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Abstract

As human-machine teams are being considered for a variety of mixed-initiative tasks, de-
tecting and being responsive to human cognitive states, in particular systematic cognitive states,
is among the most critical capabilities for artificial systems to ensure smooth interactions with
humans and high overall team performance. Various human physiological parameters such
as heart rate, respiration rate, blood pressure, and skin conductance, as well as brain activity
inferred from functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG)
have been linked to different systemic cognitive states such as workload, distraction, or mind
wandering among others. Whether these multi-modal signals are indeed sufficient to isolate
such cognitive states across individuals performing tasks or whether additional contextual in-
formation (e.g., about the task state or the task environment) is required for making appropriate
inferences remains an important open problem.

In this paper, we introduce an experimental and machine learning framework for investi-
gating these questions and focus specifically on using physiological and neurophysiological
measurements to learn classifiers associated with systemic cognitive states like cognitive load,
distraction, sense of urgency, mind wandering, and interference. Specifically, we describe
a multi-tasking interactive experimental setting used to obtain a comprehensive multi-modal
dataset which provided the foundation for a first evaluation of various standard state-of-the-art
machine learning techniques with respect to their effectiveness in inferring systemic cognitive
states. While the classification success of these standard methods based on just the physi-
ological and neurophysiological signals across subjects was modest, which is to be expected
given the complexity of the classification problem and the possibility that higher accuracy rates
might not in general be achievable, the results nevertheless can serve as a baseline for evalu-
ating future efforts to improve classification, especially methods that take contextual aspects
such as task and environmental states into account.
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1 Introduction
Recent advances in robotics and autonomous systems point to a future where humans and machines
will jointly perform tasks, ranging from collaborative manufacturing with industrial co-robots, to
the many harvesting scenarios in agriculture, search and rescue operations after natural disasters,
deep space missions, and many more. Imagine a joint ground-air search and rescue mission in
an urban environment after an earthquake where a team of first responders is tasked to conduct a
search for wounded people in collapsed buildings. The mission is supported by an autonomous sys-
tem S consisting of various networked unmanned ground vehicles (UGVs) and unmanned air vehi-
cles (UAVs) that can monitor a variety of important systemtic cognitive states of their human team
members in real-time while performing their own assigned tasks (e.g., see [100] for the description
of a computational framework). As two human searchers are trying to deploy communication de-
vices with the help of UGVs, first their sense of urgency and subsequently their cognitive workload
are both increasing as the process turns out to be more complicated and take longer than expected,
while the third member’s vigilance is dropping as she is watching out for inclement weather activ-
ity. The search leader, in the meantime, is becoming increasingly distracted due to difficulties with
her communication device. S notices a lack of team cohesion due to cognitive state changes in the
individuals and takes immediate action. First, S tasks two UAVs to explore the areas down the road,
knowing that this task will have to be done next. S then tasks the closest UGV to provide a verbal
update on the UAV mission to the mind wandering team member, quickly restoring vigilance and
alertness, and proposes that the member help the two other struggling teammates, which lowers
their workload and prevents urgency from increasing further. As the UAVs report additional areas
with potentially trapped human survivors to the southeast and northwest, S relays that information
to the search leader through the closest UGV, which subsequently refocuses the leader’s attention
on the areas still to be searched.

The autonomous system S in the above scenario was able to intervene and proactively support
the team by being aware of human cognitive states (indicated in italics) and then using its explicit
task knowledge (e.g., the need to perform surveillance operations) to make autonomous decisions
to act in the interest of task goals and interact with humans to improve team coherence. One way
in which S could obtain the necessary information about its teammates’ systemic cognitive states is
through monitoring their physiological signals which often carry important information about hu-
man performance and possibly workload or interference. Understanding the extent to which such
systemic cognitive states can be inferred from a mixture of physiological and neurophysiological
signals is thus of great interest for understanding the different effects these states states can have on
human task performance and thus also on team effectiveness. Moreover, being able to detect such
cognitive states, in particular, ones that lower performance, can form the basis of interventions to
mitigate states that lower and move towards states that improve task performance (e.g., refocusing
attention after distraction, removing lower priority tasks to reduce workload, engaging with regular
activities to prevent mind wandering, etc.).

While there has been increasing interest in developing experimental paradigms to develop
multi-modal datasets which can form the basis for developing detection algorithms (e.g., learning
appropriate classifiers), there is currently no available multi-modal dataset that comprises a com-
prehensive set of physiological (e.g., heart and respiration rate, arterial saturation and blood pres-
sure, skin conductance) and neuro-physiological data (e.g., functional near-infrared spectroscopy
(fNIRS), electroencephalogram (EEG), eye gaze) paired with behavioral measures (e.g., commu-
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nication events, as well as task-based actions such as breaking in a driving task or performing
detection response tasks). Yet, such a comprehensive dataset is needed for developing a com-
prehensive understanding of which combination of signals (if any) can be used for developing
(reasonably) accurate inference methods of various systemic cognitive states. While we would not
expect there to be a perfect alignment with any subset of signals and systemic cognitive states, the
verdict is still out on whether there exists a sufficiently systematic correlation between the mea-
sured signals and systemic cognitive states that can be utilized by machine learning methods to
develop corresponding classifiers that work across individuals.

The goal of this paper is thus two-fold: (1) We present data from an experimental paradigm
aimed specifically at developing a comprehensive multi-modal dataset for studying systematic cog-
nitive states; and (2) we use the dataset for a first evaluation of standard machine learning methods
using various types of physiological signals including fNIRS, EEG, and eye gaze (pupil diameter)
to determine the extent to which they are able to make reasonably accurate inferences about human
cognitive states from a subset of the multi-modal signals across subjects. Note that while tradition-
ally machine learning methods train and test the learned model on data from the same individual,
we are tackling the more challenging setting where a model is trained on several participants but
needs generalize to new individuals which we addressed by applying an advanced technique called
domain generalization to improve the generalization capability of the learned models. The re-
sults of these efforts not only demonstrate the potential and limitations of domain generalization
methods, but more importantly can serve as a baseline for future methods that include additional
constraining factors such as task context and observable events in the task environment to push the
classification accuracy to what can be achieved at best without additional individual adaptations of
the models.

2 Human Cognitive States
It is well-known that various human cognitive states can significantly influence individual task per-
formance and thus are likely to affect team behavior as well. Among these task-relevant states are
cognitive load [27], distraction [108], sense of urgency [87], mind wandering [60], vigilance [81],
and interference [4]. Various methods have been proposed in the literature to measure these states
(see Table 1), including using complimentary brain sensing techniques involving EEG and fNIRS,
which can also be combined to investigate neurovascular coupling (i.e., the relationship between
neuronal activation and associated blood flow changes [35, 113]). While EEG is directly sensitive
to neuronal activity, fNIRS is sensitive to hemodynamic changes associated with brain activity as
well as systemic physiological changes. To take into account potential systemic contributions to
the fNIRS signal, it is thus important to also monitor heart rate, arterial saturation, respiration, and
arterial pressure (e.g., [38, 58]). These systemic measurements serve a dual purpose: first, they can
help isolate brain-specific components of the fNIRS signal; second, they provide complementary
information on systemic physiological states which can be further enhanced by including eye gaze
and skin conductance information.

There is a large number of prior studies attempting to characterize systemic cognitive states in
terms of multi-modal physiological signals. Here we can only provide a brief excerpt with respect
to the systemic cognitive states we are investigating in this work.
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Table 1: Examples of prior work using five sensing modalities to
measure any of the five cognitive states we are investigating.

Cognitive state fNIRS EEG Card.v. Skin c. Eye gaze
Cognitive load [19] [9] [109] [82] [89]
Distraction [88] [118] [8] [93] [74]
Sense of urgency [52] [23] [77] [68] [76]
Mind wandering [34] [7] [63] [13] [45]
Interference [71] [28] [18] [26] [22]

Functional near-infrared spectroscopy (fNIRS); electroencephalogram
(EEG); Cardiovascular activity (Card. v.); skin conductance (Skin c.).

Cognitive workload. Khedher et. al collected both EEG and human gaze data from fifteen stu-
dents in a virtual learning environment for the classification of cognitive workload in two distinct
groups: students who could complete the tasks successfully and students who could not [65].
This study reported k-Nearest Neighbor as the best classifier over other classification techniques.
Another study used the fusion of EEG and fNIRS to assess cognitive workload by building inde-
pendent classifiers for each sensor [25]. Then, the classification results were combined to calculate
the final decision. However, the results of the fusion method did not show notable enhancement
over just using EEG alone.

Distraction. Some other studies explored the fusion of different physiological signal modalities
in predicting distraction. Engstrom et. al combined electrocardiogram (ECG), gaze position, and
vehicle measurements, such as lane position and steering wheel, to determine the level of distrac-
tion of the participants [37]. The results of the fusion technique indicated better performance over
using single physiological modalities in assessing distraction. Craye et. al introduced a driving
simulation environment that includes multiple sensor modalities to extract different physiological
features such as depth map, heart rate, steering wheel, and pedal positions. The authors utilized
hidden Markov models to fuse the extracted features along with the contextual information to es-
timate the driver’s fatigue and distraction levels. Their results showed an accurate prediction of
fatigue and distraction with the combination of various physiological signal types [30].

Sense of urgency. Relatively few studies have investigated the effects of the fusion of multiple
signal types on predicting the sense of urgency. In [64], authors recorded various physiological
signals such as ECG, continuous blood pressure, respiration, impedance cardiogram, and facial
electromyography (EMG) to assess the participant’s challenge and threat states who completed
three mental arithmetic tasks. Another study used blood volume pressure, galvanic skin response,
and skin temperature to determine the anxiety levels of the participants [99].

Mind wandering. Mind wandering is another cognitive state which has been investigated by
leveraging different types of physiological signal modalities to determine. Blanchard et. al com-
bined skin conductance and skin temperature to assess mind wandering by training different super-
vised classification models [14]. Bixler et. al used the fusion of eye gaze, skin conductance, and
skin temperature along with the contextual information such as task difficulty and time on task to
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determine automatic multimodal detection of mind wandering [10]. Grandchamp et. al examined
the variations in the gaze position, the frequency of blinking, and the pupil size during caused
by mind wandering which was generated by monotonous breath counting task where the partici-
pants were asked to fix their eyes to a point, keep counting their breath, and report when they lose
counting [45].

Cognitive interference. There are also a few efforts on assessing cognitive interference based
on different physiological biomarkers. Robertson et. al simultaneously recorded EEG and fNIRS
during a multi-source interference task. Their results indicate that the combination of EEG and
fNIRS improves the performance of assessing cognitive interference [95]. Nigbur et.al. collected
EEG and electrooculogram (EOG) to investigate the influence of EEG theta activity on multiple
sources of cognitive interference. Their results demonstrated the sensitivity of the theta power
to the recruitment of executive control in an interference circumstances [85]. In [44], authors
calculated the slope of the power spectrum density (PSD) taken from EEG and considered it
as an indicator of neural noise and investigated the variations in neural noise during cognitive
interference in fibromyalgia patients. Their results demonstrated that the neural noise increases
during cognitive interference.

In order to assess which combinations of physiological and brain measures are best suited
for cognitive state inferences and, for future work, which context-based aspects might be needed
for accurate classifications, we developed an experimental paradigm that allowed us to instantiate
different systemic cognitive states naturally as part of a driving task and collect a comprehensive
multi-modal dataset that could be used to train machine learning models to classify these states.
The experimental task thus needed to allow for the instrumentation of participants with a full
suite of physiological and brain sensors (see Figure 1) without having too much of an impact on
their task performance. Moreover, the tasks needed to allow for controlled variations to induce
cognitive load, distraction, sense of urgency, mind wandering, and interference. We settled on a
seated driving task in a driving simulator where participants only needed to use their right hand
for steering and their right foot for operating the gas and brake pedals. There was minimal head
motion involved and we were able to reduce motion artifacts in EEG and fNIRS. During driving,
participants had to respond to various environmental situations such as avoiding crashing into a
braking automobile, or situations that restricted participants reactions (e.g., being surrounded by
cars while traveling under an overpass). In addition to varying the amount of traffic or the need
for braking to increase or decrease the task difficulty, we added two secondary tasks in some
experimental conditions that participants had to perform during driving while avoiding accidents.
The first was the tactile detection response task (DRT) [40] task which participants had to perform
continuously. This is a validated method for assessing cognitive workload while driving if used
right (see also [107]). The second was a communication task where drivers had to respond to
different types of questions.

Our motivation for choosing this particular combination of tasks was based on considerations
of ecological validity. The situation that someone is driving while traffic conditions may require
braking, and a conversation with a passenger takes place simultaneously is one that occurs fre-
quently in real life. The DRT task roughly corresponds with the driver wearing a smart watch that
vibrates when someone calls them, and that the driver subsequently has to cancel.
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Table 2: Experimental conditions for inducing five sys-
temtic cognitive states.

Cognitive state Events or Conditions
Cognitive load DRT, braking, communication
Distraction DRT, car proximity, on-ramp areas
Sense of urgency communication, car proximity
Mind wandering baseline
Interference DRT, break pedal

Detection response task (DRT).

The multi-task setting then allows for the definition of specific conditions that participant en-
countered periodically throughout the experiment and which would best induce the five cognitive
states we discussed above: cognitive load, distraction, urgency, mind wandering, and interference:

Cognitive load: Cognitive load is expected to increase with increasing task demands over a
longer period of time, i.e., when there is not only the visual driving task but also the tactile per-
ception of the DRT as well as the auditory awareness and engagement of answering the questions.
High cognitive load during the experiment is expected when participants have regular communi-
cation events paired with sudden braking events while also performing the DRT.

Distraction: Distractions are events or tasks that interrupt the continuity of driving performance
and require the instantaneous adaptation and reaction to a changed driving environment. Distrac-
tion episodes are defined as periods of time where peripheral task demands such as the DRT could
interrupt the focus or attention of the participant (e.g., during a braking event).

Sense of urgency: The operational definition of urgency is when there are environmental objects
and task demands that insist on a timely manner of reaction such as when one needs to answer a
question (performing a communication task) quickly or sudden changes to the driving environment
that require immediate braking.

Mind wandering: During the first three minutes of the experiment, peripheral traffic and road
conditions were at a minimal level and no task demands arises (i.e., no communications, no brak-
ing required, no DRT) other than driving in the right lane on a straight highway. This portion of
the experiment was used as an introduction to the experiment and used to extract a baseline mea-
surement of task performance. This time period of the experiment was also defined as a period that
would evoke the Mind Wandering mental condition.

Interference: These are cognitive resource interferences which could affect the performance
of the participant, e.g., having to perform a physical brake action to avoid a collision while also
having to performing another independent physical action to respond to the DRT simultaneously.

Note that the above systemic cognitive states can overlap as the same external event (e.g., brak-
ing event) can contribute to multiple different systemic states (e.g., sense of urgency, distraction,
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and interferenc). Moreover, whether the external events (i.e., the experimental manipulations)
actually cause a particular systemic cognitive states also depends on the individual, how they allo-
cate cognitive resources and how well they are able to cope with the task demands. For example,
whether a DRT event causes distraction will depend on an individual’s focus of attention and abil-
ity to multi-task. Similarly, whether a breaking event causes interference with the DRT will depend
on the individual’s ability to focus on and perform simultaneous physical tasks (omissions of DRT
responses in some individuals, for example, are indicative of interference when braking is required
at the same time). Consequently, being able to generalize cognitive states across multiple instances
of the same type of event not only within a single subject, but also across subjects is a challenging
problem that in general will require some form of calibration that is beyond the work reported here.
Rather, we will tackle the simpler, but still difficult problem of trying to detect the same systemic
cognitive state type across multiple instances within the same subject.

Comparison with other work using driving tasks. Neubauer et. al introduced an autonomous
simulated driving platform to infer human cognitive states by leveraging stochastic filtering which
is then used to determine the decision for engaging or disengaging the driving assistant. They used
several physiological signal types such as electro-dermal activity (EDA), electroencephalography
(EEG), heart rate, and heart rate variability [10]. Although this paper provided a way to explore
the effects of different signal modalities on estimating human cognitive states, it did not explore
some important physiological markers including the morphological characteristics of fNIRS, blood
pressure, and respiration signals which have potential for an accurate estimation of human cogni-
tive states. In our study, we acquired extended number of signal types including EEG, fNIRS,
human gaze, arterial blood pressure, skin conductance, and respiration to further investigate their
capability on predicting cognitive states.

Another research study explores drivers’ stress level by utilizing multiple signal types recorded
from 22 participants including electro-dermal activity, ECG, and EEG in a driving simulation
environment [84]. Despite this paper presented a method for the assessment of drivers’ stress
levels based on cellular neural networks (CNNs) with the help of multiple sensor modalities, their
dataset has an inadequate number of participants which might cause their model to overfit.

Zahabi et. al investigated the effectiveness of using video-based methods to learn advanced
driver-assistance systems which would be used to reduce high crash rates associated with degra-
dations in older people’s cognitive and physical abilities [122]. The authors used fNIRS and EEG
collected from 20 older participants which have an average age of 63.1 years and leveraged them
to measure the degradation of participants’ cognitive capabilities. Similarly, this dataset includes
lower number of participants within a specific age range. We generated our dataset with a sufficient
number of participants which leads us to develop machine learning models that generalize well.

Huang et. al conducted a study to assess drivers’ mental workload in a simulated driving plat-
form. The authors recorded multiple signal types such as EEG, ECG, and EDA to predict drivers’
cognitive load in a NASA-TLX setting by leveraging state-of-the-art machine learning method-
ologies including XGBoost, CNN, LSTM, and the fusion of CNN and LSTM [55]. In our study,
we used advanced methodology called domain generalization to enhance the generalization per-
formance.

Brouwer et. al examined the physiological impacts of participants’ behaviors as a response to
real driving in an adaptive cruise control (ACC) system [16]. The authors recorded heart rate and

7



EEG signals from 15 participants and specifically focused on heart rate and blink responses to the
participants. Even though this paper examines the variations in heart rate and blinks as a response
to ACC behavior, the dataset also provides an insufficient number of participants. Moreover, the
stress level of the participants was generated based only on acceleration and deceleration events. In
our experimental setup, stress levels of the participants were generated by different combinations
of secondary tasks added to the primary driving task. The secondary tasks such as braking, com-
munication, and tactile stimulation and their various combinations are essential for investigating
different types of cognitive states.

Overall, none of the above experiments include interactive components with other humans
such as the communication events included in our paradigm. Most other studies also used a much
smaller number of subjects, did not utilize multi-tasking paradigms to cause changes in systemic
cognitive states, and did not collect a similarly comprehensive set of relevant physiological and
neuro-physiological data together with behavioral and event data that can also be used for deter-
mining the extent to which context information is necessary for inferring the requisite systemic
cognitive states.

3 Methods

3.1 Participants
One hundred and thirteen participants from the local community were recruited to participate in
a single session study that lasted approximately 120 minutes. Thirty-three participants were ex-
cluded: 14 due to technical issues and 19 due to simulator sickness or other discomfort. In our
final data set of 82 participants, the average age was 20 years old1 (standard deviation of 3 years),
46.8% identified as female and the remainder identified as male, all were right-handed, had nor-
mal or corrected to normal vision, had a valid driver’s license, and drove at least one day a week
on average. Participants were compensated $20 (n = 18) or two hours of research credits for an
introductory Psychology course (n = 62). The research protocol was approved by the Institutional
Review Board of Tufts University and in accordance with the Declaration of Helsinki.

3.2 Equipment and Measurements
This study utilized a medium fidelity partial-cab driving simulator. Software and hardware were
provided by RTI (Ann Arbor, MI). The simulator displayed the environment via five 45 inch liq-
uid crystal displays (LCDs) which created a 180-degree field of view of the forward road scene.
The partial-cab had a working steering wheel, brake pedal, accelerator pedal, and automatic gear
shifter. A straight four lane (two lanes in each direction) highway was simulated. The highway en-
vironment was lined with trees, had clear weather, and took place during the day. Traffic was light,
with cars in the left lane passing the driver roughly every 30 seconds. The posted speed limit was
65 mph. The simulator generated images and recorded the driving data at 60 Hz. This included
recordings of driver behavior from cameras and microphones. Audio of the driving environment
was presented to participants through noise canceling earbuds (Bose QuietComfort 20).

1Since the participants are mostly recruited from the college with the average age of 20 years old and, the results
in our experiment may not be suitable to apply on other subjects with higher age and different education.
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Figure 1: Schematic of experimental setup for the collection of various physiological signals during the
driving simulator protocol including Functional near-infrared spectroscopy (fNIRS) and electroencephalo-
gram (EEG).

The tactile DRT was implemented using a cylindrical vibrotactile motor (14 mm in diameter
and 4.5 mm thick) attached to the participants’ right collar bone/shoulder. A response button was
attached to their right index fingertip with hook and loop tape. Participants were instructed to
respond to tactile stimuli that occurred randomly every 6 to 10 seconds. The motor vibrated for
1 second or until the button was pressed; whichever came first.

During the entire experimental session, various physiological signals were collected. A sum-
mary image of these measurements is shown in Figure 1. Functional near-infrared spectroscopy
(fNIRS) was measured by a NIRScout (NIRx Medical Technology, Berlin, Germany) device which
consisted of light emitting diode (LED) source pairs (at wavelengths of 760 and 850 nm) fiber bun-
dle coupled photo-diode (PD) detectors. These optical data were collected at 7.81 Hz. This data
was complemented with a suite of physiological measurements; respiration, skin conductance, ar-
terial blood pressure, and peripheral oxygen saturation2. A RSP100C (BIOPAC Systems, Goleta,
CA) respiration belt was attached around the participant’s chest. On the participant’s left hand,
skin conductance was measured with a EDA100C (BIOPAC Systems, Goleta, CA) electrodermal
activity sensor as well as a NIBP100D (BIOPAC Systems, Goleta, CA) beat-to-beat finger plethys-
mography system. A OXY100E (BIOPAC Systems, Goleta, CA) finger clip pulse oximeter was
attached to the left thumb. This suite of data streams was collected at 20 samples per second.

Electroencephalogram (EEG) was collected at 500 Hz using an 8-channel Enobio (Neuro-
electrics, Cambridge, MA, USA) system. 3.14 cm2 silver/silver chloride electrodes were placed at

2Even though these physiological signals have been collected in our experiment and are available for analysis,
some, for example, arterial blood pressure and skin conductance are not further investigated in this paper. However,
we still included them in the description to provide a complete list of the available signals in our dataset.
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Figure 2: Arrangement of functional near-infrared spectroscopy (fNIRS) optodes over the participant’s
prefrontal cortex, and an image of the fabric cap used to apply the array.

the international 10-10 system locations FC1, FC2, FC5, FC6, CP1, CP2, CP5, and CP6.
A Pupil Core (Pupil Labs, Berlin, Germany) was used to collect eye movements, pupil diame-

ter, and blink rate during this experiment. This eye tracker contained dual 200 Hz eye cameras and
a 120 Hz world camera.

Lab Streaming Layer (LSL) was used to synchronize and aggregate the time series data across
the different data acquisition devices and programs via a dedicated, high bandwidth computer
network (Asus GT-AC5300 router). Figure 3 shows a system schematic of this instrument syn-
chronization through LSL.

3.3 Experimental Procedure
Participants completed surveys on driving history and demographics. Next, they were brought to
the driving simulator and were set up with the physiological monitoring equipment. The experi-
ment consisted of two driving scenarios: one with the DRT and one without the DRT. The order in
which these scenarios were presented was counterbalanced over participants. The DRT was setup
and introduced to half of the participants at this time; the other half of participants were setup and
introduced to the DRT during the break before the second half of the experiment. Participants were
then introduced to the driving simulator. They were instructed to stay in the right lane for the entire
drive and to maintain a comfortable and appropriate speed while keeping in mind the posted speed
limit of 65 mph.

Each scenario was 37.4 km long and took approximately 25 minutes to complete. The begin-
ning of the drive consisted of 5.4 km (approximately 3 minutes) of just driving to allow the driver
to acclimate to the simulation. After this section of the drive, the DRT began in one of the two
drives (counterbalanced across participants). For the remainder of the scenarios (regardless of the
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Figure 3: Schematic of various data collection devices and co-registration. Lab Streaming Layer (LSL);
universal serial bus (USB); oxyhemoglobin (O); de-oxyhemoglobin (D); skin conductance (SCON); periph-
eral oxygen saturation (SpO2); respiration (RESP); arterial blood pressure (ABP); heart rate (HR); stimulus
system including driving simulator and detection response task (STIM); matrix laboratory (MATLAB).

presence or absence of the DRT), participants periodically engaged in six braking events and in
four lure braking events. Braking events consisted of a vehicle appearing 200 m in front of the
driver. Participants approached this lead vehicle until it was 75 m ahead and then followed this
lead vehicle at a fixed distance of 75 m for 20 seconds. At that point, the lead vehicle rapidly
decelerated for 5 seconds while its brake lights activated. After a braking event, the lead vehicle
rapidly accelerated away from the driver. Lure braking events were similar to real braking events;
however, after 20 seconds, the lead vehicle accelerated away from the driver and did not brake. The
braking and lure braking events were spaced out throughout the drive so that they were approxi-
mately 1 to 3 minutes apart. The events were presented in different orders across participants to
minimize any possible impact of order effects, and the scenarios were otherwise identical in terms
of the number and type of events.

During each scenario, participants responded to a series of basic fact questions about them-
selves (e.g., “Are you right-handed?”). Twenty questions were asked during each drive (for a total
of forty different questions), occurring roughly every 30 to 60 seconds. In addition, participants
were allowed to rest briefly between the two scenarios. After the second scenario, participants
filled out a final questionnaire that asked about aspects of the drive and contained the simulator
sickness questionnaire (SSQ).

3.4 Performance and Behavioral Label Generation
Participant performance was measured by driving performance and reaction times to the various
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tasks (i.e., braking events, communication events, DRT responses). These performance measures
were used as behavioral labels. Considering the individual differences across participants, we
assumed that event-based labels may not fully reflect the actual cognitive states for all participants.
Thus, 13 additional labels were created based on the participant’s behavior and performance during
communication events, braking events, the participant’s control of the car’s steering, the vehicle’s
heading angle and position. For the DRT signal, an additional label missed DRT was added due to
the distraction of the participant.

Driving performance was assessed by the position offset from the middle of the lane, the vehi-
cle’s heading offset, and the change in the steering position. Data was consolidated into one-second
windows of data through the duration of the trial. Each of the categories of driving performance
was partitioned into their best 15% and worst 15% of their windowed data.

Task performance was measured by the participants reaction times to the DRT, the communi-
cation events, and the braking events. A unique label was made if the participant did not respond
the DRT stimulus. The slow DRT label was longest 25%, or 1st quartile, of the reaction times to
the DRT and the fast DRT label was the shortest 25%, or 3rd quartile, of that participant’s reaction
times. The labels for the communication event were slow communication which was the longest
25% of the total individual’s response times and the fast communication was the shortest 25% of
their reaction times.

3.5 Data Pre-Processing
As physiological data is known to be noisy, we deployed various data pre-processing techniques
to remove noise and other artifacts that would negatively impact the training of machine learning
models for inferring cognitive states.

Functional near-infrared spectroscopy (fNIRS) and arterial blood pressure (ABP). Pre-
processing of fNIRS began with elimination of motion artifacts, and drifts and removal of channels
with large noise. Raw asynchronous continuous-wave (CW) intensity measurements from each
source-detector pair and each wavelength from the fNIRS instrument were first interpolated (using
p-chip interpolation, matrix laboratory (MATLAB)) onto a continuous time axis with a sampling
frequency 20 Hz. Linear peace-wise detrending was then done by finding regions in which the vari-
ance of the signal is above the 75th and below the 25th percentiles, and using these as breakpoints
in the detrend in order to remove any drifts or jumps in the signal that was not physiological.

Cleaned intensity measurements for each source-detector pair were then used to calculate
changes in the concentration of oxy-hemoglobin (∆HbO) and changes in the concentration of
deoxy-hemoglobin (∆Hb) or changes in the concentration of total-hemoglobin (∆HbT) using mod-
ified Beer-Lambert law [15]. A wavelength dependent differential path-length factor (DPF) based
on absolute absorption coefficient (µa) and absolute reduced scattering coefficient (µ′s) values pre-
viously reported on healthy participants (mean age, 28± 4 years) taken on the forehead [47]. Next,
the noise in temporal ∆HbO (∆HbO(t)), temporal ∆Hb (∆Hb(t)), and temporal ∆HbT (∆HbT(t))
was calculated above physiologically relevant frequencies to identify any channels with high in-
strumental noise for exclusion. Each signal was first high-pass filtered above 1.7 Hz (i.e., above
heart rate). The windowed variance of the high-pass filtered signal was calculated, and the condi-
tion was set that if the median variance was above a threshold, the channel was neglected in further
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analysis. A threshold of 1 µM was used as this threshold for all signals.
Arterial blood pressure (ABP) was measured using finger plethysmography (CNSystems

CNAP Monitor 500, Graz, Austria). ABP was measured beat-to-beat on the subject’s left index or
middle finger, and it represents instantaneous ABP values, which thus provide systolic maxima and
diastolic minima3. We interpolated arterial blood pressure (ABP) signals using p-chip interpola-
tion, MATLAB onto the same 20 Hz time axis as hemodynamic signals. Re-calibration of the ABP
signal was a common issue, which caused a ABP reading that is of no use. Each ABP time trace
was automatically searched for these segments, and in sections in which re-calibration occurred
the segment was excluded from further analysis. We collected and processed the ABP signals for
the further evaluation of their effects on an assessment of different cognitive states. However, this
study does not include an analysis of the performance of ABP signals on cognitive state estimation.

Electroencephalogram (EEG) Power spectral density (PSD). The power spectral density
(PSD) of EEG is one of the most widely used features of EEG signals [3, 48, 53, 92]. Specifi-
cally, PSD measures the power distribution of a given signal for each frequency in a given time-
frequency transform [106]. From the raw EEG data, we extracted the EEG-PSD features using the
five standard EEG frequency bands: δ (1 to 4 Hz), θ (4 to 8 Hz), α (8 to 13 Hz), β (13 to 30 Hz),
and γ (30 to 100 Hz). Even though PSD is one of the most common extracted features for EEG
signals, there is no common consensus on how to select the time window for the periodogram
function. Specifically, if one selects a too narrow time window, the frequency analysis might be
inaccurate, leading to a poor frequency resolution. On the other hand, a wide time window might
give a better frequency resolution but also leads to a poor time resolution. Following the seminal
work in [41, 117, 124, 125], we decide to use a periodogram having a 1 second non-overlapping
rectangular window to estimate the PSD using the MATLAB Signal Processing Toolbox. Partic-
ularly, the periodogram PSD estimator produces the average spectral power over each frequency
via discrete Fourier transform (DFT) [3, 48]. The spectral power is then integrated over each EEG
frequency band to produce the EEG-PSD features. Finally, from eight EEG channels, using a time
window of 1 second and five frequency bands, a 1 second frame of EEG-PSD data corresponds to
a data matrix of size 40×1.

Eye gaze (pupil diameter). Eye gaze is a good indicator of cognitive processes. Eye gaze data
was recorded using a Pupil Core (Pupil Labs, Berlin, Germany) eye tracker to obtain the pupil-
lometry signal with a sampling rate of 400 Hz that contains a 120 Hz world camera and a 200 Hz
binocular camera. Each collected pupil diameter sample contains two parameters: the left eye di-
ameter and the right eye diameter. By averaging the pupil diameter of two eyes separately over a
time window of 1 second, a 1 second frame of pupil diameter data corresponds to a data matrix of
size 2×1.

Data balancing. As previously discussed at the end of Section 3.4, 13 different logical markers
are generated based on the participant’s behaviors such as DRT response time, communication
event, braking event, steering event, the position of the car, and the heading error as the initial
labels. These labels are automatically generated from the observed events and classified into two

3Here, the ABP signal is beat-to-beat ABP, not continuous ABP, however, for convenience, we just use ABP to
denote beat-to-beat ABP in the rest of this manuscript.
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categories: fast/high and slow/low identified by a threshold. For example, the Slow Steering marker
denotes the bottom 15% of the change in the steering wheel angle while the Fast Steering marker
takes the top 15% of the change in the steering wheel angle, Heading Offset Low represents the
lowest 15% of the participant’s heading error while Heading Offset High is the highest 15% of the
participant’s heading error. Figure 4 visualizes these thirteen behavioral markers.

Figure 4: Visualization of thirteen behavioral markers with a window size of six seconds. The
vertical axis is the binary label for each marker and the horizontal axis is the index of the window.
Noting that the label imbalance happens in all the markers. In some markers, the imbalance is
more severe than in others.

If two behavioral markers are generated from the same participant’s behavior but belong to
different categories, then they are called extreme behavioral markers. For instance, since High
Heading Offset and Low Heading Offset are both generated from Heading Offset behavior but
belong to two different categories i.e., the highest 15% and the lowest 15% of the participant’s
heading error, they are a pair of extreme behavioral marker. Finally, from 13 behavioral markers,
we form six extreme marker pairs: Slow DRT - Fast DRT, Slow Communication - Fast Commu-
nication, Slow Braking - Fast Braking, Slow Steering - Fast Steering, Low Position Offset - High
Position Offset, and Low Heading Offset - High Heading Offset.

Since these markers are constructed based on a biased threshold (for example, 15% top, and
bottom of Heading Offset), the resulting labels are heavily imbalanced, making it difficult to quan-
tify the classification performance. To address this problem, we combine two extreme behavioral
markers from the same category and remove the intermediate labels to form balanced datasets.
Taking the Heading Offset markers as an example, we first take the union of an extreme behavioral
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Figure 5: Combining the Heading Offset Low class with the Heading Offset High class and re-
moving the intermediate class leads to a balanced dataset. The horizontal axis denotes the Heading
Offset Error in degrees while the vertical axis denotes the number of samples. Heading Offset
Low (labeled by “-1”) represents the lowest 15% of the participant’s heading error while Heading
Offset High (labeled by “1”) is the highest 15% of the participant’s heading error. After removing
the intermediate class, there is an equal chance to classify any data point into Heading Offset Low
or Heading Offset High.

marker pair i.e., the union of High Heading Offset and Low Heading Offset labels, making it with
three classes: Heading Offset Low (denote by “-1”), Heading Offset High (denote by “1”), and
intermediate class (neither Heading Offset Low nor Heading Offset High, denote by “0”). Since
both Heading Offset Low and Heading Offset High are based on the same threshold of 15%, these
two classes must have the same number of samples. Therefore, removing the intermediate class
will lead to a binary classification problem with balanced labels. In other words, after removing
the intermediate class, any data point can only be assigned to two classes: Heading Offset Low
(“-1”) or Heading Offset High (“1”) with an equal chance of 50%. Figure 5 illustrates our data
balancing process using Heading Offset Low and Heading Offset High markers.

Motivation of Domain Generalization (DG). Based on the balanced data, the goal is to de-
velop a predictor/classifier such that given the measured data and behavioral states from several
participants, i.e., whether they are fast or slow when communicating, breaking, steering, etc. in
a particular experimental linked to the various cognitive states, one can predict the corresponding
behavioral states for the new-coming participants. The key challenge is, in practice, the measured
sensor data from new-coming participants may not share the same data distribution as that of the
training participants [33, 49, 94, 121, 123], which violates the basic assumption in most traditional
machine learning algorithms, requiring that the training and testing data are independently and
identically distributed. This distribution shift phenomenon has been observed not only for fNIRS
signals [79] but also for EEG signals [94, 121]. Recent works have shown that the performance
of a predictor/classifier trained on the data from one group of participants usually degrades when
testing on the data from another group of new participants. For instance, an fNIRS-based cogni-
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tive load estimator may not generalize well across different participants [79], and a well-trained
drowsiness driving classifier based on EEG data performs bad when applied to the new partici-
pants [29]. Lots of work has been proposed for addressing the distribution shift problem, here we
mainly focus on domain generalization (DG) [12] methods, which aim to find the models that can
generalize well on the new (unseen) participants. Since DG doesn’t require for accessing unseen
(test) data during the training time, it is considered a realistic but challenging problem [115]. In
the next section, we introduce some well-known DG methods and employ them to our problem to
overcome the challenge of distribution shift.

Notations and Problem Formulation. The data (fNIRS/EEG-PSD) is first segmented by a non-
overlapping sliding window of size w. Since EEG-PSD has a higher temporal resolution together
with a shorter time-response than fNIRS, we decide to use w = 3 seconds for fNIRS data and
w = 1 second for EEG-PSD. For the pupil-diameter signals, we decide to select the same window
w = 1 as EEG-PSD. The dataset X, therefore, is a collection of data segments and their labels i.e.,
X= {(Xi,yi)}N

i=1, where Xi denotes ith segment, yi denotes its corresponding label, and N denotes
the number of segments. Each segment Xi corresponds to a tensor of size (c)× ( f ×w) where c,
f , and w represent the number of channels, the sampling frequency, and the size of sliding window,
respectively. For instance, if the data is EEG-PSD, c= 40 (five bands with eight channels per band)
and f = 1 Hz, then each data segment Xi with window size w = 1 second corresponds to a data
matrix size 40×1. If the data is fNIRS-∆HbO, c = 20 and f = 20, then each data segment Xi with
window size w = 3 seconds corresponds to a data matrix size 20×60. If the data is pupil diameter,
c = 2 (diameters of the left eye and the right eye) and f = 1 (the average value of pupil diameter
in the same window), then each data segment Xi with window size w = 1 seconds corresponds
to a data matrix size 2× 1. The label yi is one of the six extreme behavioral marker pairs: Slow
DRT - Fast DRT, Slow Communication - Fast Communication, Slow Braking - Fast Braking, Slow
Steering - Fast Steering, Low Position Offset - High Position Offset, Low Heading Offset - High
Heading Offset. We follow the procedure described in Section 3.5 to form a balanced dataset i.e.,
the label yi ∈ {−1,1} where -1 and 1 denote the Slow/Low and Fast/High events, respectively.

3.6 Machine Learning Models for fNIRS, EEG, and eye gaze
Even though fNIRS and EEG are both linked to the same neural activity, these signals are very
different but complementary temporal and spatial resolution. Therefore, we use different models
to deal with fNIRS data and EEG-PSD data.4 Next, we describe how the learning models for
fNIRS and EEG-PSD are separately selected.

Learning models for functional near-infrared spectroscopy (fNIRS) . Motivated by the state-
of-the-art time-series classification learning models in [39, 61], we decide to use the multivariate
long short term memory fully convolutional network (MLSTM-FCN) [61], and InceptionTime [39]
as two candidate models for fNIRS.

• Multivariate long short term memory fully convolutional network (MLSTM-FCN) [61]. The
MLSTM-FCN model consists of two branches: a long short term memory (LSTM) block

4There is some evidence that combining fNIRS and EEG signals could provide better results than processing them
separately [2, 86, 91], which we will leave this approach for our future work.
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and a fully convolutional network (FCN) block. Two blocks are operated in parallel, where
one can be treated as an augmentation of the other. The FCN [119] block is composed
of three temporal convolutional blocks where each is followed by batch normalization and a
rectified linear unit (ReLU) [1] activation function. Squeeze-and-excitation blocks are added
behind the first two convolutional blocks for input feature maps recalibration, while a global
average pooling layer is added to the end of the last convolutional block. The output from
the FCN block and LSTM block is concatenated and fed to a linear classifier for the final
classification task. We keep all model parameters as same as the settings in the original paper
[61] but set the number of LSTM cells as eight without applying a grid search.

• InceptionTime [39]. The InceptionTime model consists of an ensemble of five Inception
networks that are initialized randomly to better stabilize the model. Each Inception net-
work cooperates ResNet [50] modules with the inception modules where filters with various
lengths are applied simultaneously to the input time series [96] for diverse feature extraction.
The usage of the bottleneck layers [50] further reduces the model complexity and speeds up
the training process. Again we keep all the parameters of the model the same as the setting
in the original paper [39].

Learning models for electroencephalogram (EEG) power spectral density (PSD). For EEG-
PSD data, we use a multi-layer perceptron (MLP) having two fully connected (FC) layers with
rectified linear unit (ReLU) activation function [1] followed by a linear layer as the learning model.
To prevent the neural networks from overfitting, a dropout layer is added after ReLU layer [105].
Indeed, the first two fully connected layers are aimed at extracting meaningful features while the
last linear layer acts as a classifier. It is worth noting that the MLP architecture is extensively used
in literature for learning from EEG-PSD data [5, 62, 67, 75]. For convenience, the learning model
for EEG-PSD data is called power spectral network (PSD-NET). Details of the MLP structure for
PSD-NET can be found in Table 3.

Table 3: Multi-layer perceptron (MLP) architecture for EEG-PSD data.

Layer Operation Output size
Input - (N, 40)

The first FC layer Linear(40, 40) + ReLU + Dropout(0.25) (N, 40)
The second FC layer Linear(40, 32) + ReLU + Dropout(0.25) (N, 32)
The last linear layer Linear(32, 2) (N, 2)

Learning models for eye gaze. Motivated by the state-of-the-art time-series classification learn-
ing models in [39, 61], we decide to use the MLSTM-FCN [61], and InceptionTime [39] as two
candidate models for eye gaze (pupil diameter). We use the same model settings for MLSTM-FCN
and InceptionTime as described for fNIRS.

Baseline algorithm. Based on these learning models, empirical risk minimization (ERM) algo-
rithm serves as the baseline learning algorithm for fNIRS, EEG-PSD as well as pupil diameter
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Figure 6: Overview of single trial event related potential (ERP) extraction. Detection response task
(DRT); electroencephalogram (EEG); independent component analysis (ICA).

signals. In particular, ERM aims for minimizing the empirical risk (classification error) from all
trained participants without employing any DG techniques.

Domain Generalization (DG) algorithms. To address the distribution shift problem, three dif-
ferent DG methods: maximum mean discrepancy-adversarial autoencoder (MMD-AAE) [73],
meta-learning domain generalization (MLDG) [72], and correlation alignment (CORAL) [110] are
employed. Here, we utilize the implementation in DomainBed [46] and adapt the feature extractor
in PSD-NET for each DG method.

• Maximum mean discrepancy-adversarial autoencoder (MMD-AAE) [73]. MMD-AAE is
an adversarial training-based DG method. MMD-AAE uses an adversarial autoencoder to
align the distributions in the representation space of different domains via minimizing their
maximum mean discrepancy (MMD) and matching the learned representation distribution to
a prior distribution in an adversarial manner.

• Meta-learning domain generalization (MLDG) [72]. MLDG is a meta-learning DG method
that separates multiple seen domains into meta-train and meta-test domains for reducing the
distribution shift and performing optimization which leads to an improvement of learning
performance.

• Correlation alignment (CORAL) [110]. CORAL is a DG method that is based on the idea of
matching the mean and covariance of feature distributions from different domains to perform
domain alignment.
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3.7 Event-Related Potential Estimation
We also investigate single-trial event related potentials during a DRT event which is shown in
Figure 6. The prediction of event related potentials (ERPs) from EEG signals is significant to
assess the cognitive states of an individual. The most common method to extract ERPs from EEG
is to take the grand average of EEG channels from multiple trials with the aim of eliminating the
sensor-based and ERP-independent neuronal activity noise. Although the averaging procedure is
practical to determine the main morphological characteristics of ERPs, it does not provide a way to
assess human’s responses to specific types of stimulations which differ across trials [20]. An ERP
response is characterized by different brain waves occur following the onset of the stimulus such
as N1, N2, and P3. N1 is assumed to appear between 90 to 200 ms after the onset of the stimulus
[111]. Although, there have been research works propose that N1 is correlated with selective
attention [112] or emotional stimulus [54], the early potentials are usually associated with physical
and sensory stimulation [43]. N2, which occurs between 180 to 325 ms following the stimulation,
is related to the recognition and the characterization processes of the brain [90]. P3 is evoked
between 300 to 400 ms after the onset of the stimulation and is correlated with selective attention
(i.e., higher attention generates higher P3 amplitudes [111]). All the mentioned ERP components
are associated with attentional interest and mental workload [42]. The ERP generation techniques,
which aim to assess the cognitive workload, are investigated into two categories in terms of the
task type that the participants accomplish: dual-task and single-task [42]. In this study, we utilize
dual-task technique by considering the driving task and the DRT event (pushing the button after
the tactile stimulation) as the primary and the secondary tasks, respectively.

First, signal epochs of all EEG channels related to the DRT events are taken. The onset of
the DRT event is assumed to be the stimulation of the vibrotactile motor fixed to the participants’
right collar bone/shoulder (depicted at the top of Figure 6). Then, a 6th− order Butterworth
Bandpass Filter between 0.1Hz−60Hz was applied to the EEG signal epochs to remove the out-
of-band noise. Next, the mixture of signal epochs is decomposed into its statistically independent
components via independent component analysis (ICA). The ICA component which is related to
blink artifacts, is removed by using blink information taken from gaze recording. To do this, ICA
components are compared with the blink information, the component which includes instantaneous
spikes on the amplitude at the same time with the blinks is determined, and the blink artifact-related
ICA component is removed manually. A Kalman Smoother is utilized to smooth the blink artifact-
removed EEG channels [59]. Finally, the ERPs is extracted from cleaned EEG epochs.

Independent component analysis (ICA). There are several motion artifacts induced by body
movements and recording devices which contaminate EEG signals such as eye movements, blinks,
respiratory exertion, muscle, and cardiac activity [78]. Among those, eye movements and blinks
are considered as fundamental sources of motion-corrupted EEG signals [57]. ICA is an effective
tool to decompose a mixture of linear signal streams into its hidden components. ICA is a gener-
ative model and is implemented with the presumption that the latent components are statistically
independent and non-Gaussian, and the number of components is the same as the number of input
signal streams. In this study, ICA is expressed as follows:

s = A× c (1)
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Figure 7: Raw electroencephalogram (EEG) (Channel CP1) with blink information.

where s = (s1,s2, ...,sM), c = (c1,c2, ...,cM), and A = [ai j] for i, j = 1,2, ...,M represent the vector
of the linear mixture of EEG channels, the vector of statistically independent hidden components,
and the unknown mixing matrix, respectively. Here, A and c are unknown and the aim is to find
the best predictor of M independent components, ĉ, from M observations, s, by estimating A−1

which is the inverse of mixing matrix A. Then, A−1 is used to obtain the latent components with
the following expression:

ĉ = A−1× s (2)

Finally, the mixture of linear EEG signals is reconstructed with s = A× ĉ. In this study, M = 8
which represents the number of EEG channels. To calculate the unmixing matrix A−1, we have
utilized fastICA algorithm that explores a linear combination of non-Gaussian components while
increasing the statistical independence within the components as much as possible [56]. Figure 7
depicts one channel raw EEG signal and the blink information taken from pupil data. The ampli-
tude of zero and one of the blink signal represent the eye opening and the eye closure, respectively.
The blinks are observed on EEG signal as spikes with higher amplitude. To extract the blink
artifacts, fastICA is applied to preprocessed EEG. Figure 8 (left) shows the decomposed ICA com-
ponents taken from one participant. Here, the component 4, which is related to the blink artifact,
is removed to reconstruct the EEG channels. Figure 8 (right) depicts two EEG channels (CP1 and
CP2) before and after ICA removal. It can be seen that the spikes corresponding to blink artifacts
does not appear in reconstructed EEG channels.

Kalman smoother. This is a common technique to predict the state of dynamic linear structures
in the presence of noise [59]. It is a backward algorithm used to improve the estimation of pre-
vious states based on subsequent observations. In this study, we used the Python library called
“tsmoothie” [21] to smooth the EEG signals.
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Figure 8: Blink artifact removal: Independent component analysis (ICA) components where Com-
ponent 4 represents the blink artifact (left) and different electroencephalogram (EEG) channels
with and without blink artifact (right).

3.8 Eye gaze
Human eye gaze is another benchmark to assess cognitive states which has the capability of ex-
posing clues about mental conditions of a person such as visual attention, situational awareness,
cognitive workload, fatigue, emotional arousal, stress, comprehension, and immersion. However,
a careful examination of gaze parameters is needed for an accurate prediction of cognitive states
as multiple cognitive states may be linked to the same gaze parameter. For example, mean fixation
duration is inversely correlated with the mental load during flight simulation [51] while there is an
explicit relationship between fixation duration and visual attention [103]. A contextual information
in addition to human gaze can be leveraged to interpret different conditions which influence the
cognitive status of a human.

There are several gaze parameters such as fixation, blink, saccadic movements, and pupil di-
ameter. Fixation represents the preservation of eye gaze to a specific point [103]. Fixation count,
which is the number of fixations on a specific object, is inversely correlated with search efficiency
[11]. Another study suggests that higher fixation count is related to greater cognitive workload
[101]. Longer fixation duration is associated with task difficulty and hardship in information se-
lection [116]. Blinks are the spontaneous opening and shutting movements of eyelids which are
related to the mental exertion of an individual [102]. One study indicates that blink frequency has
a negative correlation with visual attention [98]. Another work associates decreased impulsive eye
blink rates with the level of stress [83]. Saccades are described as instantaneous eye movements
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between fixations [102]. The amount of microsaccades has an opposite correlation with concen-
tration level while variation in saccadic activations is associated with mental fatigue as a result of
time-on-task [17, 31]. Pupil dilation, which represents the variations in pupil size, is another metric
to evaluate the mental status of a human. Pupil dilation is directly related to the locus coeruleus
(LC) activity which is effective in controlling physiological arousal and cognition [36, 114].

In this study, we examine the variations in fixation counts during DRT events to which par-
ticipants had to respond by pushing the button. For each DRT event, a one second time frame is
picked where the onset of the time frame is determined as the stimulation of the vibrotactile motor.
Then, the one second time frame is divided into 100 ms time windows which are concatenated by
50 ms, and the fixation counts are calculated for every time window. Finally, the fixation counts
are averaged over all one second time epochs of each participant.

We also explore the change in pupil diameter within the first three minutes of the experiment
considering that the participants focus on the task at the beginning of the driving and they might
gradually lose their attention as a result of mind wandering. We applied three-step pre-processing
to denoise the pupillometry signal. First, we used amplitude thresholding to remove the signal
partitions lower than 0.8 mm and greater than 10 mm by considering that the values lower than
0.8 mm are potential blink artifacts [97] and the pupil dilation is measurable up to 10 mm [120].
Second, we applied linear interpolation to fix the extracted parts [97]. Third, we utilized fifth-
order Butterworth low-pass filter with a cutoff frequency of 10 Hz to cancel baseline wander [104].
Finally, we applied moving average with a window size of 10 seconds.

4 Analyses and Results

4.1 Communication and Driving Behavior
To test the effect of braking events on communication performance, and vice versa, we varied the
relative timing of the communication events and braking events (see Figure 9 showing the condition
with DRT). The time difference between the end of the question and the beginning of the braking
event was varied from -1 to +1 seconds, in steps of 0.5 seconds. This offset is termed stimulus
onset asynchrony (SOA). A positive SOA value means that the braking event occurs before the end
of the presented question, and a negative value means that the braking event occurs after the end
of the question.

The dependent measure of relevance for the communication is the floor transfer offset (FTO),
which is the time in seconds between the end of the question posed to the participant and the
beginning of their articulation of a response . This value can be negative, in which case the response
temporally overlapped with the question. The results regarding the FTO (which can be interpreted
as a communication response time) were surprising: the participants were significantly faster in the
condition with the DRT (F(1,717) = 7.35, p < 0.01). They appeared faster in the SOA conditions
(in which they simultaneously had to respond to a traffic event by pressing the brake pedal) than
in the baseline condition without braking, but this difference was not significant in a mixed model
with participant and communication event as random factors (t(38) = 1.321, p = 0.19).

In a substantial number of communication trials (15%), the participants used filled pauses, like
“uh” or “uhm” at the beginning of their response. As using a filled pause signals an upcoming
delay (a short one for “uh” and a longer one for “uhm”, [24]), this could indicate that they were
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Figure 9: Relationship between communication and braking event times (units in seconds) for a
detection response task experiment session. Response time (RT).

delaying their response due to higher cognitive load. Therefore, we tested whether the proportion
of filled pauses in the verbal responses of the participants was sensitive to the SOA condition and
the presence/absence of DRT events. In a logistic regression using a mixed model with participants
as a random factor, we found no significant effect of either factor on the proportion of filled pauses.

Please note that in the previous analysis of the FTO related to the presence of DRT and SOA
conditions, we used the FTO as measured from the beginning of the articulation, so if the partici-
pant started with saying “uh(m)”, the FTO values were measured with respect to the beginning of
the articulation of “uh(m)”. We repeated the same analysis with FTO values measured from the
end of the “uh(m)” token (if there was an initial “uh(m)“ token), as well as from the end of the
pause following the “uh(m)” token (if there was an initial “uh(m)” token) and the pattern of result,
in terms of what was significant and what was not, was identical.

Figure 10 shows the communication response times in the different SOA and DRT conditions.
There were no significant interactions between the factors SOA and DRT at the α = 0.05 level.

For the braking response time, there was no significant difference for the presence or absence of
the DRT or for the presence or absence of the communication event (F(1,708)< 1), suggesting that
there was not resource interference between the two tasks (see Figure 11 for an overview of these
braking data). There was also no significant difference between braking events which involved a
simultaneous communication event and braking events that did not (F(1,876) = 2.01, p = 0.16),
lending further evidence to hypothesis that DRT did not interfere with the other tasks, i.e., braking
and DRT responses were not sharing cognitive resources as the presence or absence of one of them
did not affect the reaction times of the other.

There was no significant difference in DRT response times for the participants that had the
scenario with DRTs first, or second (t(351) = 0.939, p = 0.35). To look at the effect of time
(fatigue) on DRT, we computed the Pearson correlation coefficient between the time of the DRT
event in the scenario and the DRT response time. This correlation was 0.06, in the expected
direction (longer response times after longer time) but was not significant (t(381) = 1.093, p =
0.275).

Surprisingly, the presence of the DRT task revealed a positive effect on the driving quality,
as operationalized by the standard deviation of the acceleration, as well as the Steering Wheel
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Figure 10: Communication response time (RT) for different stimulus onset asynchrony (SOA) (in
seconds) of detection response task (DRT) and non-DRT periods. Solid lines represent results
during braking, while dashed lines represent the baseline period).

Figure 11: Braking response time (RT) for different stimulus onset asynchrony (SOA) (in seconds)
of detection response task (DRT) and non-DRT periods. Solid lines represent results during brak-
ing, while dashed lines represent the baseline period).
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Figure 12: Standard deviation of acceleration and steering wheel reversal rate.

Reversal Rate (see Figure 12).
The DRT reaction times themselves were differentially sensitive to multitasking load caused

by the communication events. We divided the DRT events into four categories. They were labeled
as in-question if they occurred during the auditory presentation of the communication question.
They were labeled as in-transition if they occurred right after the presentation of the commu-
nication question, but before the participant answered. They were labeled as in-answer if they
occurred during the time the participant answered the question. Finally, they were labeled as
outside-communication if they occurred outside any communication-related event. The resulting
average DRT reaction times are in Table 4 below. The only significant difference in a post-hoc
(Tukey) analysis was the difference between in-question and in-answer (p < .01). So if the par-
ticipant was listening to the question their DRT response was substantially slower than when they
were already articulating their answer. We know from recent work on communication processing
that participants in conversation have to plan their response already while they are listening to
the current turn [70, 80]. Our result suggests that simultaneous listening and response planning
require attentional resources that slows down the DRT responses. However, once the articulation
of the verbal response has been launched, there is no slowdown anymore. This suggests that the
articulation of the planned response appears to be an automatic process that does not require extra
attentional resources (see e.g., [69]).

Table 4: Mean detection response task (DRT) response times (ms)
in relation to communication events.

In-question In-transition In-answer Outside-communication
1236 1165 1046 1126

4.2 Single trial event related potential (ERP) extraction
Figure 13 shows examples of ERPs taken from the CP1 channels of DRT sessions of two differ-
ent participants. During these DRT events, the participants perform dual-task by responding to
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the tactile stimulation and maintaining the driving task simultaneously which causes higher cog-
nitive workload. The results show a precise estimation of N1, N2, and P3 components of ERPs
for different DRT events taken from these two participants. It is seen from the figure that the ERP
components are noticeable at specific time points after the onset of the secondary task which in-
tensifies the cognitive workload of the participants. Yet, despite the accurate detection of ERPs
for some DRT events, there are other cases where ERPs are not detected at similar points dur-
ing experimental runs (even within the same subject) even though participants received the tactile
stimulation and pushed the button. There are multiple possible explanations for this failure, the
immediate one being that more discriminating computational methods for extracting ERPs might
be needed. Alternatively, the participants’ DRT responses might not always manifest themselves
in ERPs (e.g., due to the variations in the cognitive context), in which case ERPs might just be of
limited utility for inferring the kinds of systemic cognitive states.

Figure 13: Examples of event related potential (ERP) responses to detection response task (DRT)
events for two events of two different participants.

4.3 Eye Gaze
Figure 14 shows the average fixation counts over the responded events of DRT sessions for four
different participants. The results indicate that the average number of fixations increases after the
stimulation. The DRT event occurs every 6 to 10 seconds during the driving simulation where
the participants were instructed to respond to the tactile stimuli. Both performing the driving task
and responding the tactile stimuli increases cognitive workload which results in increased fixation
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Figure 14: Average fixation counts over the responded events of detection response task (DRT)
sessions for different participants.

counts. Although there are many cases with an extended number of fixations during DRT events,
there are also some reversed cases where a decreased number of fixations are observed, pointing
to the limitations of using a single modality for estimating cognitive states. This is in part the case
because human cognitive states are modulated by a variety of factors that the single modality might
not be able to pick up. It is thus important to further investigate additional human gaze parameters
(e.g., pupil dilation) to get better and more comprehensive estimates of cognitive states.

Figure 15 depicts the variations in pupil diameter within the first three minutes of the experi-
ment which were taken from two sessions of three different participants. The starting points repre-
sent the onset of the experiments. The results indicate that the pupil diameter gradually decreases
after the experiment is initiated. The underlying reason is that the participants focus on the driving
task at the beginning of the experiment and after that, they lose their attention progressively which
is a demonstration of mind wandering state (consistent with the findings of [45] and as discussed
in Section 3.8).

4.4 Learning Behavioral States from Electroencephalogram (EEG), Func-
tional near-infrared spectroscopy (fNIRS), and pupil diameter

In this section, our goal is to train learning models that are capable of classifying the behavioral
states. As previously discussed, assessing behavioral states acts as an intermediate step to infer the
cognitive states. Specifically, we randomly selected 10 participants from a total of 89 participants
and use the fNIRS, EEG-PSD, and pupil diameter signals collected from these 10 participants to
form the training and test dataset. We follow the leave-one-subject-out protocol [32] to conduct
our experiment i.e., using the data collected from nine participants for training and the data col-
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Figure 15: Pupil diameter variation within the first three minutes of the experiments taken from
three different participants.

lected from the rest (one participant) for testing. The training data is split into a training set and a
validation set with the proportion of 80% and 20%. As previously discussed in Section 3.5, the la-
bel is alternatively selected from one of the six extreme behavioral marker pairs: Slow DRT - Fast
DRT, Slow Communication - Fast Communication, Slow Braking - Fast Braking, Slow Steering
- Fast Steering, Low Position Offset - High Position Offset, Low Heading Offset - High Heading
Offset where labels “-1” and “1” denote the Slow/Low and Fast/High behavioral marker, respec-
tively. Instead of jointly predicting these labels, we consider a simpler problem of predicting them
separately. The joint prediction problem will be preserved as our future work.

Hyper-parameters tuning is performed for all domain generalization (DG) methods, we ap-
ply a grid search over a range of [0.001,1] for all the hyper-parameters with a log10 scale and
choose parameters and the corresponding model that produce the lowest validation loss. The
hyper-parameter tuning procedure is repeated for every test participant, following [46]. All models
working on the EEG-PSD data are trained for 200 epochs using the Adam optimizer [66] with the
learning rate 5×10−4. The batch size is set to be 32 for ERM and 144 (9 participants, 16 samples
from each participant) for MMD-AAE, MLDG and CORAL. For the models applied to fNIRS
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data, we set the batch size as 144 with the learning rate as 10−4 for Adam optimizer [66]. For
the models applied to pupil diameter data, we set the batch size as 144 with the learning rate as
5×10−5 for Adam optimizer [66]. The whole experiment is repeated three times and the average
accuracy and standard deviation values are reported. The above procedures are applied for all six
extreme behavioral marker pairs separately. The details of these extreme behavioral maker pairs
are described in Section 3.5. For the final results, we only report the accuracy where Fast/Slow
steering is used as the label due to its superior performance in the comparison with other behavioral
markers.

The results for baseline models, i.e., the models without employing DG techniques for EEG-
PSD, fNIRS, and pupil diameter data can be viewed in Table 5. As seen, the performance of two
chosen algorithms for fNIRS data are close to a random predictor. Particularly, the highest accuracy
for fNIRS data is 56.1% achieved by InceptionTime for Non-DRT sessions using ∆HbO data. On
the other hand, the best accuracy of the baseline algorithm for EEG-PSD and pupil diameter are
60.1% and 57.2% both achieved in Non-DRT sessions, respectively.

Table 5: Numerical results for baseline models.

DRT Non-DRT
Data type InceptionTime MLSTM-FCN InceptionTime MLSTM-FCN

∆Hb 49.2±1.9 52.0±0.9 51.9±1.0 51.1±1.5
∆HbO 51.5±2.0 50.6±1.7 56.1±0.8 55.3±3.0
∆HbT 52.9±2.3 53.1±1.1 53.3±1.1 52.6±1.1

Data type InceptionTime MLSTM-FCN InceptionTime MLSTM-FCN
Pupil diameter 53.7±1.2 52.6±1.9 57.2±1.0 54.1±2.4

Data type PSD-NET PSD-NET
EEG-PSD 59.1±0.2 60.1±0.4

Detection response task (DRT); multivariate long short term memory fully convolu-
tional network (MLSTM-FCN); changes in the concentration of deoxy-hemoglobin (∆Hb);
changes in the concentration of oxy-hemoglobin (∆HbO); changes in the concentration
of total-hemoglobin (∆HbT); power spectral network (PSD-NET); electroencephalogram
(EEG); power spectral density (PSD).

Next, the learning performances of three DG methods are shown in Table 6 and Table 7. The
accuracy provided by DG methods achieve comparable performances as the baseline for DRT
sessions and generally surpasses the baseline algorithm at least 0.5% up to 4.3% for Non-DRT
sessions. The highest improvements belong to EEG-PSD and pupil diameter data. More specifi-
cally, the highest accuracy for EEG-PSD data using a baseline algorithm is 60.1% for Non-DRT
sessions while the best accuracy of DG method is 61.8%. On the other hand, the highest accu-
racy for pupil diameter data using a baseline algorithm is 57.2% for Non-DRT sessions while the
best accuracy of DG method is 61.5%. As seen, applying the domain generalization algorithms
consistently improves the accuracy of learning models compared to the traditional ERM method.

Even though we employed state-of-the-art domain generalization methods, the classification
performance of behavioral states is modest. This is not unexpected given that assessing these
behavioral states across multiple instances within subjects and across subjects is a hard problem. It
points to potential limitations of current domain generalization methods which are mainly designed
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Table 6: Numerical results for three domain generalization (DG) algorithms with
electroencephalogram (EEG) power spectral density (PSD) data.

DG algorithms DRT Non-DRT
ERM 59.1±0.2 60.1±0.4

MLDG 59.4±0.2 60.6±0.4
MMD-AAE 58.5±0.3 61.8±0.8

CORAL 59.1±0.4 60.9±0.8

Detection response task (DRT); empirical risk minimization (ERM); meta-learning
domain generalization (MLDG); maximum mean discrepancy-adversarial autoen-
coder (MMD-AAE); correlation alignment (CORAL).

Table 7: Numerical results for three domain generalization (DG) algorithms with pupil
diameter data.

DRT Non-DRT
DG algorithms InceptionTime MLSTM-FCN InceptionTime MLSTM-FCN

ERM 53.7±1.2 52.6±1.9 57.2±1.0 54.1±2.4
MLDG 54.5±1.4 53.9±2.8 59.3±1.7 55.5±2.9

MMD-AAE 53.9±1.5 54.2±2.3 57.2±2.0 56.0±0.9
CORAL 56.2±1.1 54.0±3.1 61.5±2.8 56.5±1.2

Detection response task (DRT); empirical risk minimization (ERM); meta-learning domain
generalization (MLDG); maximum mean discrepancy-adversarial autoencoder (MMD-
AAE); correlation alignment (CORAL).

for computer vision datasets may not be feasible to apply directly to physiological datasets without
any modifications. Yet, given that new domain generalization methods are being proposed all
the time, it will be important to evaluate their performance on the dataset and also consider the
inclusion of additional signals and context-based information in an effort to improve classifier
performance (if it is possible).

5 Discussion and Future Work
The overarching question for our experimental framework that motivated all of our machine learn-
ing efforts was whether it is possible to achieve a sufficiently high classification accuracy of sys-
temic cognitive states across subjects using state-of-the-art machine learning models. This is im-
portant not only for monitoring and potentially aiding individual humans, but also for improving
performance in mixed-initiative teams where humans and autonomous artificial agents work to-
gether in the pursuit of common goals. Current autonomous systems, however, are unaware of
human cognitive states, they have no notion of team capabilities, tasks, and goals, and they lack
the ability to interact with humans and adapt their behaviors on team dynamics. Genuine artifi-
cial teammates, instead, will need to have the ability to assess human physiological and cognitive
states, to understand human goals and intentions as these dynamically shift based on varying task
demands, and to anticipate errors and changes in plans so they can proactively intervene in order
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to preserve team coherence and performance.
Hence, an important step along the way towards genuine artificial teammates would be the

demonstration of a successful method that is able to classify systemic cognitive states across indi-
viduals (and ideally also across tasks) or to provide a conceptual “impossibility argument” for why
such inferences from physiological and neurophysiological data are not possible (e.g., appealing to
noise in the data, large variations of the signals within an individual, distributional signal drifts dur-
ing task performance, etc.). To the best of our knowledge, neither position has been convincingly
made in the literature so far.

The classification results of behavioral states we obtained using standard machine learning
methods (which can then be linked to cognitive states based on the experimental setting) showed
that current domain generalization methods yield only modest classification accuracy (and neither
do ERPs in EEGs, although eye gaze showed promising results for some). In a way, the failure
to obtain accurate classifiers is not unexpected because the classification problem across multi-
subject multi-modal (noisy) time series data is known to be hard and it is quite possible that there
is just not enough common information in those signals to generate consistent cognitive state ab-
stractions and that at the very least additional constraining context information will ultimately be
needed for machine learning model to be able to cope with individual variation, context-based
shifts, and signal drifts. This last point is implicitly supported by the lack of published methods
that demonstrate sufficiently accurate systemic cognitive state classification based on multi-modal
physiological and neurophysiological signals across multiple subjects, despite significant efforts
by the community and partial successes for specific cognitive states within individuals.

It is, however, important to mention that while a general method that works across subjects
for all of the considered systemic cognitive states might be impossible, more specific methods
targeting individual cognitive states could still yield high classification results. A case in point is
our recent success at achieving high classification performance for one of the five systemic cogni-
tive states: cognitive workload. Using the different experimental/behavioral conditions to define
three different levels of cognitive workload: only driving (level 0), driving and communicating
(level 1), and driving with breaking events and communication (level 2). We performed statistical
analyses of various physiological signals including eye gaze, electroencephalography, and arterial
blood pressure and utilized several machine learning methodologies including k-Nearest Neighbor,
Naive Bayes, Random Forest, Support-Vector Machines, and Neural Network-based models to in-
fer the three workload levels. The results revealed that direct cognitive workload classification on
eye gaze information alone (without predicting behavioral states), specifically percentage change
in pupil size, was able to achieve an accuracy of 80.45 ∓ 3.15 using Support-Vector Machines
while combining eye gaze with EEG was able to reach an accuracy of 77.08∓ 3.22 using a Neural
Network-based model (see [6] for details).

This is but one example of how the experimental framework introduced in this paper and the
resultant dataset (with the accompanying data pre-processing methods) can form the basis for ad-
ditional analytical and modeling work that we expect to provide further results for which sensory
modalities are essential for cognitive state inference (and should thus be collected in other exper-
iments in the future) to demonstrate generalization not only across subjects, as we have pursued
here, but more generally also across different tasks.
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6 Conclusion
It is currently still an open research question to what extent statistical machine learning methods
are able to classify systemic cognitive states based multi-modal physiological and neurophysio-
logical signals across subjects and ideally across tasks. Yet, being able to detect and track such
cognitive states would not only allow for the development of adaptive technologies that would ben-
efit individuals by taking their cognitive state into account, but also human-machine teams where
effectiveness of interactions and cooperation criticially depend on individual human performance
modulated by systemic human cognitive states.

In this paper, we introduced a multi-modal experimental paradigm that was specifically de-
signed to collect a comprehensive suite of empirical data from human performance paired with
task and event-based context as the basis for investigating methods and machine learning models
for cognitive state inference that can help answer this question. We applied state-of-the-art do-
main generalization methods to our data and obtained modest classification results for behavioral
states which are linked to systemic cognitive states. The failure to obtain more accurate classifiers
points to the need for novel classification methods that likely will need to incorporate additional
task-based context in order to improve classification performance. In that sense, our results can
serve as a baseline for evaluating future machine learning models on our dataset, but they could
also be taken as a hint that general methods for inferring systemic cognitive states across subjects
(and across tasks) might just not be attainable, despite our best efforts.

7 Acknowledgment
The authors would like to acknowledge funding provided by AFOSR grant # FA9550-18-1-0465
and also thank Chris Myers as well as the anonmymous reviewers for their feedback that led to a
much improved paper.

References
[1] Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint

arXiv:1803.08375.

[2] Aghajani, H. and Omurtag, A. (2016). Assessment of mental workload by eeg+ fnirs. In
2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 3773–3776. IEEE.

[3] Al-Nafjan, A., Hosny, M., Al-Wabil, A., and Al-Ohali, Y. (2017). Classification of human
emotions from electroencephalogram (eeg) signal using deep neural network. Int. J. Adv. Com-
put. Sci. Appl, 8(9):419–425.

[4] Appelbaum, L., Boehler, C. N., Davis, L., Won, R. J., and Woldorff, M. (2014). The dynamics
of proactive and reactive cognitive control processes in the human brain. Journal of Cognitive
Neuroscience, 26:1021–1038.

32



[5] Arsalan, A., Majid, M., Butt, A. R., and Anwar, S. M. (2019). Classification of perceived
mental stress using a commercially available eeg headband. IEEE journal of biomedical and
health informatics, 23(6):2257–2264.

[6] Aygun, A., Nguyen, T., Haga, Z., Aeron, S., and Scheutz, M. (2022). Investigating methods
for cognitive workload estimation for assistive robots. Sensors, 22(18).

[7] Baldwin, C. L., Roberts, D. M., Barragan, D., Lee, J. D., Lerner, N., and Higgins, J. S. (2017).
Detecting and quantifying mind wandering during simulated driving. Frontiers in Human Neu-
roscience, 11.

[8] Beckers, N., Schreiner, S., Bertrand, P., Mehler, B., and Reimer, B. (2017). Comparing the
demands of destination entry using google glass and the samsung galaxy s4 during simulated
driving. Applied Ergonomics, 58:25–34.

[9] Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., Olmstead,
R. E., Tremoulet, P. D., and Craven, P. L. (2007). EEG correlates of task engagement and
mental workload in vigilance, learning, and memory tasks. Aviation, Space, and Environmental
Medicine, 78(5):B231–B244.

[10] Bixler, R., Blanchard, N., Garrison, L., and D’Mello, S. (2015). Automatic detection of mind
wandering during reading using gaze and physiology. In Proceedings of the 2015 ACM on
international Conference on Multimodal Interaction, pages 299–306.

[11] Bjørneseth, F. B., Renganayagalu, S. K., Dunlop, M. D., Hornecker, E., and Komandur,
S. (2012). Towards an experimental design framework for evaluation of dynamic workload
and situational awareness in safety critical maritime settings. In The 26th BCS Conference on
Human Computer Interaction 26, pages 309–314.

[12] Blanchard, G., Lee, G., and Scott, C. (2011). Generalizing from several related classification
tasks to a new unlabeled sample. Advances in neural information processing systems, 24:2178–
2186.

[13] Blanchard, N., Bixler, R., Joyce, T., and D’Mello, S. (2014a). Automated physiological-
based detection of mind wandering during learning. In International Conference on Intelligent
Tutoring Systems, pages 55–60. Springer, Chambridge.

[14] Blanchard, N., Bixler, R., Joyce, T., and D’Mello, S. (2014b). Automated physiological-
based detection of mind wandering during learning. In International conference on intelligent
tutoring systems, pages 55–60. Springer.

[15] Blaney, G., Sassaroli, A., Pham, T., Krishnamurthy, N., and Fantini, S. (2019). Multi-distance
frequency-domain optical measurements of coherent cerebral hemodynamics. Photonics, 6(3).

[16] Brouwer, A.-M., Snelting, A., Jaswa, M., Flascher, O., Krol, L., and Zander, T. (2017).
Physiological effects of adaptive cruise control behaviour in real driving. In Proceedings of the
2017 ACM Workshop on An Application-oriented Approach to BCI out of the laboratory, pages
15–19.

33



[17] Buettner, R., Baumgartl, H., and Sauter, D. (2019). Microsaccades as a predictor of a user’s
level of concentration. In Information Systems and Neuroscience, pages 173–177. Springer.

[18] Canabarro, S. L. S., Garcia, A., Satler, C., and Tavares, M. C. H. (2017). Interaction between
neural and cardiac systems during the execution of the stroop task by young adults: Electroen-
cephalographic activity and heart rate variability. neuroscience 2017, Vol. 4, Pages 28-51.

[19] Causse, M., Chua, Z., Peysakhovich, V., Del Campo, N., and Matton, N. (2017). Mental
workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Scientific Re-
ports, 7(1):5222.

[20] Cecotti, H. and Ries, A. J. (2017). Best practice for single-trial detection of event-related po-
tentials: Application to brain-computer interfaces. International Journal of Psychophysiology,
111:156–169.

[21] Cerliani, M. (2021). Tsmoothie. https://github.com/cerlymarco/tsmoothie.

[22] Chatham, C. H., Frank, M. J., and Munakata, Y. (2009). Pupillometric and behavioral markers
of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the
National Academy of Sciences, 106(14):5529–5533.

[23] Cheng, S.-Y. (2017). Evaluation of effect on cognition response to time pressure by using
EEG. In Advances in Human Factors and Ergonomics in Healthcare and Medical Devices,
pages 45–52. Springer, Cham.

[24] Clark, H. H. and Tree, J. E. F. (2002). Using uh and um in spontaneous speaking. Cognition,
84(1):73–111.

[25] Coffey, E. B., Brouwer, A.-M., and van Erp, J. B. (2012). Measuring workload using a
combination of electroencephalography and near infrared spectroscopy. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, number 1 in 56, pages 1822–1826.
Sage Publications Sage CA: Los Angeles, CA.

[26] Collet, C., Petit, C., Priez, A., and Dittmar, A. (2005). Stroop color–word test, arousal,
electrodermal activity and performance in a critical driving situation. Biological Psychology,
69(2):195–203.

[27] Cooper, J. M., Medeiros-Ward, N., and Strayer, D. L. (2013). The Impact of Eye Move-
ments and Cognitive Workload on Lateral Position Variability in Driving. Human Factors,
55(5):1001–1014.

[28] Cooper, P. S., Wong, A. S. W., Fulham, W. R., Thienel, R., Mansfield, E., Michie, P. T., and
Karayanidis, F. (2015). Theta frontoparietal connectivity associated with proactive and reactive
cognitive control processes. NeuroImage, 108:354–363.

[29] Cui, Y., Xu, Y., and Wu, D. (2019). Eeg-based driver drowsiness estimation using feature
weighted episodic training. IEEE transactions on neural systems and rehabilitation engineer-
ing, 27(11):2263–2273.

34



[30] Debie, E., Rojas, R. F., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt, M., and
Abbass, H. A. (2019). Multimodal fusion for objective assessment of cognitive workload: a
review. IEEE transactions on cybernetics, 51(3):1542–1555.

[31] Di Stasi, L. L., McCamy, M. B., Catena, A., Macknik, S. L., Canas, J. J., and Martinez-
Conde, S. (2013). Microsaccade and drift dynamics reflect mental fatigue. European Journal
of Neuroscience, 38(3):2389–2398.

[32] Dou, Q., Coelho de Castro, D., Kamnitsas, K., and Glocker, B. (2019). Domain generalization
via model-agnostic learning of semantic features. Advances in Neural Information Processing
Systems, 32:6450–6461.

[33] Duan, T., Shaikh, M. A., Chauhan, M., Chu, J., Srihari, R. K., Pathak, A., and Srihari,
S. N. (2020). Meta learn on constrained transfer learning for low resource cross subject eeg
classification. IEEE Access, 8:224791–224802.

[34] Durantin, G., Dehais, F., and Delorme, A. (2015). Characterization of mind wandering using
fNIRS. Frontiers in Systems Neuroscience, 9:45.

[35] Dutta, A., Jacob, A., Chowdhury, S. R., Das, A., and Nitsche, M. A. (2015). EEG-NIRS
Based Assessment of Neurovascular Coupling During Anodal Transcranial Direct Current Stim-
ulation - a Stroke Case Series. Journal of Medical Systems, 39(4):36.

[36] Eckstein, M. K., Guerra-Carrillo, B., Singley, A. T. M., and Bunge, S. A. (2017). Beyond eye
gaze: What else can eyetracking reveal about cognition and cognitive development? Develop-
mental cognitive neuroscience, 25:69–91.
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