
Many is More, But Not Too Many: Dimensions of Cooperation of Agents with
and without Predictive Capabilities

Matthias Scheutz and Paul Schermerhorn
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA�
mscheutz,pscherm1 � @cse.nd.edu

Abstract

This paper examines the tradeoffs between agents that
can predict (and, therefore, take into account) other agent’s
actions and agents that act on their own without tak-
ing other agents’ actions into account. A simple predic-
tion mechanism allows agents to make reasonably accurate
guesses about other agents’ future actions, thereby making
better decisions about their own actions. Our experimen-
tal findings from a multiagent object collection task sug-
gest that not only do predictive agents perform better than
non-predictive agents, but there are circumstances in which
simple reactive prediction mechanisms perform as well as
complex deliberative prediction mechanisms.

1 Introduction

Suppose you need to design a control system for a given
number of robots that will gather items in an environment
as quickly as possible without any prior knowledge of their
distribution and without being able to communicate, while
keeping cost (in terms of components) and energy require-
ments of the controller (as it is running) as low as possi-
ble. Problems of this sort could arise in military applica-
tions (e.g., when supplies are flown in and dropped from
planes, which units should retrieve which supplies, and in
which order?), more mundane situations (e.g., when a ship-
per needs to pick up multiple packages throughout a city,
which truck should pick up which packages, and in which
order?), or in contrived robotic experiments. What kind of
control system would achieve the best performance/cost ra-
tio? Observations of simple reactive agents compared to
complex deliberative agents indicate that in certain circum-
stances complex deliberative planning and prediction mech-
anisms are not necessary to achieve good performance on

such collection tasks. However, without some sort of co-
ordination mechanism, agents may work at cross-purposes,
hurting the overall performance os the multiagent system.

In this paper we will investigate multiagent tasks of this
kind, where multiple agents together need to collect objects
in the environment and their performance is evaluated in
terms of the time it takes to complete the task. It is possi-
ble, given the positions of the agents, items, and obstacles
present in the environment, to solve the problem optimally
at the beginning by exhautively enumerating all combina-
tions and choosing the one with the shortest time to com-
pletion. Each agent can then be given its assignment of ob-
jects to collect (including the order in which they should
be collected) and the ojects can be collected in the short-
est possible time. However, the problem is intractible for
even modest numbers of agents and items. Furthermore, in
dynamic environments where the items can move from one
location to another, the solution may need to be recomputed
during the course of executing the solution. What is needed
is a flexible solution that provides good (although not op-
timal) solutions in dynamic environments at a reasonable
cost.

A first pass at a solution to the collection task would be
for each agent to always attempt to collect the item that is
closest to it. The intuition behind this solution is that going
far out of the way to collect an item costs more than collect-
ing the nearby one, making the greedy algorithm attractive.
Especially in multi-agent environments, however, this strat-
egy can lead to a great deal of wasted effort. If an agent
moves toward the closest item, only to have another agent
collect the item just before the first agent arrives, the first
agent’s effort is wasted.

One obvious solution to this coordination problem is
communication; if agents can communicate their intentions
to one another, effort will not be wasted by two agents at-
tempting to collect the same resource. However, communi-

1

cation can be expensive, and, furthermore, it does not in it-
self solve the problem of who should retrieve the resource in
question, it is merely a tool to be used by whatever control
mechanism does solve the problem. The solution explored
below does not rely on communication. Instead, agents use
predictions of other agents’ actions in order to implicitly
coordinate their efforts on the collection task. In particular,
we will study four different agent types: (1) purely reac-
tive agents with no deliberative predictive ability, (2) delib-
erative agents with planning and information storage facili-
ties, (3) reactive-predictive agents with the ability to predict
the actions of other agents, and (4) deliberative-predictive
agents with both deliberative and predictive capabilities.

By contrasting the performance of these four agent types,
we demonstrate that the more computationally intensive ar-
chitectures do not always provide as great an advantage as
one might expect, particularly when considerations of com-
putational cost are taken into account. In addition, the ex-
periments described here provide insight into the usefulness
of different types of control mechanisms in the context of
agent cooperation. Much interesting and useful work has
been done in the area of foraging and cooperation, in both
robotic and simulated environments (e.g., [6, 3, 4, 12, 1]);
this research focuses on the utility of the predictive mecha-
nism as an implicit cooperative mechanism.

The paper is organized as follows: first, we define what
we mean by “reactive”, “deliberative”, and “predictive”
control. Then, we introduce the different agent types, de-
fine their control architectures and discuss the resultant be-
havioral dispositions. We briefly describe the experimental
setup, and then report the results from several series of ex-
periments with these agents. We analyze the results and
discuss their implications for behavior coordination in mul-
tiagent tasks.

2 Cooperation and Behavior Coordination

Communication is a very powerful method of coordinat-
ing actions that lead to cooperative agent behavior (e.g., ev-
ery agent knows what its goal is and communicates it to
all other agents). Even if optimal group behavior may not
be achievable (e.g., because of the nature of the task or the
computational requirements of the distributed algorithm),
there is at least the benefit that agents will know what other
agents are up to (always assuming they tell the truth, of
course).

In the absence of communication, reasoning about other
agents’ intentions based on observations can be a good sub-
stitution. If, for example, every agent in a group constantly
observes the behavior of other agents, knows how other
agents chose their behavior, and chooses its actions based
on its predictions, then the agent group may be able to con-
verge to (several) stable, coordinated behaviors.

While coordination of agent behavior may not be neces-
sary for a task that can be performed by a single agent, it
certainly can improve the performance of an agent group.
In a simple object collection task like the one mentioned
above, for example, a group of agents may be able to im-
prove its performance by coordinating individual goals and
actions (e.g., they may be able to avoid situations in which
two or more agents chose to collect the same item). If all
agents could implement the same algorithm (e.g., an al-
gorithm that uniquely assigns to each agent a goal item,
which they should collect) and if every agent cooperates
(i.e., reliably follows the algorithm), agents can avoid con-
flicting goals and significantly improve the performance of
the agent group.

While such coordination mechanisms lead to improved
performance, the processing cost incurred by their archi-
tectural mechanisms can be substantial, as we will demon-
strate below. Hence, the gain in task performance may
not be worth the loss in processing efficiency. Often, suf-
ficient performance in a multiagent collection task can be
achieved either without explicit coordination or with coor-
dination mechanisms that do not involve predicting other
agents’ behavior, e.g., avoiding coming too close to another
agent. Below we describe agents that pursue their goal of
acquiring items from the environment without taking other
agents into account, in effect working against one another.
Yet, they tend to avoid other agents, and in particular they
avoid crowded regions. This simple rule causes them to
display a certain degree of coordinated behavior, and more
importantly, allows them to perform very well relative to
the low complexity of architectural mechanisms that con-
trol their behavior.

Several questions ensue: When are such simple mecha-
nisms sufficient? Under what environments do they reach a
performance peak for a given number of collectible items as
measured in terms of number of agents and the time it takes
to complete the task? Does the performance depend on the
ratio of agents and collectible items?

2.1 Experimenting with Architectures

One goal of this research is to examine the architectural
requirements for multiagent cooperation, in particular, the
relation between the cost of architectural mechanisms that
implement strategies to coordinate agents and the increase
in performance caused by agent coordination (if any). Con-
ducting investigations at the architectural level allows us to
study functional components and their effects on an agent’s
behavior. We can compare different kinds of control sys-
tems (as defined by their architectures) under different en-
vironmental conditions to assess their advantages and dis-
advantages. Components in a control system will have a
cost associated with them, reflecting the energy expenditure

2

to build and maintain them in an operational state. Compar-
ing the performance of the architectures examined here in
light of their relative computational demands provides in-
sight into how useful various architectural components re-
ally are for a given task.

3 Reactive, Deliberative, and Predictive Ar-
chitectures

Agent architectures play an important role in the under-
standing of the development of natural and artificial sys-
tems. [10, 9] They can be thought of as blueprints of control
systems, where different functional components and their
interconnections are depicted (e.g., see [8] for a more de-
tailed definition of “agent architecture”). Since we would
like to understand (1) what kinds of components (and ar-
rangements thereof) are required to produce particular kinds
of behaviors, and (2) what the relative tradeoffs of differ-
ent control systems (and their implementations) are, we first
need to define what we mean by “reactive” and “delibera-
tive” control, or more to the point, what “reactive” and “de-
liberative architectures” are.

3.1 Reactive Architectures

Unfortunately, there seems to be a wide range of def-
initions of “reactive” that differ in substance (e.g., “reac-
tive” as “stateless” versus “reactive” as “tight sensor-motor
coupling”). Hence, it seems that “reactive” is best de-
fined in opposition to “deliberative”, i.e., as “not deliber-
ative”, which puts the burden on a definition of “delibera-
tive”. Since we are interested in demarcating an intellec-
tually interesting difference, rather than trying to say what
“deliberative” really means, we will construe “deliberative”
as “being able to produce and use representations of hypo-
thetical past or future states or as yet unexecuted actions
(or sequences of such actions)”. Note that according to
this (negative) definition of “reactive”, reactive architec-
tures may make use of simple representations of the state of
the world and/or the agent. But these representations will
not explicitly encode goals, hypothetical states of the world
or sequences of possible actions. And while we may be
able to ascribe intentional states such as beliefs and desires
to a reactive agent, the agent architecture contains no ex-
plicit representation of these states. For example, an agent
which exhibits a behavior that could be described as “avoid-
ing obstacles” can be said to have a goal of “avoiding colli-
sions”, even though this goal is not explicitly represented in
the agent’s control system.

3.2 Deliberative Architectures

As mentioned before, a deliberative architecture is one
in which there is some consideration of alternative courses
of action before an action is taken. Hence, there is need for
the capacity to represent counterfactual states referring to
hypothetical past or future states or as yet unexecuted ac-
tions (or sequences of such actions), in which at least some
of the basic operations of the architecture are to produce,
read, and write such counterfactual states. Such states in-
clude goals (descriptions of states to be achieved), plans (se-
quences of unexecuted actions), states describing the imag-
ined consequences of performing an action in the current
state or some hypothetical state, partial solutions generated
during planning or problem solving, the hypothetical states
of the agent’s beliefs generated during belief revision, and
many others. We further require that such states should be
influential in the production of actions, in the counterfactual
sense that, had the (counterfactual) state not been generated,
the agent would have chosen a different action to execute.1

To represent counterfactual states, a deliberative agent
requires a reusable working memory for the construction
and comparison of hypothetical states and some means of
deriving the consequences of actions performed in these
states. At its simplest, this might be a set of memories of
the consequences of performing the action in similar states
in the past. The use of a common working memory lim-
its the number of alternative courses of action that can be
considered in parallel, and hence the degree of parallelism
possible within a deliberative architecture.

All other things being equal, a deliberative architecture
must be slower and require more resources than a reactive
architecture which encodes a solution to any specific goal
solvable by the deliberative architecture, since the genera-
tion of alternatives will take time. However, a deliberative
architecture will typically be more space efficient than an
equivalent reactive architecture, even though it will often
require more space than a reactive solution to any given
problem instance, since it can solve a class of problems
in a fixed amount of space, whereas a reactive architec-
ture requires space proportional to the number of problems.
We can view this as an example of the standard space-time
tradeoff, though in this case there is also the time required
to code or evolve all the reactive solutions.

1Note that this definition implies no commitments as to whether the
states and operations are fine grained, e.g., dealing with partial plans or
alternative solutions and their generation and comparison, or whether the
states and operations are “coarse grained”, e.g., a single “plan” operator
which takes a goal and a description of the current state and returns a plan
with the rest of the fine-grained states and operators buried in the imple-
mentation of the architecture and invisible to the agent program and the
agent state. Both cases have at least one counterfactual state and one oper-
ator that takes a non-counterfactual state and returns a counterfactual state.

3

4 Agents: Architectures and Behavioral Dis-
positions

In the experiments reported in this paper, we employ four
different kinds of agents, reactive, deliberative, reactive-
predictive, and deliberative-predictive agents, where the ar-
chitectures of the“predicite” agents are extensions of their
non-predictive counterparts.

All agents are standardly equipped with exteroceptive
“vision” and “touch” sensors. Vision is used to detect items
and other agents and touch to detect (1) impending colli-
sions with agents and (2) items that are within reach for
collection. In addition, the touch sensor is connected to a
global alarm system, which triggers an automatic reflex-like
action pattern, which the agent cannot suppress, to move it
away from other agents.

On the effector side, agents have motors for locomotion
and turning, and a mechanism for collecting. When agents
come to a halt on top of an item, its collection mechanism
suppresses the motors for locomotion until the item is col-
lected, which takes one simulation cycle.

While different agents may have different short-term
goals at any given time (e.g., reaching an item faster than
another agent, or avoiding collisions with other agents),
there are two long-term goals that are common to all of
them: (1) collection (i.e., to acquire as many items as pos-
sible), and (2) survival (i.e., to avoid colliding with other
agents in the environment). In the following, we will briefly
describe the employed architectures and behavioral disposi-
tions of each agent kind.

The Reactive Agents All agents process sensory infor-
mation and produce behavioral responses using a motor
schema-based approach [2]. Let ���������
	���
������ be an in-
dex set of the three types of objects: items, obstacles and
agents. For each object type ����� , a force vector ��� is com-
puted, which is the sum, scaled by ����� ��� � , of all vectors �
from the agent to the objects of type � within the respec-
tive sensory range, where ‘ � ��� ’ is the length of vector � .
These perceptual schemas are mapped into motor space by
the transformation function

� �"!�# �%$�'&)(+*,�.- �0/.�+�
�"!�#

(1)

where the - � are the respective gain values of the perceptual
schemes. The gain values simply scale the effect of sen-
sory input, providing a means by which to prioritize certain
inputs (e.g., if collecting items is especially important, the
item gain value could be higher than the agent gain value,
so that sensing an item has a greater impact on the direc-
tion chosen than sensing other agents). These gain values
are initialized to values determined to be reasonable via a

series of experiments, and are kept constant throughout the
life of a reactive agent.

Reactive agents always behave in the same way, given
that their gain values are constants: their positive -�1 makes
them employ a greedy collection strategy (most of the time
a “collect nearest” strategy [11]), whereas their negative -32and -54 values make them avoid obstacles and other agents.
The effect of - 4 on the reactive agents’ behavior is to estab-
lish implicitly a “ranking” of who gets to collect an item first
if multiple agents attempt to collect the same item: whoever
is closest will be more strongly attracted to the item than
repelled by the other agents, and hence be able to get to col-
lect the item, whereas the other agents will be repelled more
by the presence of agents than they are attracted to the item,
and hence will move away. In a sense, -34 implements a sim-
ple “coordination” strategy, if only one that is “negatively”
determined.

The Deliberative Agents Deliberative agents have sev-
eral components that allow them to manipulate representa-
tions of collectible items in the environment. Most impor-
tantly they have a route planner that can determine which
item is closest to them and how they can best get to it. It is
first and foremost this ability of being able to represent en-
tities in the environment that opens up further possibilities
such as storing and retrieving representations, using them in
planning and plan execution, etc. None of these possibilities
are available to reactive agents, which have access to sensed
objects only in a holistic manner (via an agglomerated force
vectors).

The planner of the deliberative agents (based on a simpli-
fied version of the 6879 algorithm [7]) is given a list of items
known to the agent (i.e., stored in the agent’s memory), and
returns a plan, which is a list of headings and distances, of
how to get to the nearest reachable item. The plan is then
passed to a plan execution mechanism, which ensures that
plan steps are executed. When other agents cross a deliber-
ative agent’s route and the reflex is triggered, “re-planning”
is initiated, and the agent will continue by executing the new
plan. Re-planning is also performed if the item chosen by
the agent has been collected by another agent in the mean-
time. A further difference between deliberative and reactive
agents is that, while the schema-based mechanism of the
reactive agents will not pick out the most direct route to an
item (because of the influence of other items and agents),
and may even move away from the nearest goal item (be-
cause of a cluster of objects further away in the opposite
direction, or a cluster of agents in the direction of the near-
est item), deliberative agents will find the nearest item and
plan a route directly to it (while avoiding other agents), thus
saving time and energy.

4

for all 6��
 -
� �����"	�� � do� �"��� � �.��� 	 �	��	'��	'� � ��
��
�
�	 � ���

for all ��� 	'� ��� �"	��.� do
if �)	��.� � 6 ��� #�� �5	�� � � 6�� � �"��� � �.� # then� � ��� � �.�����
end if

end for
if �5	��.� � 6�� � �"��� � � � #�� �)	��.� ��� � � � �"��� � �.� # then

 ��� ��� � � � �"��� � � � ��	'� ��� � 	��.� #

end if
end for

Figure 1. Algorithm eliminate-items

The Prediction Extension In many cases agents will pur-
sue the same goal, which reduces the overall efficiency of
the agent group: an agent should not waste time moving to-
ward the same item another agent is pursuing if the second
agent is closer to the item than the first is. The function
of the prediction extension is to make an “educated guess”
as to which goals other agents might be pursuing, so as
to eliminate those items as possible goals. The prediction
extension was added to both kinds of agent architectures,
creating two new classes of agents: reactive-predictive and
deliberative-predictive. The algorithm implemented by the
prediction component, which is used to eliminate common
items (i.e., items that more than one agent is likely to pur-
sue), is given in Figure 1. It ensures that no two agents will
ever be pursuing the same goal item.

The Reactive-Predictive Extension The extension is in-
tegrated into the reactive agent by applying the algorithm
Eliminate-Items to the appropriate type in ������� be-
fore its force vector is computed. This effectively func-
tions as a “perceptual filter” that prevents those perceptual
schemes from being instantiated that correspond to items
that might be pursed by other agents. Consequently, the
agent cannot be attracted to those items any longer and will
simply ignore them on its way to pursuing other items. Note
that reactive-predictive agents do not entertain or manipu-
late representations of other agents’ goals, nor do they “rea-
son” about other agents’ intentions.

The Deliberative-Predictive Extension The prediction
extension is integrated into the deliberative agent by ap-
plying Eliminate-Items to the list of items passed to
the planner, which in turn selects its goal. The chosen goal
is then the closest item to the deliberative-predictive agent
that is not the goal of any other agent (i.e., no other agent
is closer to it and not closer to any other item). The plan-
ner proceeds as in a normal deliberative agent, and the plan
executes to pursue the uncontested goal, until a conflict is
detected, i.e., a situation in which the current goal might

have been chosen by another closer agent, in which case re-
planning will be triggered. In sum, the agent ignores items
that it believes other agents will pursue and obtain before
it can. Note that the deliberative agent does maintain repre-
sentations of other agents’ intentions, i.e, of its beliefs about
other agents’ intentions to be avoid having to process the in-
tentions of all other agents again and again at every cycle.
That way intentions only need to be processed again, when
items are collected or collisions occur.

5 Experiments

5.1 Experimental Setup

The simulation environment consists of a continuous,
limited two-dimensional surface populated with collectible
items and the different kinds of agents. Agents always move
at a constant speed until they come to a collectible item,
which they then pick up. When all items in the environment
have been gathered, the simulation ends and the number of
cycles executed is recorded. The simulation is ended prema-
turely if agents fail to collect all items within 10,000 cycles,
in which case they “fail the task”.

We conducted experiments to study the performance of
the above agent kinds in the object collection task. For
all of the following experiments, we limited the world to
a squared area of 800 by 800 units, where the objects to be
collected are randomly distributed in a subregion of 720 and
720.

Each experimental run is started with a fixed number of
agents placed in random locations within the environment
and is finished as soon as the last item is collected. The per-
formance measure used (and depicted in the tables below)
is the time it took the agents to collect all items (ten total).
To be able to compare different agent kinds, the same ini-
tial conditions are used for all agent kinds for each run (i.e.,
the initial locations of agents and the locations of collectible
items are the same). All results are averaged over 40 runs
to be able to average out effects of initial positions.2

5.2 The Optimal Solution

As a benchmark against which to compare the perfor-
mance of the four agent types, a program that finds the best
solution for a given distribution of agents, items, and obsta-
cles was implemented. The premise for the optimal solution
is an agent type that can communicate with its peers, can
compute as much as it wants, and can see everything. At the
beginning of the collection task, one agent is responsible for

2We experimented with larger numbers, such as 100 runs, and found
that the standard deviation is about the same, hence 40 runs for each ex-
periment for each agent kind turned out to be sufficient, in particular, since
the t-test showed statistical significance for the results discussed below.

5

��� � 	 �
 � �5	�� �
�� � � � 	 � �������.	�� �
 � ��� - �5	��.�
5�
� �

 � �.	 - � � 	��.�0� -
� �
 � �
 � � 	 - �

�
 -
� �����"	�� � ��	'� ��� � 	��.� #

for all � �
 � � 	 - � � 	��.� do
� �
��.���)	��.�
�� � � ���
for all 6��
 -

� �����"	��.� do
� � �.���5	�� �
�� � � � 	 � ����� � 	�� �
 �"��� - �)	��.�
��

� �
� �
 �	� �
5� 	 ��� �"	��.� � -

� �
 � � � �
 � � � � � 6 #�#
for all
 ��� �
 �	� �
�� 	 ��� � 	��.� do
�5	��.�
�� � � � �
 � ��� �"
�� � �)	��.�
�� � � � 6��

 #
if �5	�� �
�� � � � � � �.���5	��.�
�� � � then
� � � ���5	��.�
5� � � ���5	�� �
�� � �
� � � ����
���� �
���� � � � � 6 ��
 #

end if
end for
if � � � ���5	��.�
5� � ����� �
��.���5	��.�
�� � � then
� �
��.���)	��.�
�� � � ��� � �.���)	��.�
�� � �

end if
���� � � � � � �
��.���
���� ��� � �.���
���� #
end for
if � �
��.���)	��.�
�� � � � ��� � 	 �
 � �5	��.�
�� � � then��� � 	 �
 � �5	��.�
5� � � � � �
��.���)	��.�
�� � ���� � 	 �
 ����
���� � � �
��.���
����
end if

end for

Figure 2. Algorithm optimal-solution

computing the best solution and communicating to each of
its peers the set of items each is responsible for collecting
along with the order in which they are to be collected.

The best solution is found by exhaustively enumerating
all possibilities to find the one that yielded the shortest time
to completion, as shown in Figure 2. Each assignment of
items to agents is checked and for each assignment every
collection order is checked. The algorithm computes the
shortest Hamiltonian path in which some agent “visits” (i.e.,
collects) each item. For each assignment, the shortest col-
lection order is computed for each agent and its assigned
items. Then the longest agent’s completion time is chosen
as the best time required by the current assignment to per-
form the task. The shortest completion time of any assign-
ment is the best time overall.

The results given below include the results from the op-
timal solution program. The numbers given are the average
of the outcomes of the 40 initial conditions used by the other
agents. Note that these results measure only time to com-
pletion and do not include the substantial computation time
required to compute the best solution.

5.3 Experimental Results and Analysis

Figure 3 presents the results for reactive, reactive-
predictive, deliberative and deliberative-predictive agents in
0-obstacle environments. For each agent type, ten experi-

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
s

to
 C

om
pl

et
io

n

Cooperating Agents

Agent Type
Reactive

Reactive-Predictive
Deliberative

Deliberative-Predictive

Figure 3. Average time to task completion
(0 obstacle environment)

ments were performed, representing environments with one
through five agents working on the collection task in two
different environments. The first environment contained no
obstacles, whereas the second contained five. These exper-
iments are plotted along the

!
axis. The average number

of cycles taken to complete the task is plotted along the

axis. Figure 4 similarly presents the results for 5-obstacle
environments.

Unfortunately, not every group of agents was able to ac-
complish its task. Table 1 is a listing of how many failures
were experienced by each agent kind for each task environ-
ment. The values plotted in Figure 3 do not include these
failed tasks.

The above results point to a general performance order-
ing among the examined agent kinds from best to worst:
deliberative agents with predictions, reactive with predic-
tion, deliberative without prediction, and reactive without
prediction. However, there are some interesting points il-
lustrated in Figure 3. First notice that with only one agent
performing the task, deliberative agents outperform reac-
tive agents by a wide margin. This is because deliberative
agents settle on an individual goal and move directly toward
it. The field-based mechanism of the reactive agents, on the
other hand, often moves agents on a curved trajectory to-
ward items, because other items will also exert influence on
the agent. Furthermore, a reactive agent may actually move
away from the closest item in cases where there are sev-
eral items clustered in the opposite direction, leading to less
efficient collecting behavior. This result is unsurprising.

Interestingly, the two agent case already shows no signif-
icant difference between the reactive-predictive agents and
the deliberative ones, and the deliberative agents are begin-
ning to perform worse than deliberative predicting agents.
That is, increasing the number of agents to just two allows

6

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
yc

le
s

to
 C

om
pl

et
io

n

Cooperating Agents

Agent Type
Reactive

Reactive-Predictive
Deliberative

Deliberative-Predictive

Figure 4. Average time to task completion
(5 obstacle environment)

the predicting agents to overcome the advantage held by
the deliberative agents in the one-agent task, and allows
deliberative-predictive agents to perform significantly bet-
ter. Furthermore, increasing the total number of agents just
one more to three is enough to allow the reactive-predicting
agent to overtake the deliberative agents. From that point
on, both types of predicting agents are significantly better
than both non-predicting agent types. Observations of all
four kinds of agents reveals that agents that do not predict
the behavior of others often enter into conflicts over a col-
lection item. If both arrive at the same time, neither is able
to get close enough to the item to collect it without trigger-
ing its reflex to avoid colliding with the other agent. Both
agents move away, each being repelled by the other agent,
but when the reflex behavior concludes (a random interval
between five and fifteen cycles) they return, often triggering
a similar conflict.

This is where the value of cooperation arises. Predictive
agents avoid such conflicts and move on to the next item,
leaving the item to be collected by the agent nearest to it.
Note that there is no altruistic motive here; agents decide to
focus on other items because their chances of acquiring an
item that a closer agent is pursuing are slim. Therefore, the
selfish course of action is to move on to another item. Co-
operation emerges via this simple mechanism without the
agents knowing that they are cooperating.

Another point of interest is found when the number of
collecting agents exceeds ten: The curve of the graph in
Figure 3 levels off, indicating that the benefit of additional
agents is minimal for this size task. This is fairly intuitive;
with more agents than items to be collected, many agents
will serve no purpose and might, in fact, do more harm than
good by getting in the way of other agents. Of greater inter-
est is the fact that the performance of reactive and delibera-

Table 1. Failed tasks (out of 40 total)

Reactive- Deliberative-
Agents Reactive Predictive Deliberative Predictive

0 5 0 5 0 5 0 5

1 0 1 0 1 0 2 0 0
2 0 1 0 1 0 0 0 1
3 0 0 5 6 0 0 1 0
4 0 0 2 1 0 0 7 0
5 0 0 1 1 0 0 3 0
6 0 0 0 0 0 0 5 0
7 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 3 0
9 0 0 0 1 0 0 4 0

10 0 0 0 0 0 0 7 0
11 0 0 0 2 0 0 3 0
12 0 0 0 1 0 0 7 0
13 0 0 0 1 0 0 7 0
14 0 0 0 1 0 0 6 0
15 0 0 0 1 0 0 7 0

tive agents becomes nearly identical for numbers of agents
over eleven. While the difference in performance between
these agent kinds was significantly different only for envi-
ronments containing six, seven, and eight agents, they are
now virtually the same in absolute terms. This suggests that
what little benefit is to be gained with deliberative architec-
tures in tasks like these is lost when the environment be-
comes crowded, perhaps because with more agents around
it becomes difficult to execute even the simplest plan with-
out finding another agent in the way.

Finally, it is interesting to note that the reactive-
predictive agents performed nearly as well as the
deliberative-predictive agents on this set of tasks, but with a
much higher degree of reliability. The more complex agents
averaged around three or four failures out of forty experi-
mental runs in environments with more than three agents,
whereas the simpler reactive agents were reliable in most
of those environments. This might suggest that the advan-
tage actually rests with the simpler architecture. However,
given the fact that the predictive architectures were the only
ones to fail any task, it seems likely that there is some subtle
limitation in the algorithm in Figure 3.

The 5-obstacle results presented in Figure 4 are very
similar to the 0-obstacle results; the obstacles make the
task more difficult, which is reflected in the overall poorer
performance of all agents. The relative performance dif-
ference between reactive-predictive agents and deliberative
agents has gotten smaller. This is because of the deliber-
ative agents’ ability to plan routes around obstacles rather
than trying several angles until one is found, and so we ex-
pect that trend to continue.

7

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O
ve

rh
ea

d

Cooperating Agents

Agent Type
Reactive

Reactive-Predictive
Deliberative

Deliberative-Predictive

Figure 5. “Coordination” overhead

6 Discussion and Conclusion

One of the most interesting outcomes of this work is the
emergence of what could be called “coordinated behavior”
among independently acting agents using very simple pre-
dictive mechanisms. Of course, if one wants to character-
ize coordination as “the process by which an agent reasons
about its local actions and the (anticipated) actions of oth-
ers to try and ensure the community acts in a coherent man-
ner” [5], then these agents’ actions are not coordinated, as
predictive-reactive agents do not reason about anything (af-
ter all, they are still reactive in the sense defined previously,
but merely filter their perceptual input using a simple crite-
rion).

Regardless of one’s definition of “coordination”, the
experiments in the previous section demonstrate that
predictive-reactive agents (i.e., reactive agents equipped
with the a “perceptual filter”) perform as well as “coordi-
nated deliberative agents” that reason about other agents’
intentions and maintain representations of various environ-
mental states.

It is interesting to look at the results also from another
perspective. If we define the notion of “cooperation over-
head” in a task as the number of agents of a group times
the time it takes them to complete a task minus the per-
formance time of a single agent, then reactive-predictive
agents have a lower overhead than the predictive deliber-
ative agents, sometimes even significantly lower (see Fig-
ure 5), even though their performance is slightly worse.
What seems to crystallize is a “region” of performance as
determined by the number of collectible items in the en-
vironment and the number of agents in a group, where
simple reactive-predictive agents are clearly superior to
deliberative-predictive agents especially once the cost of
performing deliberative processing is taken into account.

However, we would like to point out that at this point we see
the need for many more experiments with different reactive
and deliberative control systems in different environments
to be able to assess the potential of simple reactive mech-
anisms for multi-agent task and coordination. For exam-
ple, we conjecture that communication among deliberative
agents would not yield significantly better results for them,
a claim that needs to be verified experimentally. We are also
working on a more detailed analysis of the notion of “cost
of a component in an agent architecture”, which will allow
us to get a finer-grained break-down of the net benefit of
different functional components with respect to the overall
agent behavior.

References

[1] E. G. Araujo and R. A. Grupen. Learning control composi-
tion in a complex environment. In From Animals to Animats
4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, 1996.

[2] R. C. Arkin. Motor schema-based mobile robot naviga-
tion. International Journal of Robotic Research, 8(4):92–
112, 1989.

[3] J. Carmena and J. Hallam. Improving performance in a
multi-robot task through minimal communication. In Pro-
ceedings of the 7th Symposium on Intelligent Robotic Sys-
tems (SIRS), 1999.

[4] A. Drogoul and J. Ferber. From Tom Thumb to the Dockers:
Some experiments with foraging robots. In Proceedings of
the Second International Conference on Simulation of Adap-
tive Behavior, 1992.

[5] N. R. Jennings. Coordination techniques for distributed ar-
tificial intelligence. In G. M. P. O’Hare and N. R. Jennings,
editors, Foundations of Distributed Artificial Intelligence,
pages 187–210. Wiley, 1996.

[6] D. McFarland. Towards robot cooperation. In From Animals
to Animats 3. Proc. of the Third International Conference on
Simulation of Adaptive Behavior, 1994.

[7] J. Pearl. ���� —an algorithm using search effort estimates. In
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, volume 4, pages 392–399, 1982.

[8] S. Russell and P. Norvig. Artificial Intelligence, A Modern
Approach. Prentice Hall, 1995.

[9] M. Scheutz. The evolution of simple affective states in
multi-agent environments. In D. Cañamero, editor, Proceed-
ings of AAAI Fall Symposium, pages 123–128, Falmouth,
MA, 2001. AAAI Press.

[10] M. Scheutz and P. Schermerhorn. Steps towards a theory
of possible trajectories from reactive to deliberative control
systems. In R. Standish, editor, Proceedings of the 8th Con-
ference of Artificial Life. MIT Press, 2002.

[11] E. Spier and D. McFarland. Possibly optimal decision mak-
ing under self-sufficiency and autonomy. Journal of Theo-
retical Biology, 189:317–331, 1998.

[12] E. Stergaard, G. Sukhatme, and M. Mataric. Emergent
bucket brigading - a simple mechanism for improving per-
formance in multi-robot constrainedspace foraging tasks.

8

In Proceedings of the 5th International Conference on Au-
tonomous Agents, May 2001.

9

