsdf,
eg., by changing the weights of incoming and
outgoing connections of affective states that have
associated arbitration operations. These weight
changes, in turn, could be the result of a
learning/adaptation process, which effectively
alows the agent to “reorganize’ its priorities
without having to go through major architectural

! Note that arbitration operations for competitive clusters
of affective states, whose associated actions are
arbitration mechanisms, amounts to “meta-arbitration”
among those mechanisms (as they arbitrate arbitration
operations). Meta-arbitration in the above case can be
easily implemented by another node without any
connections to any other node. This new node will be
active al the time, hence execute its action continuously,
which simply is the standard arbitration mechanism for
competitive clusters.

changes or without the need for higher leve
explicit goal representations in a ddiberative
layer, say. Furthermore, the AASBA scheme
allows for different arbitration strategies (eg.,
hierarchical and non-hierarchical) within the
same architecture, all of which can be performed
inparalld.

4. A Implementation of the AASBA

Scheme on a Robot

To test the proposed AASBA scheme in practice,
we defined a particular architecture based on the
AASBA scheme for an autonomous robot, which
had to perform the following three tasks (at
different times): explore the environment, find a
target, and play with the human observer.?
“Explore’ is a set of behaviors that allow the
robot to navigate without collisions through its
environment—an office room—making a map of
yet unexplored territory. “Find” is a related
collection of behaviors, which allow the robot to
look for certain target objects in its
environment—soda cans in our setting—poassibly
using its internal map to orient itsdf and move to
a place where it has found a target object
previously. “Play”, finally, is a set of behaviors,
which permit the robot to play “hide-and-seek”
with a human partner. Each individua
behavioral module provides furthermore a
“progress value’, which reflects how much
progress has been made towards accomplishing
that module s major task. This value can be used
as input to other states.

The architecture consists of two layers: a
lower layer competitive cluster comprising all
behavior nodes needed to implement the three
complex actions (i.e, “explore’, “find’, and
“play”) and an upper layer of seven affective
states (to be described below). Similar to other
distributed action sdection architectures ([5],
[12]) and general interactive activation and
competition networks ([7]), the activation of each
“behavior node’ depends on various factors such
as the activation of other nodes, sensory input

2 Each of these complex actions consists of various simpler
actions that contribute to overall behavior. Because of
space limitations, however, we will not be able to
describe them and their implementations here.

(from internal and external sensors), and the
previous activation. In addition, there are also
special feedback mechanisms that monitor the
execution of each action (eg., to indicate the
progress made, or whether the action was
interrupted). The activation levd a(t) of a
behavior node at timet is given by

a(t) = a(t—1) + minmax(t,a(t—1),netinput(t)) —
decay(t,a(t—1),goal (t))
where

netinput(t) = X(ext(t) + prop(t) —intra(t-1) +
extra(t—1) + progress(t))

The netinput(t) to a behavioral node is computed
by adding the weighted sums of all connected
external sensory inputs ext(t), proprioceptive
sensory inputs prop(t), extra-cluster behavioral
states extra(t), subtracting the weighted sum of
the respective activations of intra-cluster
behavioral nodes intra(t). If a behavioral state
has behaviors associated with it that provide
progress feedback, then these progress values are
added as wdl. The function minmax(t,x.y)
determines the interval of possible activation
levels of behavioral nodes dependent on time t,
inputs x and the previous activation leve .
Goal(t) is the activation leve on which the
behavioral state tends to settle over time if it did
not receive any input (e.g., a state like “hunger”
would have a goal value close to the upper limit
as hunger increases over time without any supply
of food). Decay(t,x,y) determines how fast the
activation level will move towards the goal state
as a function of time t, the previous activation
level x, and some goal statey (e.g., the activation
level of a node could increase in a non-linear
fashion over time if a certain threshold for the
activation leve is surpassed). Progress(t) is a
numeric value that reflects the progress made of
the action associated with the behavior node with
respect to the implicit goal of the action (if the
behavior node's action is object recognition, the
progress(t) could be a linear function of the time
it takes to perform edge detection, for example).

""""""""""""""" unclustered affective states ...
itation
frustration ™
persistence boredom
%, interest
“arbitrates | |
o
find explore b play

Figure 2. The two-layered architecture based on the
AASBA scheme for an autonomous robot: the upper
oval shows the affective states, whose associated
actions arbitrate the complex actions (indicated by
boxes) in the competitive cluster (indicated by the
lower oval). Arrowsindicate excitatory, circles
inhibitory influences. Not all connections are
depicted here, in particular sensory inputs and motor
outputs are missing.

As already mentioned, the architecture has
seven behavior nodes that implement affective
states labded “frustration”, “boredom”,
“agitation”, “curiosity”, “interest”,
“playfulness’, and “persistence’.* Except for the
agitation node, all other nodes are connected to
nodes implementing the three complex actions
and can influence ther activation levd in
complex ways (Figure 2). The lower-level nodes,
in turn, can also exert influence on the affective
states, which can be roughly divided into two
groups. “agitation”, “boredom”, *“persistence’,
and “frustration”, whose actions together
perform the arbitration operation to be described
bdow, and “interest”, “curiosity”, and
“playfulness’, which have no associated actions.
While the first group of affective states
effectively triggers the arbitration operation,
affective states in the second group represent the

®Note that these labels were chosen, because the
implemented states vaguely resemble ones usually
denoted by the label terms. However, there is no claim
made that they are the same as states (by the same
labels) in humans; in fact, we would argue that they are
not the same (e.g., see also Scheutz [11] for a critica
view of the common pratice to label states of an artifact
using terms from human psychol ogy).

overal activation level of the three sets of nodes
implementing the three complex actions, and thus
which complex action should become active once
arbitration is triggered. We shall briefly describe
the functional role of each affective state.

“Boredom” reflects the leve of activity of the
robot. It increases over time when the robot is
inactive, but is lowered every time the robot
makes use of its effectors (depending on the
magnitude of the activation of the effector).
“Persistence’ reflects the robot’s tendency to
stick with the behavior at hand (i.e., to keep the
currently active module active), while
“frustration” reflects (to some degree) the robot’s
inability to complete the current task (as
implicitly determined by the currently performed
action). All actions of lower-levd nodes
constantly decrease “persistence’ and increase
“frustration” values by virtue of being simply
active. Whenever the robot completes part of its
current goal, “frustration” is dightly sated, yet
any time actions fail to achieve their implicitly
associated goals “frustration” is dlightly fueed.
Repeated failures cause the robot to get more and
more “frustrated”’, but will aso increase
“persistence’. “Agitation” reflects an overall
levd of “frustration” of the rabot, which depends
on past failures to complete a task. Whenever a
task is completed successfully, “agitation” goes
down. The activation levels of the remaining
affective states increase over time and are
reduced through the behavior nodes that are
connected to them via inhibitory links. “Find”
and “ playfulness’ can in addition be increased by
sensory input, i.e., by buttons pressed by users
who want the robot to find target objects or who
want to play hide-and-seek.

Behavior arbitration is triggered, whenever
“boredom” is greater than the difference between
“frustration” and “persistence’ (i.e., the robot is
not performing useful actions) or “frustration”
exceeds “persistence’ (i.e., the robot repeatedly
fails at achieving its goal). If the current
complex action does not have the highest
activation value as measured in terms of the
activation level of its corresponding affective
state, contral is passed to the set of actions with
the highest activation. “Persistence’ and
“boredom” are reset to their resting values and

“frustration” is reset to the current “agitation”
value. If, however, the node performing the
current action has the highest activation levd (as
represented by its affective state), then
“agitation” is increased by the difference between
“persistence’ and “frustration” before resetting
“boredom”, “persistence’” and “frustration” as
before. Hence, the higher the agitation levd, the
more likely that behavior arbitration will be
triggered (as “frustration” will exceed
“persistence’). This is to ensure that if a set of
actions repeatedly failed in the past to achieve a
task, the robot will very frequently attempt to
switch to another complex action. As soon as the
activation of the affective state representing
another action exceeds the activation of the
affective state representing the repeatedly failing
action, the robot will switch to this other task.

5. Discussion
So far, we have only conducted a few
unsystematic, yet nevertheess very promising
experiments with this architecture to see if the
arbitration mechanism works according to our
expectations. For example, we verified the
following prediction about switching between the
“explore’ and “play” actions: if the robot is
placed in a new environment, it should explore
the environment until it repeatedly encounters
already visited locations (as marked in its internal
map). During that time it should be difficult to
interrupt the behavior, e.g., by requesting to play
“hide-and-seek”. Many repeated requests would
be necessary to make the activation of
“playfulness’ exceed that of “curiosity”. And
even if the activation is higher, it should take a
while for the arbitration mechanism to get
triggered, which then will cause the robot to
switch to “hide-and-sek” behavior (eg., if
frustration is low). If the robot, however, has
repestedly failed at finding new locations, its
frustration leve should be high, hence behavior
arbitration will occur faster. If, in addition, the
robot repeatedly failed to map out a room in the
past, it should switch to “hide-and-seek” right
away.

We are currently in the process of conducting
more systematic tests, which will also allow us to
finetune various parameters of the nodes

implementing the affective states so as to give the
robot an overall different appearance for different
purposes (e.g., “more focussed” as opposed to
“more distracted”). Our predications are that
this relatively simple architecture—depending on
the exact internal configuration—can exhibit a
vast variety of different behaviors and reactions,
which will be largely unpredictable for outside
observers. For this reason, the above
architecture using the AASBA scheme may be of
interest to the entertainment industry, where
unpredictable, yet believable agents are needed
for the ever-increasing demands of today’s
computer games.

Our test implementation based on the AASBA
scheme shows that integrating an arbitration
mechanism in an agent architecture can be
advantageous, e.g., the possibility of changing
the arbitration mechanism depending on internal
states (such as the activation leved of
“agitation”), which then gives rise to different
behavioral sequences. In the above scenario, for
example, it is futile to attempt to find new
locations, if such attempts have repeatedly failed
in the past. Hence, modifications of the
arbitration mechanisms can make an agent more
adaptiveto its current environment.

The AASBA scheme also demonstrates that
complex action control is possible without the
need for a ddiberative system (eg., the
supervisory system in contention scheduling that
is needed to generate top-down excitations on
action schemas, [1], [4], [8]). Furthermore,
AASBA is not restricted to software agents, but
can be used on robots under real-time
constraints. It is compatible with a great variety
of architectures and can be incorporated into
existing architectures for distributed action
selection.

Finally, a property of AASBA that seems
worth while exploring, is the possbility of
hierarchies of arbitration methods, where one
leve in the hierarchy determines which
arbitration scheme to use at the lower leve (the
lowest level being the level of actions). Such
hierarchies might be extremdy hedpful in
designing versatile agents that learn to adapt to
their environments by changing the way they
select their actions.

6. Acknowledgments

| would like to thank the students of my robotics
course (in Spring 2000) for ther various
contributions to the individual behavioral
modules of the architecture and in particular Tim
Brick for his subsequent help with the
implementation of the affective modd.

7. References

[1] Andronache, V. and Scheutz, M. Contention
Scheduling: A Viable Action-Selection
Mechanism for Robotics? In Proceedings of
MAICS 2002, AAAI Press, 2002.

[2] Arkin, R.C. Behavior-Based Robotics. MIT
Press, Cambridge, MA, 1998.

[3] Brooks, R.A. A Robust Layered Control System
for a Mobile Robot. IEEE Journal of Robotics
and Automation, Vol. RA-2, No.1, March 1986,
14-23.

[4] Cooper, R. and Shalice, T. Contention
Scheduling and the Control of Routine
Activities. Cognitive Neuropsychology, 17, 4,
298-338, 2000.

[5] Maes, P. A Bottom-Up Mechanism for Behavior
Sdlection in an Artificial Creature. In From
Animalsto Animats, MIT Press, 1991.

[6] McFarland, D. The Oxford Companion to
Animal Behavior, Oxford University Press,
1981.

[7] McCldland, J. L. and Rumehart, D. E. Paralle
Distributed Processing, Vol. 1 and 2, MIT Press,
Cambridge, 1986.

[8] Norman, D. A. and Shallice, T. Attention to
action: Willed and automatic control of
behaviour.” Reprinted in revised form in R. J.
Davidson, G. E. Schwartz, & D. Shapiro (Eds.)
Consciousness and sdlf-regulation, Vol. 4 (pp.
1-18). New York, Plenum Press, 1986.

[9] Snaith, M. and Holland, O. An Investigation of
Two Mediation Strategies for Behavioral
Control in Animals and Animats. In From
Animalsto Animats, MIT Press, 1991.

[10] Tyrrell, T. Computational Mechanisms for
Action Selection. Dissertation. University of
Edinburgh, 1993.

[11] Scheutz, M. Agents with or without Emotions?
In Proceedings of FLAIRS 2002, AAAI Press,
2002.

[12]Veasquez, J Modeling Emotion-Based
Decision-Making. In Proceedings of the 1998
AAAl Fal Symposum Emotiona and
Intelligent: The Tangled Knot of Cognition
(Technical Report FS-98-03). Orlando, FL:
AAAI Press, 1998.

