
Using Simple Deontic Constraints for Fast
Norm-Conforming Reinforcement Learning

Matthias Scheutz and Daniel Little
Department of Computer Science, Tufts University, Medford, MA 02155, USA

Abstract

Standard reinforcement learning (RL) methods discover policies that maximize a
reward signal but cannot learn normative behavior quickly. We propose a novel ap-
proach that uses expert demonstrations to generate simple constraints using deontic
operators, guiding the agent’s decision-making process. The agent uses those demon-
strations to learn which actions may be obligated or permitted in certain states. By
forcing the agent to take actions it learns as obligated, we significantly reduce the state
space complexity of the learning problem. Furthermore, we show how after learning
low-level obligated actions, the agent can cluster the received demonstrations and
analyze commonly-occurring subsequences, allowing the agent to learn higher-level
obligations. We demonstrate how our method learns faster and commits no norm
violations in a hybrid-planning supermarket shopping task.

Keywords: reinforcement learning, simple norms, norm violations,

1 Introduction
Human actions and interactions are governed by complex moral and social
norms that every member in a human society is expected to follow. Not follow-
ing a norm leads to blame and possible sanctions by members of the community.
There is increasing evidence that artificial agents in general, and robots in par-
ticular, are expected to follow the same norms as humans when embedded in
human contexts (e.g., [12]. Hence, it is critical for those agents to abide by the
same normative principles if they are to be accepted and used by humans.

There are currently two main approaches for achieving norm compliance
in autonomous agents (e.g., [7]) when their task environment is known: (1)
learning norm-compliant behavior from observing (perfect) teachers without
explicitly learning norm representations, and (2) learning and using explicit
norms to determine what to do. The first implicit approach typically uses a
version of inverse reinforcement learning (IRL) to infer a “reward function” or
human preferences that implicitly reflect the domain norms (e.g., [4]), while the
explicit approach attempts to learn explicit norm representations (e.g., from
instructions or from observations of normative behavior). Both approaches
can use some version of reinforcement learning (RL) to find (close to) optimal
policies for norm-compliant task performance. The explicit approach, however,

2 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

can also use other techniques such as planning or logical reasoning to determine
the best action to perform which in some cases can be advantageous (e.g.,
when policy training time is limited). Moreover, the explicit approach has the
advantage of being explainable in a strong sense: explicit norm-following agents
can point to their explicit norm representations when justifying their actions,
even in cases of norm conflicts (e.g., [11]), while notions of norm conflicts make
no sense with implicit approaches as they cannot represent conflicts, but only
action choices, and thus can also not generate genuine explanations for why
they acted the way they did.

There are additional challenges with the implicit approach related to as-
sumptions about the domain (e.g., that it is “Markovian”, or that a certain set
of environmental features is sufficient for inferring reward functions that can be
used to learn norm-compliant behavior) which then limits the kinds normative
properties for which they can learn appropriate policies (e.g., they cannot learn
how to act properly for domains with non-Markovian norms, see [3]). On the
other hand, the explicit approach faces the challenge of how to learn normative
principles when the principle is not explicitly given as it would, for example,
be through an instruction like “do not steal” and how to subsequently apply it
(i.e., how is “do not steal” linked to behavior?).

In this paper, we propose a novel learning approach that first extracts simple
normative constraints from observed behavior of norm-following agents before
subsequently learning how to perform its task. There are two main advantages
to this approach: (1) the agent needs to consider only a smaller action space of
permitted and obligatory actions it extracts from observation, and (2) it will
not perform any norm violations during learning which implicit norm learners
typically do (as they do not know yet what is allowed or forbidden).

2 Related Work
Most implicit approaches to developing norm-conforming agents essentially
build on learning techniques that allow agents to learn norm-conforming be-
havior without ever learning the norms themselves. When learning objectives
can be easily specified in terms of reward functions, RL is typically the method
of choice allowing the agent to determine the value of different states, including
norm-violating states (which usually have a high associated cost, thus allowing
the agent to learn to avoid them). If a reward function cannot be easily de-
fined, but teachers are available to demonstrate normative task performance,
inverse RL (IRL) is often applied to obtain a reward function from the observed
normative behavior, which can then be used with RL to learn how to perform
the task without violating norms. The challenge with this approach is that
it is computationally expensive, and often times the agent never generates an
appropriate reward function from which appropriate normative behavior can
be learned. The most important downside of any form of RL, however, is that
RL agents never abstract any normative principles, hence cannot reason with
them, cannot trade them off, and cannot make recourse to them in justifica-
tions (as is required when humans, for example, violate norms). As such, RL,

Scheutz, Little 3

IRL (and other variants such as “cooperative IRL”, e.g., [4]) are not suited for
application contexts where humans expect explainable behavior from artificial
agents.

On the other hand, the explicit approach to developing norm-conforming
agents uses some formal logic to represent norms, typically a deontic logic with
modal operator for obligations O and permissions P (which can be used to
define other derived concepts such as prohibitions and options). Some for-
mal frameworks do not explicitly include deontic operators, but define them
in terms of other operators, e.g., temporal operators “next” X, “for all future
times” G, and “in the future” F, operators for agent intent or actions such
as the “see-to-it-that” (STIT) operator, or notions of control and attempt [5].
Others have introduced a utilitarian deontic STIT logic which can solve vari-
ous deontic paradoxes of standard deontic logic and consists of weak and strong
preference operators that allow one to explicitly formulate context comparisons
like every context with ϕ true is weakly better than any context in which ψ is
true [18]. A very rich formal framework is provided by [1] by adding epistemic
and doxastic operators, thus allowing for the formalization of so-called “dox-
astic oughts” which can be interpreted as the effects of actions that maximize
expected (deontic) utility. Importantly, all these formal frameworks are decid-
able with model checking algorithms of varying complexity. However, none of
these logical approaches provide methods for learning normative principles.

We have previously proposed a hybrid approach that combines explicit norm
representations in linear temporal logic (LTL) with RL to learn how to obey
them [10,8]. 1 Importantly, our proposed method was the first to deal with
norm conflicts in that for each norm Ni expressed in LTL that the agent was
supposed to obey we associated a weight wi and minimized the summed weights
of the violated norms when norms were inconsistent, thus suspending the small-
est subset of norms for the shortest time possible obeying all others (see [10] for
details). Based on this norm following approach, we also developed techniques
for finding the best norm tradeoffs from observed behavior, i.e., a method for
determining weights wi associated with given norms Ni based on a finite set of
“exemplary” observed behavioral trajectories s0, . . . , sn (from a norm-following
teacher) that “best fit the observed behavior” (see [9] for details). And we also
developed methods for finding an ideally minimal set of norms such that when
the best weights are inferred for it the agent exhibits behavior as close as pos-
sible to the observed trajectories s0, . . . , sn (see [8] for details). While these
methods had formal guarantees, they did not explicitly represent obligations
and prohibitions and were only feasible in small domains.

Other approaches combining explicit norm specifications with reinforcement
learning to allow agents to learn policies that maximally obey the norms add a
“normative supervisor” to an RL agent’s architecture as a continual check that
the agent’s actions follow all norms [15]. Other work modifies the restraining

1 Cp. to Littman et al. [13] who also used a formal LTL specification as the reward function
for an RL algorithm to learn how to perform the task.

4 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

bolt mechanism from safe RL to minimize the negative rewards accumulated
after the agent commits norm violations [16]. However, in all these cases the
norms are given to the agent, and are not learned from observations.

There is currently no approach to our knowledge that can learn simple
and more complex normative deontic principles from observations of actions of
norm-following agents alone. Moreover, there is no work that directly compares
the learning performance of such explicit norm learners to implicit RL-based
norm learners.

3 Learning Simple Action-Level Obligations and
Permissions

Our main aim is to provide an incremental norm learning algorithm that is
based on observing the actions of norm-conforming agents and using those ob-
servations to build up representations of simple obligations and permissions:
O(a, s, t) and P(a, s, t) meaning that in state s action a is obligated and per-
mitted, respectively, when performing task t. Note that this representation is
not yet that of standard deontic logic with unary deontic operators O and P
applied to formulas ϕ. However, in the course of observing multiple agents
perform the task and under the assumption that all observed agents follow the
same set of norms, the learner will be able to refine the learned norm represen-
tation and will eventually be able to arrive at normative principles in terms of
these standard deontic modalities.

Our proposed norm learning agent L is maximally conservative in how it
uses observed behavior to infer normative principles: (1) an action that is
observed in a given state is always taken to be obligatory, unless there are
examples of different actions being taken by the same or different agents in
that state in which case all action alternatives in that state are considered
permissible; and (2) all unobserved actions are always taken to be forbidden
unless there is explicit instruction or evidence to the contrary. It is important
to point out that this restrictive assumption does not necessarily reflect the
actual norms that might apply as an what the agent believes to be obligatory
actions might simply be “the best actions” in that state or what they agent
has not observed and takes to be forbidden might just be “suboptimal” actions
not performed by non-conforming agents. For the following, we assume that
the environment is deterministic, i.e., that all attempted actions are successful
(we will return to this assumption in Section 6).

Initially, L starts by observing a normative agent A perform a task t (pos-
sibly with parameters p, which we will omit to simplify the notation). For
each state s in which A performs action a, L adds O(a, s, t) to its set of task-
based obligations Obl (going forward, we will also omit the task parameter
when we only consider a single task). L also keeps track of A’s trajectory
(s0, a0), (s1, a1), . . . , (sk, ak) (for some reasonable k depending on t). In addi-
tion, L maintains an initially empty permission set Per which will be populated
as L obtains more observations that show how norm following agents differ with
respect to the action they perform in a given state. I.e., if L observes another

Scheutz, Little 5

normative agent A′ perform T (possibly with different parameters P ′), L checks
again for each state-action pair (s′, a′) in A′s trajectory whether (s′, a′) ∈ Obl;
if so, then A and A′ agree on the obligation (s′, a′) and nothing needs to be
changed. Otherwise, if there is no (s′, a) ∈ Obl with a ̸= a′, then (s′, a′) is
added to Obl, indicating that a new obligation was observed. However, if there
is (s′, a) ∈ Obl with a ̸= a′, then A and A′ disagreed on what action to perform
in state s, hence neither a nor a′ can be obligatory in s (given that both agents
follow the same norms). Hence, (s′, a) is removed from Obl and added to Per,
and (s′, a′) is also added to Per to indicate that both actions are permissible
in s. 2

The main aim of this “normative constraint learning phase” (realized by
Alg. 1 in the Appendix) is to acquire the normative action boundaries for the
task, i.e., what is and is not permitted, and what must and may not be done
(this is akin to learning a “shield” in safe RL [2]). A second important benefit
of the approach is to reduce the large state space so that a subsequent task
learner will only need to learn what to do in cases of permissible states that
present alternatives (of which it should ideally pick the best). I.e., after the
normative constraint learning phase, all observed states either have a single,
obligated action, or several permitted actions associated with them and the
agent only needs to learn a policy to achieve the task goal in the reduced
action space where it, essentially, only needs to consider states with choices.
Most importantly, it can safely learn the policy because in the reduced action
space no action can violate any norms (in the deterministic case considered
here). Hence the agent could not possibly select a “bad action”, compared to
the situation of a regular RL learner in the full action space where some actions
will violate collision norms, for example.

For the “task learning phase” in the constrained action space, we can use
reinforcement learning, e.g., one-step Q-learning with ϵ-greedy exploration (but
note that we could use other learning algorithms as well, e.g., planning algo-
rithms). In states where there is a single obligated action, the agent is forced
to take that action. For states where multiple permitted actions are recorded,
the learner can then immediately use inference and learning methods to deter-
mine which of the permitted actions to select or prioritize if the learner learns
action distributions (e.g., it might use RL to learn the best action in s or action
sequence between obligated actions); to do this efficiently, the agent only needs
to consider all subtrajectories that start in a state with an obligated action and
end up in another such state: O(s0, a0),P(s1, {a1, a

′
1, . . . , }),. . . ,O(s∗, a∗). The

reduced learning problem then is to start in s0 and learn how to get to s∗ as
efficiently as possible. We can illustrate this idea with a simple example from
a shopping task in a supermarket.

2 While we explicitly separate out learned obligations and permissions here for easy ac-
cess and analysis, it is possible to only track permitted actions in state s defined as
Ps := {a|(s,a) occurs in some of the observed non-conforming behavior traces} when there
is only one such action in Ps it is obligatory.

6 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

Supermarket example: Suppose there are multiple paths from the entrance
of a supermarket to the location of the shopping baskets s0, s1, . . . , s

∗ and
s0, s

′
1, . . . , s∗. An untrained agent observes these trajectories and runs algo-

rithm Alg. 1, hypothesizing that s0 has two permitted actions, those being the
actions that led to two different paths to the basket. During learning, the agent
explores the permitted actions in s0 and learns which one is optimal. Since all
other actions in s1, . . . , s∗ and s′

1, . . . , s∗ are obligated, the agent has no need
to learn anything else and can simply take the obligated actions until it later
encounters another state with permitted actions.

Note that in the full shopping task, in which the agent must complete
multiple subtasks such as navigating to the basket, getting milk off the shelf,
paying at checkout, etc. a set of permissions and obligations is maintained for
each subtask.

4 Learning Higher-Level Obligations
In addition to updating the obligated and permitted action for states, the agent
can start to abstract single state-based action obligations and permissions by
comparing the observed trajectories to arrive at higher-level obligations that
are characterized by propositional context descriptions (e.g., the agent might
have access to a labelled MDP that provides all propositions that are true in
a given state, e.g., see [10,8], or it could learn them from observations, e.g.,
[19]). Suppose L compares two agents that start in the same state s0 but
subsequently differ in the trajectories they take. L then attempts to find the
first state s∗ after s0 in Obl such that the action a in s∗ is performed in both
trajectories leading to the new state s∗’, in short, the first shared state with
an obligatory action in both trajectories.
Supermarket example: Suppose two agents start at the store’s entrance,
but take different routes to the shopping baskets where they both pick up
a basket, i.e., s0, s1, . . . , s∗ and s0, s

′
1, . . . , s∗ (possibly of different lengths). L

then considers the details of the state change after s∗ attempting to find a state
property that was false up until s∗ and true in s∗’. In this case the formula
is ¬has(basket, agent) which is true up to s∗ and false afterwards due to the
pickup action in s∗. L can then use the formula to abstract a more complex
norm that is state-independent: there is a point in time when in the shopping
task the agent must have a basket (here we use the temporal logic F operator
to indicate a future time):

FOhas(agent, basket)

The agent then continues the above process to determine another common
norm that agents must obey for shopped items (we assume for simplicity that
all observed agents actually put items in their baskets):

FOpaid(agent, shopped items)

Since the second norm happens after the first norm for both agents, the
learner can even retain the order of the norm applicability:

Scheutz, Little 7

F(Ohas(agent, basket)∧ FOpaid(agent, shopped items))

Overall, multiple different observations allow the learner to switch from very
specialized norms that prescribe actions in particular states to more general
norms that prescribe certain state properties, i.e., partial state descriptions in
some formal language irrespective of the action or action sequence needed to
arrive in a state of which the description is true.

We thus developed a second algorithm that can be used to learn higher-
level, more general norms than Alg. 1, again based only on observations of
norm-confirming behavior of other agents. In Alg. 2, the agent uses the given
set of expert demonstrations to find places where the expert demonstration tra-
jectories “intersect”. It first identifies the common states from all trajectories
in the order in which they appear. Then, it determines which propositions in
the state descriptions have changed between one common state s and the sub-
sequent common state s′. For each proposition p that has changed, the agent
stores the new truth-value in ∆P , e.g. if p was false in state s and true in s′,
it adds p to ∆P . Note that this procedure only builds higher-level obligations
from the differences between states. If the agent encounters two common states
with no differences in propositional descriptions, it will consider the next two
common states to handle the case where multiple common states appear in
sequence in a set of trajectories (e.g., if in all trajectories the agents pay at
the checkout counter and then immediately go north towards the exit). New
higher-level obligations are only hypothesized when a difference is detected.
Ideally, the agent could then represent a sequence of obligations in terms of
regular expressions instead of nested temporal formulas which would make the
representation more compact that the above formulas as it would allow for al-
ternatives and repetitions. For example, if initially getting a basket is obligated,
and paying is obligated at the end, but in between different alternative permit-
ted sequences for getting various food item f1, f2, . . . , fm are observed, then
the agent could abstract the following regular expression (where “;” denotes
concatenation, braces denote alternatives, and “*” denotes iteration):

in(basket,food);
{in(basket,f1),in(basket,f2,). . .,in(basket,fm)}∗;
paid(agent,shopped items)

and note that the agent here makes a more general inference than that strictly
warranted by the observations about alternative actions being arbitrarily re-
peatable (e.g., one can get any number of apples).

5 Experimental Evaluations
The goal of the experimental evaluation was twofold: (1) to demonstrate the
feasibility of our proposed approach and to verify that it allows the learner
to quickly learn both the normative boundaries in the task as well as how to
perform the task without violating any norms; and (2) to compare its per-
formance to typical RL and IRL algorithms. We used our Proper Shopper

8 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

Fig. 1. The ProperShopper supermarket simulation environment with two players
(one with a cart, one with a basket), two cash registers, a meat and a fish counter,
and various isles with food items on shelves.

simulation ProperShopper which emulates typical shopping tasks in a super-
market for all experimental evaluations (see Fig. 1). The simulation was built
using the Pygame library and has been provided as a Gymnasium “wrapper”
to enable easy sharing with other researchers.

Human and/or artificial agents play shoppers in a supermarket with the
goal to purchase all items on their shopping list from the store. Shoppers can
pick up carts or shopping baskets, navigate the aisles of the store, retrieve food
from shelves or prepared food from counters, return unwanted food to shelves,
and purchase the contents of their carts/baskets at a checkout counter. I.e., the
action space consists of nop (a no-op action); north, south, east, and west, (to
navigate around the supermarket); interact (to interact with another object);
toggleCart (to pick up or release a currently held cart or basket); cancel (to
cancel ongoing interactions); and remove ⟨n⟩, for some n ∈ Z (to remove a
particular item from a cart, basket, or checkout counter). The supermarket

https://github.com/teahmarkstone/Supermarket-Environment
http://pygame.org/
https://gymnasium.farama.org/

Scheutz, Little 9

has 27 different food items distributed over 30 shelves and two food counters,
supporting up to nine different players that can simultaneously navigate and
interact with objects. Each player starts with a set amount of money to spend
on items (e.g., $100). The simulation also consists of several norm violation
monitors which run before and after each action to determine whether an agent
has violated a norm (see the Appendix).

Norm violation monitors thus provide information about any new norm vi-
olations that arise as a result of agent actions (such as which agent caused
the violation, other agents/objects involved in the violation, etc). In particu-
lar, they can track temporally complex (non-Markovian) norms, such as those
specified in temporal logic [3]. Each monitor is responsible for determining
what constitutes a unique violation of its corresponding norm.

For the first set of evaluations, we considered the subtask of navigating from
any place in the store to the basket location. The agent’s state consists of its
(x, y) position, both of which are integer values. When the continuous state
space is discretized in this way, the Proper Shopper environment has dimensions
19× 23, for a total of 437 states. To generate expert trajectories automatically
in this “find and fetch the basket” subtask of the shopping task, we trained
an RL agent using one-step Q-learning for 2500 episodes of 100 time steps
each (see the Appendix for details on Q-learning). The agent’s initial position
was randomized. The agent received -1 reward each time step except when it
reached the goal states, in which case it received +1000. The agent was also
penalized -50 times the number of norm violations every time it caused any.
In other words, we utilized the norm monitors to provide violation feedback to
the learner to help it avoid committing violations. After training, the agent
was run for 100 more episodes and it was able to reach the basket every time.
The important side-effect of generating expert trajectories this way was that we
were also able to obtain a baseline agent for regular RL training that allowed
us to determine (1) how long it would take an RL with explicit norm violation
feedback to this task and, and (2) how many norms that agent violated at
different times during learning and after.

For the second set of evaluations, we trained a one-step Q-learning agent
on the full shopping task, where it had to purchase all items on a shopping
list. In each episode, a random shopping list was generated from which a plan
was created for the various subtasks: where the agent needed to go to pick up
a basket, to pick up all items on the shopping list, to pay at checkout, and
to exit. The agent was trained by maintaining a separate Q-table for each
subtask (e.g., for navigating to the basket, to the chicken shelf, picking up an
item from the chicken shelf, etc.). For navigation tasks, the agent received
+100 for reaching the navigation goal. For get and pay tasks, the agent was
given +100 for getting the required item, or paying at checkout. The agent
received -1 otherwise. The expert agent was trained for 75000 episodes, and
given 300 time steps to complete each subtask. The agent could only progress
to the next subtask in the plan by completing the current subtask; if it failed
at a subtask, the environment was reset and a new training episode started.

10 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

5.1 Extracting low-level normative task structure
We generated 1000 demonstration trajectories from the first baseline agent in
the fetch-the-basket task to learn which actions are obligated and which are
permitted in each state. Figure 2 shows the result where each grid square is a
possible location for the agent. Black squares are inaccessible forbidden states,
and green squares are goal states (they are adjacent to the basket). Obligated
actions are represented by a black arrow, permitted actions by gray arrows.
Squares with no arrows were not visited by the trained agent in any trajectory.
As shown, the algorithm significantly reduces the number of states an agent
needs to consider: Out of the 437 states, 88 are inaccessible to the agent or are
the goal state. From the 349 remaining states, the agent learns an obligated
action for 278 of them, representing a reduction of 80%.

Fig. 2. Obligated and permitted actions for the basket navigation task (see text for
details).

As a result, the agent can learn its task significantly faster compared to
learning it in the original action space. Even when the agent needs to explore
permitted actions, those actions are all “good” in the sense that a norm-abiding
agent was observed selecting each of those at least once. And as Fig. 2 shows,
explorations often lead the agent into a state with only one single, obligated ac-

Scheutz, Little 11

tion. Fig. 3 shows the learning process of our proposed norm learner compared
to the baseline Q-learning agent. Both agents were trained for 2500 episodes,
and their results averaged over 100 experiments. The results confirm our hy-
pothesis that applying deontic constraints results in extremely fast learning,
with the agent being able to complete the task nearly all the time right from
the beginning of training compared to the learner in the original action space,
which ramps up of over 1000 training episodes before sufficiently high task
performance is achieved at around 1500 training episodes.

Fig. 3. Completion rates of the basket navigation task, unconstrained vs. constrained
agent

We also implemented the Maximum Entropy IRL learner from [23] which
was able to recover a similar reward function to that used in the baseline
agent, with a sparse reward of +1000 for reaching the basket, and a step cost
of -1. However, the IRL learner took extremely long to train, approximately 50
hours for this simple task which makes IRL practically infeasible for anything
but similarly simple tasks, and certainly not usable for a complex task such as
the shopping task. Most importantly, the recovered reward function does not
provide any value for learning normative principles.

5.2 Extracting higher-level obligations
For the higher-level obligation learner, we again generated 1000 demonstra-
tion trajectories without norm violations, this time from the second baseline
agent, which was trained on the entire shopping task. However, the second
agent already demonstrated a major issue with standard RL algorithms like
Q-learning: they tend to commit many norm violations during the exploration
phase. Fig. 4 shows the average amount of norm violations committed per
episode (normalized by episode length) for a Q-learning agent learning to com-
plete a single, preset shopping list from scratch. At the beginning of training,

12 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

the agent might commit more than 50 norm violations per episode.

Fig. 4. Norm violations committed by Q-learning agent over 50 experiments.

Two trajectories of the full task were sampled using the trained agent, each
using a different shopping list. Note that for the full shopping task, the agent
has a complete state description, i.e., it includes its (x, y) position, as well as
several propositions about other agent characteristics, e.g., whether the agent
is holding a basket, any items the agent is holding, etc. In learning higher-
level obligations, we extracted the (x, y) position from the complete state in
order to determine state commonality. For example, if two trajectories visited
(2, 18) but in one trajectory the agent was carrying chicken, and in the other
lettuce, this was considered the same state with respect to location. Henceforth,
common states between trajectories will refer to common locations visited by
both.

Alg. 2 was applied to the trajectories, and it was discovered that both tra-
jectories visited the states shown in Fig. 5. We assign a unique integer index to
each state by scanning the grid in row-major order, beginning from the top-left
corner. The indexing starts at 1 and proceeds left to right across each row be-
fore continuing to the next row beneath. Thus, the top-left square is assigned
index 1, the square immediately to its right is index 2, and so on until the
bottom-right corner. As can be seen, there are several sequences of common
states. We iterate through the common states in order until a difference in
state descriptions is detected. In this case, the agent’s propositions at 266 are
compared to the propositions at 307. In 307, ¬holds(agent, basket), indicating
the agent does not have a basket. At after leaving 307, holds(agent, basket),
hence the learner hypothesizes that FOholds(agent, basket). Next we compare
the agent’s propositions at 307 to the propositions at the next common state
at 192. We observe the difference: in 307, the agent has no food in its basket,
in 192, it does (chicken for the first trajectory, and lettuce for the second). We

Scheutz, Little 13

Fig. 5. States visited by both shopping trajectories

hypothesize that FO¬empty(basket). Repeating this procedure for the remain-
ing common states, we hypothesize that FO(agent(paid) and FO(at(exit). In
sum, we get that that it is obligated to get a basket, pick up items, pay for
those items, and leave the store.

6 Discussion
The main upshot of comparing our norm learning method from observations
to regular RL and IRL was to demonstrate its superiority in two important re-
spects: (1) it never commits norm violations, neither during learning, nor dur-
ing task performance, while RL and IRL learners do even when they have been
trained to achieve high task performance; and (2) it learns much faster using RL
than regular RL learners and would be able to do even better with other meth-
ods such as a simple task planners that plan the best trajectory between obli-
gated states, eliminating the need for RL altogether. Moreover, the proposed
method is intrinsically incremental in that the normative boundaries—what is
obligated and permitted—can can be refined over time as more demonstrators
are seen, potentially allowing the space of permitted actions to increase and
thus potentially also the performance of the agent with subsequent training on
those substate with additional permitted actions. I.e., the learner can incre-
mentally build on existing policies and refine them when new observations are
added instead of re-learning the whole task from scratch; and refining will al-
ways be fast because only those areas where obligations changed to permissions
need to be reconsidered.

14 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

Together, the simple obligations and permissions serve the functional role
of a “shield” used in safe RL methods in that they stake out the safe space for
subsequent task learning; but different from safe RL, the shield can be incre-
mentally learned and refined over time as more observations become available.
Moreover, they also go beyond defining a shield in that they serve as the build-
ing blocks for defining higher-level norm representations that can be used in
many different ways, including structuring a task into subtasks that can be indi-
vidually learned, modified, and adapted to other environments (e.g., how to get
a basket in another store), or making the behavior of the agent explainable (e.g.,
“I had to pay before leaving the store”). For this purpose, “reward machines”
might come in handy as they naturally allow for structuring tasks into subtasks
and provide special reward functions for those subtasks [6]. Specifically, reward
machines could be use to represent the norm context and thus allow the agent to
switch between different norm contexts (that might be task-dependent) based
on the states in the reward machines. Importantly, reward machines can be
learned (e.g., [22]) and can represent some non-Markovian rewards as long as
the state history can be represented by a regular language, which is important
for norms that are non-Markovian (e.g., [7]). Finally, higher-level norms could
also be used in a task planner that plans to accomplish them in sequence (the
abstracted sequences would serve as plan operators in this case, e.g., see [14]).

One important upshot of the incremental method and the possibility of
subsequent policy refinements is that the learner might be able to do better
than any of its demonstrators. I.e, while demonstrators are by requirement
norm-confirming in their task performance, they might “suboptimal” (relative
to what is permissible, say). Hence, the learner will initially not be able to do
any better than repeating the trajectories it has observed. But when future
observations are integrated (which themselves might be suboptimal), it might
be possible for the learner to do better than any of the demonstrators either
by combining optimal subtasks performance or by combining subsequences in
subtasks. For example, say demonstrator D1 goes to the basket in a subop-
timal manner, while D2 does not; yet, D2 goes to the checkout counter in a
suboptimal manner, while D1 does not, then the learner will see both deviating
trajectories as opportunities to find the best possible path, in this case learning
to do what D1 with the basket, and what D2 with the checkout counter.

Despite all of the above advantages, there are also some limitations of the
current approach that we plan to address in future work. Most importantly,
non-determinism in the environment (i.e., stochastic action outcomes) will in-
troduce the possibility that an agent might end up in a state it has never
encountered before (i.e., that was not seen in any of the demonstrations). In
the current algorithm, this type of state would be marked as “forbidden”—it
may or may not be norm-violating state—and the agent has no knowledge of
how to get out it. 3 One could argue that since it has no knowledge about the

3 Note that just because an agent has not observed another agent in a particular state and
marked it as “forbidden” does not automatically imply that it is a norm-violating state.

Scheutz, Little 15

state, it should then just try out actions until it gets back into a known “safe”
state and then proceed from there. 4 The question is whether the agent could
potentially do better. For example, could the agent use higher-level norms to
help with non-deterministic settings? Because if an agent ends up in a state
it has never seen before (and where it does not know what to do), higher-level
obligations could provide ways to get out of the current state. Alternatively,
if the agent could access background information about the task or task en-
vironment (e.g., in a database of common sense knowledge or by consulting a
foundation model trained on such tasks and domains), it might be able to use
the resource to assess whether the state is indeed a norm violating state and,
if so, how to get out of it.

Another shortcoming of the low-level norm extraction method is that it is
tightly coupled to the observed states of the norm following agents and thus
the states of the particular task environment. As a result, the agent might
consider state descriptions that are too narrow and do not transfer to other
environments easily (e.g., other supermarkets with different layouts, etc.). One
way to address this might be to allow the agent to make observations in other
environments and the learn to generate more abstract representations that
subsume states from both environments.

7 Conclusion
In this paper, we proposed a new norm learning approach that allows an arti-
ficial agent to learn explicit representations of permitted and obligated actions
from expert demonstrations of norm-abiding agents performing a task. The
agent then uses the learned normative constraints to quickly learn how to per-
form the task without violating any norms, different from IRL learners that
from the same observations never learn normative principles, violate norms
during learning, and take a much longer time to learn than our agents. More-
over, our approach also outperforms regular RL learners when they are given
a reward function for the task with explicit norm violation feedback: it learns
faster and never violates any norms, compared to the RL learner that even with
norm violations baked into the reward function will violate them during learn-
ing and even after learning during task performance. Finally, we extended our
approach to allow for the extraction of higher-level norm-based principles that
can be used to learn more complex tasks and can form the basis for generating
explanations and justification of agent behavior.

Future work will extend the current explicit norm learning approach to non-
deterministic environments and develop methods for task transfer between dif-
ferent task environments, taking explicit norm-context into account. It will also
compare the proposed approach to other ways of learning normative behavior
from observations such as behavior cloning.

4 Note that shielding and related approaches do not provide a solution for this situation
because they simply assume safe actions for every state (the same goes for simplex approaches
in safe control).

16 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

Acknowledgement
This work was in part funded by AFOSR grant #FA9550-23-1-0425. The
authors would also like the thank the three anonymous reviewers for their very
helpful suggestions for improving the paper.

Appendix
Preliminaries on Reinforcement Learning. We model an agent’s envi-
ronment as a Markov Decision Process (MDP) M = ⟨S,A, p, r, ι, γ⟩, where S
is the set of states, A is the set of actions, p is the probability distribution
p(st+1 | st, at), r : S×A×S → R is a reward function, ι is a probability distri-
bution over initial states, and γ ∈ (0, 1] [20]. A policy for M is defined as the
probability distribution πM (a | s) that establishes the probability of an agent
taking an action a given that it is in the current state s. We define the set of
all such policies in M as ΠM . We let S0 = {s ∈ S : ι(s) > 0}. An RL problem
typically consists of finding an optimal policy π∗

M ∈ ΠM that maximizes the
expected discounted future rewards obtained from s ∈ S:

π∗
M = arg max

πM

∑
s∈S

vπM (s),

where vπM (s) is the value function and captures the expected discounted future
rewards obtained when starting at state s and selecting actions according to
the policy πM :

vπM (s) = EπM

 ∞∑
t=0

γtrt | s0 = s

 .
At each time step, the agent executes an action a and the environment

returns the next state s′ ∈ S (sampled from p) and an immediate reward r.
The experience is then used by the agent to learn and improve its current policy
πM .

Q-learning [21] is one learning technique in which an agent uses experiences
to estimate the optimal Q-function q∗(s, a) for every state s ∈ S and a ∈ A,
where q∗(s, a) is the expected discounted sum of future rewards received by
performing action a in state s. The Q-function is updated as follows:

q(s, a)← q(s, a) + α

[(
r + γmax

a′∈A
q(s′, a′)− q(s, a)

)]
,

where α ∈ (0, 1] is the learning rate. The Q-learner can explore the environ-
ment, e.g., by following an ϵ-greedy policy, in which the agent selects a random
action with probability ϵ and otherwise follows an action with the largest q(s, a).

Inverse reinforcement learning attempts recover the reward function of ex-
pert agent from observations of that agent’s task performance. In the formula-
tion by Ng et. al [17] the recovered reward maximizes the margin between the
expected cumulative return of the expert’s policy and any other policy. One

Scheutz, Little 17

issue with the original approach proposed by Ng is that many reward functions
may be optimal for the expert’s policy. This was resolved with the introduc-
tion of maximum entropy IRL by Ziebart et. al [23] which uses the principle
of maximum entropy to pick a suitable reward function.

Algorithm 1 Learning Action-Level Obligations
Require: Set of trajectories T , number of states N
Ensure: Mapping of states to their permitted and obligated transitions

1: Ts ← {s 7→ (∅, ∅) | s ∈ [0, N − 1]}
2: for each trajectory τ ∈ T do
3: for each transition (s, a) ∈ τ (excluding the last state) do
4: (Os, Ps)← Ts[s]
5: if a /∈ Os ∪ Ps then
6: if |Os| = 0 and |Ps| = 0 then
7: Os ← {a}
8: else
9: Ps ← Os ∪ Ps ∪ {a}

10: Os ← ∅
11: end if
12: end if
13: Update Ts[s]← (Os, Ps)
14: end for
15: end for
16: Return Ts

Algorithm 2 Learning Higher-Level Obligations
Require: Set of trajectories T

1: Identify common states C from T in order of appearance
2: for each common state s ∈ C do
3: Identify the next common state s′

4: Add propositions that have changed value from s to s′ to ∆P
5: for each proposition p ∈ ∆P do
6: if p is true then
7: Hypothesize a high-level obligation: FO(p)
8: end if
9: if p is false then

10: Hypothesize a high-level obligation: FO(¬p)
11: end if
12: end for
13: end for

Norm violation monitors in the Propper Shopper simulation.
• CartTheftNorm: violated whenever one player steals a cart from another

18 Using Simple Deontic Constraints for Fast Norm-Conforming Reinforcement Learning

• ShopliftingNorm: violated whenever a player leaves with food that has not
been purchased

• WrongShelfNorm: violated whenever a player puts food back on the wrong
shelf

• PlayerCollisionNorm: violated whenever a player runs into another player
• ObjectCollisionNorm: violated whenever a player runs into a game object

(checkout/food counter/shelf/cart/cart return)
• WallCollisionNorm: violated whenever a player runs into a wall
• BlockingExitNorm: violated whenever a player blocks the exit (i.e., standing

too close to the exit for too long)
• EntranceOnlyNorm: violated when a player exits the store through an en-

trance.
• UnattendedCartNorm: violated when a player is too far from their cart for

too long
• OneCartOnlyNorm: violated when a player pulls more than one cart out of

the cart return
• PersonalSpaceNorm: violated when a player comes too close to another

player
• InteractionCancellationNorm: violated when a player cancels the interaction

with the food counters/checkouts (i.e., ends the interaction without buying
food/obtaining the food)

References

[1] Abarca, A. I. R. and J. Broersen, A deontic stit logic based on beliefs and expected
utility, in: Theoretical Aspects of Rationality and Knowledge 2021 (TARK 2021), 2021,
pp. 281–294.

[2] Alshiekh, M., R. Bloem, R. Ehlers, B. K—”onighofer, S. Niekum and U. Topcu, Safe
reinforcement learning via shielding, in: Proceedings of AAAI, number 1 in 32, 2018.

[3] Arnold, T., D. Kasenberg and M. Scheutz, Value alignment or misalignment – what will
keep systems accountable?, in: AAAI Workshop on AI, Ethics, and Society, 2017.

[4] Hadfield-Menell, D., A. Dragan, P. Abbeel and S. Russell, Cooperative inverse
reinforcement learning, in: 30th Conference on Neural Information Processing Systems
(NIPS 2016), 2016.

[5] Herzig, A., E. Lorini and E. Perrotin, A computationally grounded logic of ‘seeing-to-
it-that’, in: Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence (IJCAI-22), 2022.

[6] Icarte, R. T., T. Q. Klassen, R. Valenzano and S. A. McIlraith, Reward machines:
Exploiting reward function structure in reinforcement learning, Journal of Artificial
Intelligence Research (2022), pp. 173–208.

[7] Kasenberg, D., T. Arnold and M. Scheutz, Norms, rewards, and the intentional stance:
Comparing machine learning approaches to ethical training, in: Proceedings of the 1st
AAAI/ACM Workshop on Artificial Intelligence, Ethics, and Society, 2018.

[8] Kasenberg, D. and M. Scheutz, Interpretable apprenticeship learning with temporal logic
specifications, in: Proceedings of the 56th IEEE Conference on Decision and Control
(CDC 2017), 2017.

Scheutz, Little 19

[9] Kasenberg, D. and M. Scheutz, Inverse norm conflict resolution, in: Proceedings of the
1st AAAI/ACM Workshop on Artificial Intelligence, Ethics, and Society, 2018.

[10] Kasenberg, D. and M. Scheutz, Norm conflict resolution in stochastic domains, in:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[11] Kasenberg, D., R. Thielstrom and M. Scheutz, Generating explanations for temporal logic
planner decisions, in: Proceedings of the 30th International Conference on Automated
Planning and Scheduling (ICAPS), 2020.

[12] Lawrence, S., M. Jouaiti, J. Hoey, C. L. Nehaniv, L. and K. Dautenhahn, The role of
social norms in human-robot interaction: A systematic review, Journal of Human-Robot
Interaction (2025).

[13] Littman, M. L., U. Topcu, J. Fu, C. L. I. Jr., M. Wen and J. MacGlashan, Environment-
independent task specifications via GLTL, in: Proceedins of CoRR, 2017.

[14] Lorang, P., H. Horvath, T. Kietreiber, P. Zips, C. Heitzinger and M. Scheutz, Adapting to
the “open world”: The utility of hybrid hierarchical reinforcement learning and symbolic
planning, in: Proceedings of ICRA, 2024.

[15] Neufeld, E., E. Bartocci, A. Ciabattoni and G. Governatori, A normative supervisor for
reinforcement learning agents, in: Proceedings of International Conference on Automated
Deduction, 2021, pp. 565–576.

[16] Neufeld, E., A. Ciabattoni and R. F. Tulcan, Norm compliance in reinforcement learning
agents via restraining bolts, in: J. S. et al., editor, Legal Knowledge and Information
Systems, IOS Press, 2024 pp. 119–130.

[17] Ng, A. Y. and S. J. Russell, Algorithms for inverse reinforcement learning, in:
Proceedings of the Seventeenth International Conference on Machine Learning (ICML),
Morgan Kaufmann Publishers Inc., 2000, pp. 663–670.

[18] Qiu, L. and X. Sun, Deontic stit logic, from logical paradox to security policy, Soft
Computing (2018), pp. 751––757.

[19] Rodriguez, I. D., B. Bonet, J. Romero and H. Geffner, Learning first-order
representations for planning from black-box states: New results, in: 18th International
Conference on Principles of Knowledge Representation and Reasoning, 2021.

[20] Sutton, R. S. and A. G. Barto, “Reinforcement learning: An introduction,” MIT press,
2018.

[21] Watkins, C. J. and P. Dayan, Q-learning, Machine learning 8 (1992), pp. 279–292.
[22] Xu, Z., B. Wu, A. Ojha, D. Neider and U. Topcu, Active finite reward

automaton inference and reinforcement learning using queries and counterexamples,
in: International Cross-Domain Conference for Machine Learning and Knowledge
Extraction (2021), p. 115–135.
URL https://doi.org/10.1007/978-3-030-84060-0_8

[23] Ziebart, B. D., A. Maas, J. A. Bagnell and A. K. Dey, Maximum entropy inverse
reinforcement learning, in: Proceedings of the 23rd national conference on Artificial
intelligence - Volume 3, AAAI’08 (2008), pp. 1433–1438.

https://doi.org/10.1007/978-3-030-84060-0_8

	Introduction
	Related Work
	Learning Simple Action-Level Obligations and Permissions
	Learning Higher-Level Obligations
	Experimental Evaluations
	Extracting low-level normative task structure
	Extracting higher-level obligations

	Discussion
	Conclusion
	Acknowledgement
	References

