
Many is More: The Utility of Simple Reactive Agents with Predictive
Mechanisms in Multiagent Object Collection Tasks

Matthias Scheutz and Paul Schermerhorn
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA�
mscheutz,pscherm1 � @cse.nd.edu

Abstract

This paper investigates low-cost strategies for the multi-
agent object collection task, in which multiple agents work
together to collect a set of items distributed throughout an
environment. Several agent architectures are examined, in-
cluding simple reactive architectures, more complex delib-
erative architectures, and “predictive” versions of both of
these that take other agents into account when choosing
targets for collection. A series of “yardstick” experiments
demonstrate that the simple agent types perform very well
relative to agents that employ much more computationally
expensive approaches. Subsequent large-scale simulations
that substantially increase the number of agents and collec-
tion items demonstrate that both reactive strategies scale
well to more realistic task sizes, with the predictive ver-
sion performing significantly better than the non-predictive
ones.

1 Introduction

Suppose you need to design a control system for a given
number of robots that will gather items in an environment
as quickly as possible without any prior knowledge of their
distribution and without being able to communicate, while
keeping cost (in terms of components) and energy require-
ments of the controller (as it is running) as low as possible.
Problems of this sort could arise in a variety of civil and mil-
itary logistics (e.g., when supplies are flown in and dropped
from planes, which units should retrieve which supplies,
and in which order?), as well as more mundane situations
(e.g., when a shipper needs to pick up multiple packages
throughout a city, which truck should pick up which pack-
ages, and in which order?). What kind of control system
would achieve the best performance/cost ratio? Observa-

tions of simple reactive agents compared to complex delib-
erative agents indicate that in certain circumstances com-
plex deliberative planning and prediction mechanisms are
not necessary to achieve good performance in such collec-
tion tasks [24]. However, without some sort of coordination
mechanism, agents may work at cross-purposes, hurting the
overall performance of the multiagent system.

In this paper we will investigate different agent architec-
tures for multiagent object collection tasks, where multiple
agents together need to collect objects in the environment.
In particular, we are interested in architectures with high
performance-cost ratios. The cost of an architecture will
be measured in terms of the computational effort to com-
pute an agent’s actions at any given time, while the perfor-
mance will be evaluated in terms of the time it takes the
agents to collect all items. The rest of the paper is orga-
nized as follows: first, we define the multiagent object col-
lection task and discuss some potential solutions and their
tradeoffs. Next we explain what we mean by “reactive”,
“deliberative”, and “predictive” control, and then introduce
the four different agent architectures we intend to study:
reactive, reactive-predictive, deliberative, and deliberative-
predictive. After describing the experimental setup, we re-
port the results from several extensive sets of experiments
with these agents that show that the simpler reactive agent
types perform well relative to the more expensive deliber-
ative types and to the best possible performance. We then
present the results of large-scale follow-up simulations of
reactive agent types, in which the numbers of agents and
items to be collected are significantly higher; these large-
scale simulations show that the performance of the simpler
agent types scales well to more realistic task sizes. Finally,
we analyze the results and discuss their implications for be-
havior coordination in multiagent tasks.

1



BA

Figure 1. Optimal paths for MOCT and Travel-
ing Salesman problems: A solves the MOCT
optimally in less time than B, because B
solves the TSP optimally and drops the last
leg of the tour.

2 The Multi-Agent Object Collection Task

The multiagent object collection task (MOCT) consists
of � randomly placed agents that need to collect � items,
also randomly-placed in an environment. The challenge is
to collect all � items in as little time as possible, while
avoiding � obstacles. All agents travel at a uniform con-
stant speed, allowing a direct comparison of collection
strategies between agent types.

A concrete example of a MOCT in a real-world setting
is the assignment of scientific tasks to a group of extraplan-
etary rovers. Landing rovers is an inexact science, so the
placement of a group of rovers on a planet’s surface cannot
be determined ahead of time. The solution must be calcu-
lated after the agents have landed and their initial positions
are determined. Also, rovers have tended to travel the ter-
rain seeking and executing scientific goals without needing
to return to a base station. They operate until their bat-
teries run out, then the mission is over. This corresponds
to the MOCT ending when all items have been collected
without bringing the items back to a depot. NASA’s AS-
PEN (Automated Scheduling and Planning Environment)
project generates command sequences for multiple rovers
to achieve multiple high-level scientific goals [20, 9]. The
problem is treated as a multi-Traveling Salesman Problem,
and a greedy insertion method is used to construct tours. It
is possible to obtain a solution to the MOCT from a solution
to the TSP by removing the edge between the penultimate
vertex in the tour and the start/end vertex. However, there
is a difference between optimal solutions to the MOCT and
optimal solutions to the TSP. Figure 2 depicts two agents’
solutions to the MOCT. Agent A solves the problem opti-

mally, traveling a distance of 5 units. Agent B, however,
solves the TSP optimally, but leaves off the final step of the
solution. Because B assumes from the outset that it will
return to its starting position, it includes the longer diago-
nal step in its path, requiring a distance of ����� � units to
accomplish the MOCT. Hence, in order to use a TSP ap-
proximation for the MOCT, it will be necessary to employ a
heuristic that does not assume a return to the initial position
in the costruction of the path.

2.1 Solutions to the MOCT

Given the initial positions of the agents, items, and ob-
stacles present in the environment, it is possible to solve a
MOCT optimally at the beginning by exhautively enumerat-
ing all combinations and choosing the one with the shortest
time to completion. Each agent can then be given its as-
signment of objects to collect (including the order in which
they should be collected) and the ojects can be collected in
the shortest possible time. However, the optimal solution
is computationally intractible for even modest numbers of
agents and items. Furthermore, in dynamic environments
where the items can move from one location to another or
new items can be generated during the collection task, the
solution may need to be recomputed during the course of
executing the solution. Limiting agents’ sensory ranges also
effectively turns the problem into a dynamic one, since a
new solution will need to be computed whenever another
item is sensed. What is needed are flexible online algo-
rithms (rather than offline algorithms) that provide good (al-
though not necessarily optimal) solutions in dynamic envi-
ronments at a reasonable cost. We are particularly inter-
ested in online algorithms that have a low computational
cost, while showing a reasonable performance compared to
the optimal solution. Note that while recomputing the opti-
mal solution each time the environment changes is an online
algorithm that yields an optimal solution, this possibility is
again practically infeasible.

A first pass at a solution to the collection task would be
for each agent to always attempt to collect the item that is
closest to it. The intuition behind this “greedy” strategy
is that going far out of the way to collect an item costs
more than collecting the nearby one, making the greedy al-
gorithm attractive. Especially in multi-agent environments,
however, this strategy can lead to a great deal of wasted ef-
fort. If an agent moves toward the closest item, only to have
another agent collect the item just before the first agent ar-
rives, the first agent’s effort is wasted.

This situation can be avoided by coordinating agents’ ac-
tions. For example, by communicating their intentions to
one another, agents will be able to reduce or eliminate alto-
gether the wasted effort arising from situations where two
or more agents attempt to collect the same resource: for

2



every agent knows what its goal is and communicates it to
all other agents. In the case of conflicting goals, additional
mechanisms are required to determine the agent that should
eventually collect the item and reassigning other items to
the remaining agents. And even if optimal group behav-
ior is not achievable (e.g., because of the nature of the task
or the computational requirements of the distributed algo-
rithm), there is at least the benefit that agents will know
what other agents are up to (always assuming they tell the
truth, of course). However, communication can be expen-
sive, and, furthermore, it does not in itself solve the problem
of who should retrieve the resource in question, it is merely
a tool to be used by whatever control mechanism does solve
the problem.

In the absence of communication, reasoning about other
agents’ intentions based on observations can be a good sub-
stitution. If, for example, every agent in a group constantly
observes the behavior of other agents, knows how other
agents chose their behavior, and chooses its actions based
on its predictions, then the agent group may be able to con-
verge to (several) stable, coordinated behaviors. In the solu-
tion explored below, agents use predictions of other agents’
actions in order to implicitly coordinate their efforts on the
collection task.

While such coordination mechanisms lead to improved
performance, the processing cost incurred by their archi-
tectural mechanisms can be substantial, as we will demon-
strate below. Hence, the gain in task performance may
not be worth the loss in processing efficiency. Often, suf-
ficient performance in a multiagent collection task can be
achieved either without explicit coordination or with coor-
dination mechanisms that do not involve predicting other
agents’ behavior, e.g., avoiding coming too close to another
agent. Below we describe agents that pursue their goal of
acquiring items from the environment without taking other
agents into account, in effect working independent of one
another. Yet, they tend to avoid other agents, and in partic-
ular they avoid crowded regions. This simple rule causes
them to display a certain degree of coordinated behavior,
and more importantly, allows them to perform very well rel-
ative to the low complexity of architectural mechanisms that
control their behavior.

Several questions ensue: When are such simple mech-
anisms sufficient? In what environments do they reach a
performance peak for a given number of collectible items
as measured in terms of number of agents and the time it
takes to complete the task? Does the performance depend
on the ratio of agents and collectible items?

To begin to answer these questions, we will study four
different agent types: (1) purely reactive agents with no
predictive ability, (2) deliberative agents with planning and
information storage facilities, (3) reactive-predictive agents
with the ability to predict the actions of other agents, and

(4) deliberative-predictive agents with both deliberative and
predictive capabilities. By contrasting the performance of
these four agent types, we demonstrate that the more com-
putationally intensive architectures do not always provide as
great an advantage as one might expect, particularly when
considerations of computational cost are taken into account.
In addition, the results presented here provide insight into
the usefulness of different types of control mechanisms in
the context of agent cooperation.

3 Reactive, Deliberative, and Predictive Ar-
chitectures

Agent architectures play an important role in the under-
standing of the development of natural and artificial sys-
tems [23, 22]. They can be thought of as blueprints of
control systems, where different functional components and
their interconnections are depicted (e.g., see [21] for a more
detailed definition of “agent architecture”). Since we would
like to understand (1) what kinds of components (and ar-
rangements thereof) are required to produce particular kinds
of behaviors, and (2) what the relative tradeoffs of differ-
ent control systems (and their implementations) are, we first
need to define what we mean by “reactive” and “delibera-
tive” control, or more to the point, what “reactive” and “de-
liberative architectures” are.

3.1 Reactive Architectures

Unfortunately, there seems to be a wide range of def-
initions of “reactive” that differ in substance (e.g., “reac-
tive” as “stateless” versus “reactive” as “tight sensor-motor
coupling”). Hence, it seems that “reactive” is best de-
fined in opposition to “deliberative”, i.e., as “not deliber-
ative”, which puts the burden on a definition of “delibera-
tive”. Since we are interested in demarcating an intellec-
tually interesting difference, rather than trying to say what
“deliberative” really means, we will construe “deliberative”
as “being able to produce and use representations of hypo-
thetical past or future states or as yet unexecuted actions
(or sequences of such actions)”. Note that according to
this (negative) definition of “reactive”, reactive architec-
tures may make use of simple representations of the state of
the world and/or the agent. But these representations will
not explicitly encode goals, hypothetical states of the world
or sequences of possible actions. And while we may be
able to ascribe intentional states such as beliefs and desires
to a reactive agent, the agent architecture contains no ex-
plicit representation of these states. For example, an agent
which exhibits a behavior that could be described as “avoid-
ing obstacles” can be said to have a goal of “avoiding colli-
sions”, even though this goal is not explicitly represented in
the agent’s control system.

3



3.2 Deliberative Architectures

As mentioned before, a deliberative architecture is one
in which there is some consideration of alternative courses
of action before an action is taken. Hence, there is need for
the capacity to represent counterfactual states referring to
hypothetical past or future states or as yet unexecuted ac-
tions (or sequences of such actions), in which at least some
of the basic operations of the architecture are to produce,
read, and write such counterfactual states. Such states in-
clude goals (descriptions of states to be achieved), plans (se-
quences of unexecuted actions), states describing the imag-
ined consequences of performing an action in the current
state or some hypothetical state, partial solutions generated
during planning or problem solving, the hypothetical states
of the agent’s beliefs generated during belief revision, and
many others. We further require that such states should be
influential in the production of actions, in the counterfactual
sense that, had the (counterfactual) state not been generated,
the agent would have chosen a different action to execute.1

To represent counterfactual states, a deliberative agent
requires a reusable working memory for the construction
and comparison of hypothetical states and some means of
deriving the consequences of actions performed in these
states. At its simplest, this might be a set of memories of
the consequences of performing the action in similar states
in the past. The use of a common working memory lim-
its the number of alternative courses of action that can be
considered in parallel, and hence the degree of parallelism
possible within a deliberative architecture.

All other things being equal, a deliberative architecture
must be slower and require more resources than a reactive
architecture which encodes a solution to any specific goal
solvable by the deliberative architecture, since the genera-
tion of alternatives will take time. However, a deliberative
architecture will typically be more space efficient than an
equivalent reactive architecture, even though it will often
require more space than a reactive solution to any given
problem instance, since it can solve a class of problems
in a fixed amount of space, whereas a reactive architec-
ture requires space proportional to the number of problems.
We can view this as an example of the standard space-time
tradeoff, though in this case there is also the time required
to code or evolve all the reactive solutions.

1Note that this definition implies no commitments as to whether the
states and operations are fine grained, e.g., dealing with partial plans or
alternative solutions and their generation and comparison, or whether the
states and operations are “coarse grained”, e.g., a single “plan” operator
which takes a goal and a description of the current state and returns a plan
with the rest of the fine-grained states and operators buried in the imple-
mentation of the architecture and invisible to the agent program and the
agent state. Both cases have at least one counterfactual state and one oper-
ator that takes a non-counterfactual state and returns a counterfactual state.

Item 2

Obstacle 2

Agent

Item 1

Obstacle 1

Figure 2. Schema-based navigation in reac-
tive architectures: dotted arrows represent
the raw perceptual schemas, while solid ar-
rows represent the weighted schemas. The
bold arrow is the sum of the individual
weighted schemas, and indicates the direc-
tion the agent will travel.

4 Agents: Architectures and Behavioral Dis-
positions

In the experiments reported in this paper, we employ four
different kinds of agents, reactive, deliberative, reactive-
predictive, and deliberative-predictive agents, where the ar-
chitectures of the“predictive” agents are extensions of their
non-predictive counterparts.

All agents are standardly equipped with exteroceptive
“vision” and “touch” sensors. Vision is used to detect items
and other agents and touch to detect (1) impending colli-
sions with agents and (2) items that are within reach for
collection. In addition, the touch sensor is connected to a
global collision avoidance system, which triggers an auto-
matic reflex-like action pattern, which the agent cannot sup-
press, to move it away from other agents.

On the effector side, agents have motors for locomotion
and turning, and a mechanism for collecting. When agents
come to a halt on top of an item, its collection mechanism
suppresses the motors for locomotion until the item is col-
lected, which takes one simulation cycle.

While different agents may have different short-term
goals at any given time (e.g., reaching an item faster than
another agent, or avoiding collisions with other agents),
there are two long-term goals that are common to all of
them: (1) collection (i.e., to acquire as many items as pos-
sible), and (2) survival (i.e., to avoid colliding with other
agents in the environment). In the following, we will briefly
describe the employed architectures and behavioral disposi-
tions of each agent kind.

4



The Reactive Agents All reactive agents process sen-
sory information and produce behavioral responses using
a motor schema-based approach [3] (see Figure 4). Let���������
	���
������

be an index set of the three types of objects:
items, obstacles and agents. For each object type

�����
, a

force vector ��� is computed, which is the sum, scaled by����� ��� �
, of all vectors

�
from the agent to the objects of type�

within the respective sensory range, where
� ���

is the length
of vector

�
. These perceptual schemas are mapped into mo-

tor space by the transformation function

���! #"$�&%
�('*),+��.- ��/ � �

�! #"
(1)

where the - � are the respective gain values of the perceptual
schemes. The gain values simply scale the effect of sen-
sory input, providing a means by which to prioritize certain
inputs (e.g., if collecting items is especially important, the
item gain value could be higher than the agent gain value,
so that sensing an item has a greater impact on the direc-
tion chosen than sensing other agents). These gain values
are initialized to values determined to be reasonable via a
series of experiments, and are kept constant throughout the
life of a reactive agent.

A collision detection mechanism invokes an agent’s re-
treat reflex whenever it detects an impending collision with
an obstacle or another agent (all collisions are fatal). The
reflex works by inserting a very strong vector leading away
from the site of the near collision. This vector is included
for a random number of cycles between 5 and 15, and has
the effect of moving the agent directly away from the object
or agent. The reflex works well in most cases, although it is
possible to fail in some situations (e.g., it may be possible
to retreat into another obstacle in some circumstances).

Reactive agents always behave in the same way, given
that their gain values are constants: their positive -10 makes
them employ a greedy collection strategy (most of the time
a “collect nearest” strategy [25]), whereas their negative -32and -54 values make them avoid obstacles and other agents.
The effect of -54 on the reactive agents’ behavior is to estab-
lish implicitly a “ranking” of who gets to collect an item first
if multiple agents attempt to collect the same item: whoever
is closest will be more strongly attracted to the item than
repelled by the other agents, and hence be able to get to col-
lect the item, whereas the other agents will be repelled more
by the presence of agents than they are attracted to the item,
and hence will move away. In a sense, - 4 implements a sim-
ple “coordination” strategy, if only one that is “negatively”
determined.

The Deliberative Agents Deliberative agents have sev-
eral components that allow them to manipulate representa-
tions of collectible items in the environment. Most impor-

tantly they have a route planner that can determine which
item is closest to them and how they can best get to it. It is
first and foremost this ability of being able to represent en-
tities in the environment that opens up further possibilities
such as storing and retrieving representations, using them
in planning and plan execution, etc. None of these possibil-
ities are available to reactive agents, which have access to
sensed objects only in a holistic manner (via agglomerated
force vectors).

The planner of the deliberative agents (based on a simpli-
fied version of the �768 algorithm [19]) is given a list of items
known to the agent (i.e., stored in the agent’s memory), and
returns a plan, which is a list of headings and distances, of
how to get to the nearest reachable item. The plan is then
passed to a plan execution mechanism, which ensures that
plan steps are executed. When other agents cross a deliber-
ative agent’s route and the reflex is triggered, “re-planning”
is initiated, and the agent will continue by executing the new
plan. Re-planning is also performed if the item chosen by
the agent has been collected by another agent in the mean-
time. A further difference between deliberative and reactive
agents is that, while the schema-based mechanism of the
reactive agents will not pick out the most direct route to an
item (because of the influence of other items and agents),
and may even move away from the nearest goal item (be-
cause of a cluster of objects further away in the opposite
direction, or a cluster of agents in the direction of the near-
est item), deliberative agents will find the nearest item and
plan a route directly to it (while avoiding other agents), thus
saving time and energy.

The Prediction Extension In many cases agents will pur-
sue the same goal, which reduces the overall efficiency of
the agent group: an agent should not waste time moving to-
ward the same item another agent is pursuing if the second
agent is closer to the item than the first is. The function
of the prediction extension is to make an “educated guess”
as to which goals other agents might be pursuing, so as
to eliminate those items as possible goals. The prediction
extension was added to both kinds of agent architectures,
creating two new classes of agents: reactive-predictive and
deliberative-predictive. The algorithm implemented by the
prediction component, which is used to eliminate common
items (i.e., items that more than one agent is likely to pur-
sue), is given in Figure 3. It ensures that no two agents will
ever be pursuing the same goal item.

The Reactive-Predictive Agents The extension is inte-
grated into the reactive agent by applying the algorithm
Eliminate-Items to the appropriate type in

�9����:
be-

fore its force vector is computed. This effectively func-
tions as a “perceptual filter” that prevents those perceptual
schemas from being instantiated that correspond to items

5



FUNCTION EliminateItems(
�
-��
���������.�

,
�(�
�
� �	���.�

)
for all ��
 � -��

��������� �
do	
�����

�
�.� �

infinitely-far-item
for all ��
 �(�

�
� �����.�

do
if � ���.� � � � � "�� � ��� � � � � 	
����� �

�.� "
then	
�����

�
�.� � �

end if
end for
if � ���.� � � ��	������ �

� � "�� � ���.� ��� �
� 	
�����

�
�.� "

then�
�
� � �

�
�!	������

�
� � ���(�

�
� �	���.� "

end if
end for�
�
��� � �$��� �

�
� �	���.� "

Figure 3. The algorithm for Eliminate-Items.

that might be pursued by other agents. Consequently, the
agent cannot be attracted to those items any longer and will
simply ignore them on its way to pursuing other items. Note
that reactive-predictive agents do not entertain or manipu-
late representations of other agents’ goals, nor do they “rea-
son” about other agents’ intentions.

The Deliberative-Predictive Agents The prediction ex-
tension is integrated into the deliberative agent by apply-
ing Eliminate-Items to the list of items passed to the
planner, which in turn selects its goal. The chosen goal is
then the closest item to the deliberative-predictive agent that
is not the goal of any other agent (i.e., no other agent is
closer to it and not closer to any other item). The plan-
ner proceeds as in a normal deliberative agent, and the plan
executes to pursue the uncontested goal, until a conflict is
detected, i.e., a situation in which the current goal might
have been chosen by another closer agent, in which case re-
planning will be triggered. In sum, the agent ignores items
that it believes other agents will pursue and obtain before
it can. Note that the deliberative agent does maintain repre-
sentations of other agents’ intentions, i.e, of its beliefs about
other agents’ intentions, to avoid having to process the in-
tentions of all other agents again and again at every cycle.
That way intentions only need to be processed again when
items are collected or collisions occur.

5 Experimental Method and Prerequisites

Ideally, we would like to compare the performance of
the above agent kinds with the best possible solutions for
each configuration. In practice, however, this is not feasible,
because the cost of computing the optimal solution is too
high for configurations with large numbers of agents, items,
and obstacles. Our approach to the problem, therefore, is
to perform a series of “yardstick” experiments for different
numbers of agents, obstacles, and items, for which the op-

timal solution can be practically computed. This allows us
to see the relationship between the different agent types and
how they compare to the optimal performance. We then
perform much more extensive experiments that do not in-
clude the optimal solution (or even the deliberative agent
performance, because they quickly become too expensive,
as well) in order to demonstrate that the collection strategies
implemented by the reactive agent types scale well to much
larger numbers of entities.

However, before we can begin the yardstick experiments,
we must determine reasonable parameters for the gain val-
ues of the schema-based architectures of the reactive agents.
Therefore, we conducted experiments to map out perfor-
mance in a “parameter space” for both reactive and reactive-
predictive agent types. The idea is to find the gain settings
that provide the best performance (across all numbers of
agents tested), and use those settings for comparison with
deliberative and optimal agent types. For experiments in 0-
obstacle environments, the gain value for items was varied
from 10 to 50 in steps of 10, providing five datapoints for
each agent type. For 5-obstacle environments, the gain for
items was varied from 10 to 100 and the gain for obstacles
was varied from 0 to -50, both in steps of ten providing 60
datapoints for each agent type. The values we use in both
the yardstick and extended experiments are the results of
this exhaustive search of parameter-space (a total of 650 ex-
periments, each consisting of 38 experimental runs). Note
that once we find the best values for the MOCT, we do not
need to perform this preliminary step again; the values will
be valid for all instances of the MOCT.

5.1 The Simulation Setup

The simulation environment consists of a continuous,
limited two-dimensional surface of 800 by 800 units, popu-
lated with collectible items and the different kinds of agents,
where the objects to be collected are randomly distributed
in a subregion of 720 and 720. Agents always move at a
constant speed until they come to a collectible item, which
they then pick up. When all items in the environment have
been gathered, the simulation ends and the number of cycles
executed is recorded. The simulation is ended prematurely
if agents fail to collect all items within 10,000 cycles, in
which case they “fail the task”.

Each experimental run is started with a fixed number of
agents ( � ) and a fixed number of items ( � � ���

) placed
at random locations within the environment and is finished
as soon as the last item is collected. The performance mea-
sure used (and depicted in the figures below) is the time it
took the agents to collect all items. To be able to compare
different agent kinds, the same initial conditions are used
for all agent kinds for each run (i.e., the initial locations of
agents and the locations of collectible items are the same).

6



Reactive -50 Reactive-Predictive - 0Agents 10 20 30 40 50 10 20 30 40 50

1 1948.34 1948.29 1948.29 1948.32 1948.29 1949.84 1949.84 1949.84 1949.84 1949.84
2 1389.39 1388.21 1398.63 1399.0 1403.74 934.083 934.25 934.25 934.306 934.167
3 974.921 976.368 953.368 962.974 964.684 608.703 608.865 608.892 608.892 597.73
4 922.947 869.921 902.29 900.553 905.974 532.278 532.306 531.972 532.083 531.889
5 770.816 756.053 769.263 762.868 759.026 433.595 421.919 419.541 421.27 420.919

Table 1. Parameter space results (average cycles to completion) for Reactive and Reactive-Predictive
agents in 0-obstacle environments. The global best value of -50 is 20 for Reactive agents, 50 for
Reactive-Predictive agents.

Global Best
Local Best

 10  20  30  40  50  60  70  80  90  100
Item gain value -50

-40

-30

-20

-10

 0

Obstacle gain value

 0

 500

 1000

 1500

 2000

 2500

Average cycles to completion

Figure 4. Reactive factor-space for � ���
,

� ���
. The local best is the combination

of - 0 and - 2 at which this particular value of
� had the lowest average cycles to comple-
tion, whereas the global best represents the
combination with the best performance over
all values of � (1 through 5). For Reactive
agents -50

� � � �
, -52

��� � �
is the global best

configuration.

All results are averaged over 38 runs to be able to average
out effects of initial positions. So, for each value of � , 38
initial conditions are generated and each agent type is tested
with � agents in each of the initial conditions.

5.2 Determining the Best Gain Values

Table 1 gives the results (in average cycles to comple-
tion) for the parameter-space experiments in 0-obstacle en-
vironments. These results indicate that the value of - 0 (i.e.,
the item gain value) does not have a tremendous effect; the
average cycles to completion is virtually the same across all
values of - 0 , indicating that for each number of agents, the
strength of attraction to items does not play a major role. We

Global Best
Local Best

 10  20  30  40  50  60  70  80  90  100
Item gain value -50

-40

-30

-20

-10

 0

Obstacle gain value

 0

 500

 1000

 1500

 2000

 2500

Average cycles to completion

Figure 5. Reactive-Predictive factor-space for
� ���

, � ���
. The local best is the combina-

tion of - 0 and - 2 at which this particular value
of � had the lowest average cycles to comple-
tion, whereas the global best represents the
combination with the best performance over
all values of � (1 through 5). For Reactive-
Predictive agents -50

��� �
, -52

� �
is the global

best configuration.

identify the global best - 0 for each agent type by finding the

-50 with the minimum summed average cycles to completion
for all values of � . For Reactive agents, the value is 20, and
for Reactive-Predictive agents it is 50.

Figure 4 is representative of the results in five obstacle
environents for normal reactive agents. It maps out the per-
formance space for � �	�

given various combinations of -30and -52 (the item gain and obstacle gain, respectively). Sim-
ilar graphs could be made for � � �

to � , however these are
omitted for space.

The first thing to note is that some data points are miss-
ing. For these combinations of - 0 and - 2 , none of the 38
experimental runs sucessfully completed within 10,000 cy-
cles, so there were no results to take the average of. The

7



missing points correspond to agents with weakly positive
item gains and strongly negative obstacle gains. In short,
these agents were too strongly repelled by the obstacles in
the environment and too weakly attracted to the items they
were to collect to accomplish their goal. However, as the
number of agents in the environments was increased, the
number of gain value settings that failed to complete even
one experimental run decreases; when � � �

(Figure 4),
only three combinations fail completely, whereas ten such
combinations failed completely in the single-agent environ-
ments.

Each datapoint that is graphed depicts the average cycles
to completion for the 38 experimental runs with those - 0 and

-52 , discarding runs that did not complete. Like the zero-
obstacle results, aside from a few peaks and troughs, the
results are very similar across all parameter settings, with
a slight tendency to decrease as the gain values increase.
“Local best” configurations were identified for each value of
� (i.e., there is a local best for one agent experiments, one
for two agent experiments, etc.), but for comparison with
other agent types, a “global best” configuration was also
identified. We identify the best-performing configuration
based on two factors:

� Only configurations that completed more than 35 ex-
perimental runs for every value of � are considered
in determining the global best. The idea here that the
global best should be able to complete most of the
time, otherwise it may be specialized to just those few
environments in which it did complete.

� Among the remaining configurations, the minimum
summed average cycles to completion for all values of
� was taken to be the global best.

Thus, the global best is the configuration that had the best
performance (minimum summed average cycles to comple-
tion for all � ) of all configurations that completed more than
35 experimental runs for all numbers of agents. The com-
bination identified as the global best for reactive agents in
five obstacle environments is -10

� � � �
, -52

� � � �
.

Figure 5 presents similar results for reactive-predictive
agent types. Once again, missing points are those gain com-
binations in which no experimental run completed. The
local best is shown, along with the global best ( -10

� � �
,

-52
� �

), chosen for comparison with the other agent types.
Note that the obstacle factor can be 0 in this case, since
agents still have collision avoidance mechanisms that will
prevent them (in most cases) from running into obstacles.
In this particular case it turned out that the collision avoid-
ance mechanism alone was sufficient to deal with obstacles.
Like the reactive results, there is a slight trend to higher gain
values of both kinds, but no dramatic valleys that indicate a
clearly superior configuration of -10 and -52 .

FUNCTION OptimalSolution(
�
-��
�����	���.�

,
�(�
�
� �	���.�

)������� � ��� � ���.� �5� 	 �
� � � � ��� ��� 
 ��� �����

- � ���.� � � 	 ���� ���
-
� �����.� �

-��
� ����� ��� ���

-
�$� �

-��
�����	���.� � �(�

�
� ����� � "

for all � 
 ��� ��� -
� �	���.�

do� � � �.� � ���.� � � 	 �
� �

for all ��
 �
-��
��������� �

do

�
� � � ���.� �5� 	 �

� � � � ��� ��� 

���������
- �

���.� � � 	
��

�
� � �#� � ��� ��� ����� � �

-��
� ����� �

�
� � � � � � � "�"

for all 	 
 �
�
� � ��� � ������� �	���.�

do
if 
 � �(���

�
� �
�
� � �

-
� 

�.� � 	��

�
� � � 	 " then

� ���.� � � 	 �
�

MinObstPath
� � � 
 � 	 "

else
� ���.� � � 	 �

� 	 ���!	 � �!� �
� � ���.� �5� 	 �

� � � 	 "
end if
if � ���.� �5� 	 �

� 

�
�.� � ��� � � � 	 � then


�
�.� � ���.� � � 	 �

� � ���.� �5� 	 �

�
�.����� �
� � �����

�
� � � � � 	 "

end if� � �
�
�
-��
��� ���3� � � 	 "

end for
if


�
�.� � ���.� � � 	 �

� � � � �.� � ��� � � � 	 � then� � � �.� � ���.� � � 	 �
� 


�
�.� � ���.� � � 	 �end if�����

�
� � � � � � �.����� �
�,� 
 �

�.����� �
�#"
end for
if � � � �.� � ���.� � � 	 �

� ������� � ��� � ���.� �5� 	 � then��� ��� � ��� � ���.� � � 	 �
� � � � �.� � ���.� � � 	 ���� ��� � ������� �
� � � � � �.����� �
�

end if
end for

Figure 6. The algorithm for OptimalSolution

5.3 The Optimal Solution

As a benchmark against which to compare the perfor-
mance of the four agent types, a program that finds the best
solution for a given distribution of agents, items, and obsta-
cles was implemented. The premise for the optimal solution
is an agent type that can communicate with its peers, can
compute as much as it wants, and can see everything. At the
beginning of the collection task, one agent is responsible for
computing the best solution and communicating to each of
its peers the set of items each is responsible for collecting
along with the order in which they are to be collected.

The best solution is found by exhaustively enumerating
all possibilities to find the one that yielded the shortest time
to completion, as shown in Figure 6. Each assignment of
items to agents is checked and for each assignment every
collection order is checked. The algorithm computes the
shortest Hamiltonian path in which some agent “visits” (i.e.,
collects) each item. As part of this computation, the al-
gorithm checks if an obstacle is blocking the direct route,
in which case it recursively considers paths going to the

8



Agents Optimal Reactive Reactive-Predictive Deliberative Deliberative-Predictive

1 1260.89 � 49.99 1948.29 � 121.36 1949.84 � 121.39 1486.82 � 63.63 1489.68 � 63.56
2 639.45 � 25.59 1388.21 � 114.08 885.0 � 56.33 1058.58 � 93.15 860.26 � 56.87
3 431.79 � 16.67 976.37 � 118.71 582.0 � 39.81 827.37 � 145.57 601.66 � 48.97
4 343.89 � 18.95 869.92 � 118.04 503.89 � 61.37 740.97 � 113.39 541.97 � 55.5
5 290.08 � 13.72 756.05 � 92.99 409.84 � 36.38 622.47 � 88.12 412.87 � 33.94

Table 2. Average cycles to completion (with confidence intervals for � � ��� � �
) for 0-obstacle environ-

ments ( � from 1 to 5, � � � �
)

FUNCTION MinObstPath( � , 
 , 	 )� � � � �
�
�
-��
��� ���3� � � � � -

� ����� � 
 "�"� �
-
� � � ���.��� 	 ��� 	 � � � �

� � ���.� � � 	 �
� � ����"

if � � �(���
�
� �
�
� � �

-
� 

�.� � 	��

�
�	� � 	 " then� �

-
� � � ���.� � � �

-
� � � ���.� � � � � � 

�.� �#�5�
���	� � � � 	 "

else� �
-
� � � ���.� � � �

-
� � � ���.� � 	 ���!	
� � �5� � � ���.� � � 	 �

�	� � 	 "
end if
 � � � �

�
�
-��
��� ���3� � � � �

�#����� � 
 "�"�
�
�#� � ���.� � 	 � � 	 � �!� �

� � ���.� � � 	 �
� � ��
 "

if � � �(���
�
� �
�
� � �

-
� 

�.� � 	��

�
�	
 � 	 " then�

�
�#� � ���.� � �

�
�#� � ��� � � � �(� � 

�.� �#� �
�,��
 � � � 	 "

else�
�
�#� � ���.� � �

�
�#� � ��� � � 	 ��� 	 � � � � � � ���.� � � 	 �

�	
 � 	 "
end if
if � � -

��� � ��� ��� �
�
�#� � ���.� then�

�
��� � �$� � �

-
� � � ���.� "

else�
�
��� � �$���

�
�#� � ���.� "

end if

Figure 7. The algorithm for MinObstPath

left and to the right of the obstacle, taking the shorter one
(Figure 7). For each assignment, the shortest collection or-
der is then computed for each agent and its assigned items.
Then the longest agent’s completion time is chosen as the
best time required by the current assignment to perform the
task. The shortest completion time of any assignment is
the best time overall. Note that it is not necessary to con-
sider other agents as obstacles when sensory range is un-
limited, because, while there may be cases in which agents’
paths cross, there will not be cases in which they cross at
the same time; if that were the case, it would be faster for
the agents to “swap” their objectives, thus eliminating the
cross. It is possible for agents to make conflicting decisions
when sensory range is limited, and in that case a method for
recovering would be required.

The “yardstick” results given below include the results
from the optimal solution program. The numbers given are
the average of the outcomes of the 38 initial conditions used
by the other agents. Note that these results measure only

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5  10  15  20  25  30  35

C
yc

le
s 

to
 c

om
pe

tio
n

Initial condition

Reactive
Reactive Predictive
Deliberative
Deliberative Predictive
Optimal

Figure 8. Five agent performance in zero ob-
stacle environment (straight lines indicate av-
erage for each agent type, � � ���

)

time to completion and do not include the substantial com-
putation time required to compute the best solution.

6 Experiments and Results

Here we present first the results of the “yardstick experi-
ments”, in which the performance of all four agent types are
compared with the optimal performance. Then we present
extended results of experiments with reactive agent types on
large-scale MOCTs.

6.1 “Yardstick” Experiments, Results, and Anal-
yses

Having found the best gain values for reactive and
reactive-predictive agents, we can now proceed to com-
pare all agent types. Table 2 compares the average per-
formance (including confidence intervals for alpha of 0.05)
of optimal agents, reactive agents with - 0

� � � , reactive-
predictive agents with - 0

��� �
, deliberative agents, and

deliberative-predictive agents. Figure 8 graphs the five-
agent performance of each agent type for all 38 experi-

9



Agents Optimal Reactive Reactive-Predictive Deliberative Deliberative-Predictive

1 1262.05 � 50.09 1953.21 � 112.05 2050.11 � 128.04 1503 � 64.91 1505.79 � 64.65
2 640.03 � 25.49 1317.66 � 115.39 908.74 � 58.55 1080.18 � 99.85 856.03 � 53.59
3 432.03 � 16.68 937.21 � 101.18 645.82 � 45.27 832.05 � 143.52 612.13 � 49.11
4 344.05 � 18.95 888.05 � 115.93 506.89 � 45.63 731.26 � 105.51 539.53 � 53.6
5 290.53 � 13.73 785.68 � 104.4 425.03 � 37.9 626.42 � 90.0 411.69 � 30.65

Table 3. Average cycles to completion (with confidence intervals for � � ��� � �
) for 5-obstacle environ-

ments ( � from 1 to 5, � � � �
)

ments, making it possible to compare performance for each
set of initial conditions. The average of the 38 experimen-
tal runs is also graphed for each agent type. When only
one agent is allocated to the collection task (Table 2, row
1), the performance of both reactive agent types is virtually
identical, as is the performance of both deliberative agent
types. The small differences between reactive and reactive-
predictive are due to the different values of -10 . Deliber-
ative types perform significantly better than reactive types
on average. In all multi-agent environments, on the other
hand, reactive-predictive agents outperform normal deliber-
ative agents on average. In fact, three, four, and five agent
tests show reactive-predictive agents performing similarly
to deliberative-predictive agents.

Turning to the individual results in Figure 8, we find that
predictive types exhibit smoother behavior across all ini-
tial conditions; non-predictive agent types have a tendency
to experience spikes in some environments. These spikes
indicate the presence of “conflicts” during the correspond-
ing experimental runs. When two agents arrive at an item
at the same time, they enter a cycle in which they reflex-
ively retreat from one another and return to the item to col-
lect it. The distance that each agent retreats is determined
probabilistically, so these conflicts eventually resolve them-
selves when one agent returns before the other does, but
they may go through this cycle several times before reso-
lution is accomplished. The predictive mechanism elimi-
nates these conflicts altogether. By the time the number of
agents allocated is five (Table 2, row 5), predictive agents’
performance is fairly close to that of the optimal solution,
whereas non-predictive agents averaged more than twice as
many cycles to complete the task.

Table 3 compares the performance of optimal agents,
reactive agents with - 0

� ��� �
and -52

� � � �
, reactive-

predictive agents with - 0
� � �

and - 2
� �

, delibera-
tive agents, and deliberative-predictive agents in environ-
ments with five obstacles (note that the reactive-predictive
agents perform well despite the fact that obstacles have
zero weight; this is possible because of the retreat reflex
described above). The initial conditions for these experi-
ments are the same as for the zero-obstacle experiments,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5  10  15  20  25  30  35

C
yc

le
s 

to
 c

om
pl

et
io

n

Initial condition

Reactive
Reactive Predictive
Deliberative
Deliberative Predictive
Optimal

Figure 9. Five agent performance in five ob-
stacle environment (straight lines indicate av-
erage for each agent type, � � ���

)

with the exception of the added obstacles (i.e., the agents
and the items are in the same initial positions). The differ-
ence between reactive and reactive-predictive agents in the
one-agent tests is more pronounced, but is again due to the
differing gain values. The individual test results are very
similar to those in zero-obstacle environments; comparing
Figure 9 with Figure 8, we see similarly shaped curves for
each agent type, with spikes tending to occur in correspond-
ing experimental runs, but of differing magnitudes. Similar
comparisons can be made for all numbers of agents, but are
not depicted here. Conflicts can be effected several ways by
the introduction of obstacles into the environment. Obsta-
cles can alter the timing of agents arriving at an item, caus-
ing an agent to take longer because it must navigate around
an obstacle. This can lead to one agent arriving slightly
later, eliminating a conflict that was present or introducing
one that was not. Alternatively, an obstacle can prevent an
agent from targetting a particular item because the path is
too long or the repulsive force of the obstacle outweighs the
attractive force of the item. If that item was the source of
a conflict, the conflict has been eliminated. However, the
agent may then target another item that does lead to a con-

10



-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  2  3  4  5

A
ve

ra
ge

 O
ve

rh
ea

d 
(in

 c
yc

le
s)

Number of Agents

Reactive
Reactive Predictive

Deliberative
Deliberative Predictive

Optimal

Figure 10. “Coordination” overhead for
agents in zero-obstacle environments

flict, introducing a new one. Overall, the average perfor-
mance is similar to zero-obstacle results, with the exception
that deliberative-predictive agents tend to hold onto a slight
edge over reactive-predictive agents. Reactive-predictive
agents, however, still perform significantly better than nor-
mal deliberative agents, on average.

One of the most interesting outcomes of this work is the
emergence of what could be called “coordinated behavior”
among independently acting agents using very simple pre-
dictive mechanisms. Of course, if one wants to character-
ize coordination as “the process by which an agent reasons
about its local actions and the (anticipated) actions of oth-
ers to try and ensure the community acts in a coherent man-
ner” [14], then these agents’ actions are not coordinated, as
predictive-reactive agents do not reason about anything (af-
ter all, they are still reactive in the sense defined previously,
but merely filter their perceptual input using a simple crite-
rion).

Regardless of one’s definition of “coordination”, the ex-
periments here demonstrate that reactive-predictive agents
(i.e., reactive agents equipped with the “perceptual filter”)
perform as well as “coordinated deliberative agents” that
reason about other agents’ intentions and maintain repre-
sentations of various environmental states.

It is interesting to look at the results also from another
perspective, namely that of the “overhead” introduced by
letting multiple agents cooperate. If one agent takes time���

to perform a given task, then two agents should roughly
take half the time, three agents a third, and so forth. In gen-
eral, � agents should take

� � � � time to complete the task.
Based on this intuition we define the notion of “cooperation
overhead” (in a multi-agent task) as

��� � � � � (where
�

is
the time it takes � agents to complete the task and

� �
is the

time it takes one agent to complete it). Cooperation over-
head thus defined is a measure of how efficiently additional

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  2  3  4  5

A
ve

ra
ge

 O
ve

rh
ea

d 
(in

 c
yc

le
s)

Number of Agents

Reactive
Reactive Predictive

Deliberative
Deliberative Predictive

Optimal

Figure 11. “Coordination” overhead for
agents in five-obstacle environments

agents are utilized in a multiagent task.
Given this definition, it turns out that reactive-predictive

agents have a lower overhead than the predictive deliber-
ative agents, sometimes even significantly lower (see Fig-
ures 10 and 11), even though their performance is in some
cases slightly worse. This implies that increasing the num-
ber of reactive-predictive agents increases the performance
relative to an increase in the number of predictive deliber-
ative agents. Most notably, the reactive-predictive agents’
overhead is, in fact, even better than the overhead of the
optimal solution, which is yet another point to prove that
the relative performance of individual reactive-predictive
agents improves with the number of agents participating in
the task.

Consequently, reactive-predictive agents are better at uti-
lizing the multiagent system than any other agent kind. Fur-
thermore, both predictive kinds are significantly better than
the non-predictive kinds, which have a large overhead due
to their lack of coordination, which demonstrates the effec-
tiveness of the prediction mechanism.

6.2 Large-Scale Experiments, Results, and Anal-
yses

We turn now to our investigation of the large-scale is-
ntances of the MOCT. These large-scale experiments rep-
resent the performance of reactive and reactive-predictive
agents under more realistic conditions. The size of the en-
vironment is increased to 1600 by 1600, the number of
agents is varied from 10 to 50, and the number of col-
lection items is varied from 10 to 200. In addition, envi-
ronments with 50 obstacles were tested. The reactive and
reactive-predictive agents in 0-obstacle environments have

-50
� � � and -50

� � �
, respectively. In the 50-obstacle en-

vironments, reactive agents have -10
� � � �

and -52
� � ���

,

11



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  50  100  150  200

C
yc

le
s 

to
 C

om
pl

et
io

n

Collection Items

10 Reactive Agents
20 Reactive Agents
30 Reactive Agents
40 Reactive Agents
50 Reactive Agents
10 Reactive-Predictive Agents
20 Reactive-Predictive Agents
30 Reactive-Predictive Agents
40 Reactive-Predictive Agents
50 Reactive-Predictive Agents

Figure 12. Results for reactive and reactive-
predictive agents for extended tasks, no ob-
stacles ( � from 10 to 50, � from 10 to 200;
errorbars depict 95% confidence intervals for
� � � � � �

)

while reactive-predictive agents have -10
��� �

and - 2
� �

.
These are the values determined as the best overall in the
parameter-space experiments. The remainder of the exper-
imental setup is the same. Performance is again measured
as number of cycles to completion, with a ceiling of 10,000,
at which point the task is said to have failed (the same as in
the yardstick experiments).

The optimal solution is not included for the large-scale
experiments, for it is computationally intractable, as al-
ready mentioned. Furthermore, neither variety of deliber-
ative architecture is examined here for two reasons: (1) the
deliberative architectures are computationally very expen-
sive because of the involved exponential planning mecha-
nism, and more importantly (2) because the yardstick exper-
iments showed that the performance of the reactive agents
is comparable to that of the deliberative ones. Hence, the
enormous computational overhead for running deliberative
agents in these large scale environments is not necessary.

We now present the results of 400 experiments (each of
which consisted of 40 experimental runs); as the number of
entities in the environment increased, the amount of (wall-
clock) time to complete the simulations became quite large,
approaching 24 hours for 50 reactive-predictive agents col-
lecting 200 items in environments containing 50 obstacles
on a dedicated 2.4 GHz Pentium IV Linux system.

Figure 12 presents the results of these experiments for 0-
obstacle environments. The relative performance of each
agent type is similar to their performance in the “yard-
stick” experiments. For � � ���

, it takes ten agents of
each type roughly the same amount of cycles to complete
the task on average as it took five agents in the “yard-
stick” experiments. This is because the size of the envi-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  50  100  150  200

C
yc

le
s 

to
 C

om
pl

et
io

n

Collection Items

10 Reactive Agents
20 Reactive Agents
30 Reactive Agents
40 Reactive Agents
50 Reactive Agents
10 Reactive-Predictive Agents
20 Reactive-Predictive Agents
30 Reactive-Predictive Agents
40 Reactive-Predictive Agents
50 Reactive-Predictive Agents

Figure 13. Results for reactive and reactive-
predictive agents for extended tasks, 50 ob-
stacles ( � from 10 to 50, � from 10 to 200;
errorbars depict 95% confidence intervals for
� � ��� � �

)

ronment has quadrupled. Given the same number of agents,
reactive-predictive agents perform significantly better than
non-predictive reactive agents overall. In fact, only the tests
with ten reactive-predictive agents performed worse than
any number of normal reactive agents tested. Introduc-
ing obstacles into the environment only increases the ad-
vantage of reactive-predictive agents (Figure 13; note the
difference in scale from Figure 12). Maneuvering around
obstacles is expensive, especially for agents implementing
schema-based architectures (deliberative agents plan effi-
cient routes around obstacles, whereas reactive agents take
a more “trial-and-error” approach). Since non-predictive re-
active agents choose their targets poorly, many of their paths
are wasted, including paths that require detours around ob-
stacles. This increases the total amount of travel in the en-
vironment, leading to still more encounters with obstacles.
Thus, the problem is self-reinforcing: the further an agent
travels in the environment, the more it is penalized by ob-
stacles, and hence the further it needs to travel.

7 Discussion

The results from the “yardstick” experiments indicate a
performance ordering among the four agent types: normal
reactive agents perform worst, followed by normal deliber-
ative agents. The predictive versions of both agent types are
the best, performing very similarly, although deliberative-
predictive agents have a slight advantage in 5-obstacle en-
vironments. The performance of agents employing the pre-
dictive mechanism is clearly superior to the performance of
their non-predictive counterparts. The fact that the reactive-
predictive agents outperform even deliberative agents in

12



multi-agent environments is strong evidence that the predic-
tion mechanism is effective; previous results [23] indicate
that deliberative agents outperform reactive agents in most
environments unless they are assesed a cost for the delib-
erative mechanisms. Analysis of the efficiency with which
additional agents are used highlights the source of predic-
tive agents’ advantage in multi-agent environments.

However, absolute performance measures alone are in-
sufficient for comparing and evaluating architectures; the
computational cost of the architectures must also be taken
into account. Determining the relative cost of the four agent
types examined here is a matter of analyzing the computa-
tional complexity of the actions each must perform at each
step. The reactive agents must sum the force vectors from
each other agent � , any obstacles � that might be in the en-
vironment, and each (remaining) collection item � . Thus,
their computational cost is linear ( 
 � � � � � � � � � � � � " ). The
complexity of the predictive extension is ( 
 � � � � / � � � " ),
since the algorithm checks every collection item (

� � � ) for
every agent � to see which is closest to each agent. The
deliberative agents must update their memory of the rela-
tive locations of all items and obstacles in the environment
( 
 � � � � � � � � " ) at each time step. In addition, whenever
a goal item is collected or a collision is immanent, the �968
planner must be executed, which is of exponential complex-
ity [19] both in time and memory. This yields the follow-
ing increasing order of cost: non-predictive reactive agents,
reactive-predictive agents, and deliberative agents of both
types.

Taking both cost and performance into account, some
tradeoffs become clear. First, given the fact that the
cost of the predictive mechanism is dominated by the
cost or the planner and the fact that the deliberative-
predictive agents outperform normal deliberative agents
by a significant factor, there appears to be no reason to
deploy non-predictive deliberative agents. Deliberative-
predictive agents appear to have greater “value” than their
non-predictive counterparts without increasing the overall
cost appreciably. Comparing the values of deliberative-
predictive and reactive-predictive agents in these environ-
ments is also straightforward: their performance is simi-
lar, however, the deliberative-predictive agents pay much
more in terms of computation to achieve that performance.
Reactive-predictive agents are the better value here.

The difficult task is to determine where the relative value
of the non-predictive reactive agents falls. The previous two
comparisons were between alternatives of like cost and dif-
fering performance, and between alternatives of like per-
formance and differing cost, respectively. Between non-
predictive reactive agents and any of the other types, how-
ever, the comparison is of unlike cost and unlike perfor-
mance. The performance is lower than any of the alterna-
tives, but so is the cost. In the end, it is (1) the time-critical

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  50  100  150  200  250  300  350  400

C
yc

le
s 

to
 C

om
pl

et
io

n

Collection Items

10 Reactive-Predictive Agents
20 Reactive-Predictive Agents
30 Reactive-Predictive Agents
40 Reactive-Predictive Agents
50 Reactive-Predictive Agents

Figure 14. Projected performance (from 210
to 400 items) of reactive-predictive agents for
extended tasks, 50 obstacles ( � from 10 to 50,
based on simulation results for � from 10 to
200)

nature of the specific application of the collection task and
(2) the available computational resources on an agent that
will determine the relative value of the non-predictive reac-
tive agents. When time is very important (e.g., in the mili-
tary example of finding supplies), the extra cost of the pre-
dictive mechanism may be worthwhile. When time is less
important, but computational cost matters (e.g., imagine a
group of room-cleaning robots trying to decide which mess
to clean next), one may choose to sacrifice performance in
favor of cost savings.

The results of the large-scale experiments indicate that
the predictive mechanism allows reactive architectures to
scale very well to more realistically demanding environ-
ments. Performance is worse in environments cluttered with
obstacles, but overall the performance curves are very sim-
ilar. As in the parameter-space experiments, these agents
operate with unlimited vision ranges. This means that the
number of items needing to be checked for each agent is
very high, due to the simplistic nature of the prediction
mechanism. While in the normal case where sensory range
is limited, the number of items checked will be much more
tractable, it is infeasible to extend the reactive-predictive re-
sults to more items or more agents when evaluating agents’
best-case performance. To get an idea of how performance
would scale for more items, we project performance curves
based on the actual results obtained. In Figure 14, these
results are extrapolated out to give projected performance
values for higher values of � (up to 400). The projec-
tion was accomplished by fitting the data to the function

-
�! #" � �  � � "�� � �

via nonlinear least-squares method. Ta-
ble 4 gives the constant fits. The projected performance to
more items continues to scale well, near linear in the worst

13



Agents � �
�

1 0.00027 0.59 64.16
2 0.00026 0.55 -27.8
3 0.025 0.79 135.75
4 0.22 1.0099 174.25
5 0.62 1.16 169.53

Table 4. Constant fits for -
�! #" � �  � � " � � �

shown in Figure 14

case, providing further evidence for the scalability of the
preactive-predictive architecture. Note that these results and
projections are for a fixed-size environment; as the number
of items increases, the density increases. Therefore, travel
times do not increase as much as they would if the area were
increased at the same time. Furthermore, one would ex-
pect the time required to complete the task to level off at
some point, as the area becomes saturated with items and
the agents are able to collect them just by moving in any
direction.

While more complex and accurate predictive mechanism
are certainly possible, the performance of the current simple
version seems sufficient given its performance relative to
the optimal solution in the “yardstick” experiments. Con-
sequently, it is not obvious that further refinements would
be worthwhile (to determine that, the tradeoff between the
additional complexity of the prediction algorithm and the
increased performance would need to be assessed).

The results we have obtained for the reactive-predictive
agents look very promising and confirm our conjecture that
simple mechanisms (without communication) might be suf-
ficient for the coordination of multiple agents in a multi-
agent task. In the above case, a simple reactive mecha-
nism plus a perceptual filter performed as well as a com-
plex deliberative mechanism. The extended results demon-
strate that the predictive mechanism does scale well with
the number of items, the number of agents, and the number
of obstacles, as predicted.

8 Related Work

Currently, no online approximation algorithms are avail-
able for multi-object collection tasks. However, approxi-
mation algorithms exist for several related problems, most
notably the Traveling Salesman Problems [7]. The Trav-
eling Salesman Problem requires the salesman to make a
Hamiltonian cycle of

�
cities, minimizing the cost (i.e., the

distance traveled). Essentially, it is the shortest Hamiltonian
cycle problem. A Hamiltonian cycle in an undirected graph
is a simple cycle that visits all vertices in the graph.

There are many approaches to approximating a solution
to the Traveling Salesman Problem [12, 15]. Constructing

the tour by appending the best remaining node (by some
heuristic, such as the nearest node to the current end of
the tour) to the current path is one approximation. Inser-
tion techniques attempt to find the best node to add to the
tour at any location, not only at the current end of the tour.
Once tours have been completed, they can be improved via
heuristics that modify the tour in some way until no im-
provements are achieved. Other approaches include tabu
search, simulated annealing, genetic algorithms, and neural
networks. The reactive and deliberative agents described
here can be viewed as implementing the greedy append
method, with the predictive mechanism serving to improve
the heuristic that determines which item is closest.

The multi-Traveling Salesman Problem requires some
member of a sales team to visit each city. Makespan (i.e.,
the overall time to completion) is to be minimized, and
salesmen can travel to cities in parallel. Most of the ex-
amples below approach the problem in this way.

Gavish and Srikanth provide a branch-and-bound opti-
mal solution method for the multiple Traveling Salesman
Problem starting and ending at the same city [11]. Due to
the branch-and-bound technique, their technique was able
to solve problems that the other techniques they reviewed
would run out of space on, and their performance in time
was as good as other techniques on Euclidean problems, one
to two orders of magnitude better on non-Euclidean prob-
lems than other techniques.

Bugera describes in detail the characteristics of the no-
depot min-max 2-Traveling Salesman Problem [4]. A no-
depot Traveling Salesman Problem is one in which the mul-
tiple salesmen do not start and end at the same position;
each has its own starting and ending position. This is simi-
lar to the MOCT, except that MOCT agents do not need to
return to their original positions.

Delivery scheduling refers to the problem of deciding
how best to order and assign delivery tasks to a finite set of
delivery trucks. Similar problems include schoolbus rout-
ing and dial-a-ride scheduling. Wang et al describe a sys-
tem that divides the delivery area into zones based on past
performance and then solve each zone optimally [28]. The
system is shown to be effective at solving long-distance de-
livery problems, where the cost of delivery can vary sub-
stantially from zone to zone.

An ant colony system has been proposed to solve the de-
livery problem in which demands for pickup are dynami-
cally generated [18]. “Pheromone trails” created by simple
search agents are used to identify efficient paths through
the search space. The authors report performance improve-
ments of, on average, 4.37% over local search methods on
a suite of benchmarks, as well as success applying the tech-
nique to real-world situations.

Applegate and colleagues provide a distributed branch-
and-bound solution to the multi-Traveling Salesman Prob-

14



lem [1]. This technique allowed them to verify the opti-
mality of a solution to a newspaper delivery problem found
earlier.

A cyclic transfer algorithm, in which demands are first
assigned to agents and are then transfered from one agent
to another closer agent, provides efficient assignments of
tasks to salesmen [27]. This method yields paths up to 11%
shorter than other algorithms on the classical vehicle rout-
ing problem.

These approaches apply to the delivery scheduling prob-
lem because it is a Traveling Salesman Problem, with ad-
ditional constraints (e.g., truck capacity). The main differ-
ence between the multi-Traveling Salesman Problem and
the problem being solved in the MOCT is that in the multi-
Traveling Salesman Problem, the starting and ending ver-
tices must be the same. What the optimal MOCT algorithm
solves could be called the multi-shortest Hamiltonian path
problem, with makespan minimized. A Hamiltonian path
in a graph is a simple path that visits every vertex in the
graph. Given an assignment of items to agents, the optimal
algorithm solves the shortest Hamiltonian path problem for
each agent. The graph is fully connected and undirected
(with the exception of the edges connecting the agents with
items initially). MOCT agents do not need to return to a
base, hence their solutions may look quite different from the
ones computed by the above methods (e.g., see Figure 2).
Furthermore, often in other versions of the Traveling Sales-
man Problem a common source is assumed for all salesmen
(i.e., a depot). The MOCT places agents randomly in the
environment.

Similar differences can be found between the MOCT and
job-scheduling tasks [10], printed circuit board assembly
tasks [13], and flying probe schedulers [16].

The SHAC (Shared Activity Coordination) project [6]
explores the role of communication in rover scheduling and
cooperation. SHAC’s emphasis on the need for communi-
cation as a means of coordination requires further investi-
gation in light of the performance of non-communicating
predictive agents presented above.

Finally, much interesting and useful work has been done
in the area of foraging and cooperation, in both robotic and
simulated environments (e.g., [17, 5, 8, 26, 2]); this research
focuses on the utility of the predictive mechanism as an im-
plicit cooperative mechanism.

9 Conclusions and Future Work

This paper proposes a solution to the multi-agent prob-
lem of collecting items in an environment in the short-
est time possible. While the problem can be solved opti-
mally by exhaustively searching every assignment of items
to agents and every permutation of collection order within
each assignment, the computational cost of such a solution

makes it practically infeasible. Furthermore, offline algo-
rithms such as this are not able to handle dynamic envion-
ments in which items can move or new items can be gen-
erated; in such circumstances, the optimal algorithm would
have to recompute the entire solution. The goal was to find
an online solution with relatively low cost and respectable
performance relative to the optimal solution in a static envi-
ronment.

The mechanism we implemented incorporates a simple
predictive component into reactive and deliberative archi-
tectures, allowing agents with the component to implicitly
coordinate their actions to avoid duplicated effort. We con-
ducted extensive sets of experiments to determine the ef-
fectiveness of prediction in both reactive and deliberative
architectures and demonstrated that low-cost predictive re-
active agents show a very high level of performance even
in large-scale MOCTs, thus obviating the need for compu-
tationally expensive deliberative architectures. Moreover,
the results suggest that communication (and all the compu-
tational overhead involved it) to achieve coordinated agent
behavior might not be necessary for a large class of multia-
gent tasks (such as the MOCTs).

We are currently investigating different relaxations of the
multiagent object collection task, in which we believe the
full power of the simple mechanism will come to bear, such
as (1) restricting the sensory range of agents (thus relax-
ing the condition on complete information about the en-
vironment), and (2) allowing new items to appear and old
items to disappear during the collection task (thus making
the environment more dynamic). Both extensions empha-
size the need for online algorithms and preliminary results
indicate that the proposed simple reactive-predictive mech-
anism shows even greater performance compared to other
more expensive mechanisms.

References

[1] D. Applegate, W. Cook, S. Dash, and A. Rohe. Solution of
a min-max vehicle routing problem. INFORMS Journal on
Computing, 14(2):132–143, 2002.

[2] E. G. Araujo and R. A. Grupen. Learning control composi-
tion in a complex environment. In From Animals to Animats
4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, 1996.

[3] R. C. Arkin. Motor schema-based mobile robot naviga-
tion. International Journal of Robotic Research, 8(4):92–
112, 1989.

[4] V. Bugera. Properties of no-depot min-max 2-traveling-
salesmen problem. In S. Butenko, R. Murphey, and P. Parda-
los, editors, Recent Developments in Cooperative Control
and Optimization. Kluwer Academic Publishers, 2003.

[5] J. Carmena and J. Hallam. Improving performance in a
multi-robot task through minimal communication. In Pro-
ceedings of the 7th Symposium on Intelligent Robotic Sys-
tems (SIRS), July 1999.

15



[6] B. J. Clement and A. C. Barrett. Continual coordination
through shared activities. In Proceedings of the second in-
ternational joint conference on Autonomous agents and mul-
tiagent systems (AAMAS ’03), July 2003.

[7] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

[8] A. Drogoul and J. Ferber. From Tom Thumb to the Dockers:
Some experiments with foraging robots. In Proceedings of
the Second International Conference on Simulation of Adap-
tive Behavior, 1992.

[9] T. Estlin, G. Rabideau, D. Mutz, and S. Chien. Using con-
tinuous planning techniques to coordinate multiple rovers.
Electronic Transactions on Artificial Intelligence, 4:45–57,
2000.

[10] A. Frangioni, E. Necciari, and M. G. Scutella. A multi-
exchange neighborhood for minimum makespan machine
scheduling problems. Technical Report TR-00-17, Univer-
sity of Pisa, Pisa, Italy, 2000.

[11] B. Gavish and K. Srikanth. An optimal solution method for
large-scale multiple traveling salesmen problems. Opera-
tions Research, 34(5):698–717, 1986.

[12] B. Golden, L. Bodin, T. Doyle, and W. S. Jr. Approxi-
mate traveling salesman algorithms. Operations Research,
28(3):694–711, 1980.

[13] W. Ho and P. Ji. Component scheduling for chip shooter
machines: a hybrid genetic algorithm approach. Computers
and Operations Research, 30:2175–2189, 2003.

[14] N. R. Jennings. Coordination techniques for distributed ar-
tificial intelligence. In G. M. P. O’Hare and N. R. Jennings,
editors, Foundations of Distributed Artificial Intelligence,
pages 187–210. Wiley, 1996.

[15] D. S. Johnson and L. A. McGeoch. The traveling salesman
problem: A case study in local optimization. In E. H. L.
Aarts and J. K. Lenstra, editors, Local Search in Combina-
torial Optimization, pages 215–310. John-Wiley and Sons,
Ltd., 1997.

[16] A. B. Kahng, G. Robins, and E. A. Walkup. Optimal algo-
rithms ofr substrate testing in multi-chip modules. In J. D.
Cho and P. D. Franzon, editors, High performance design
automation for multi-chip modules and packages. World
Scientific Publishing, 1996.

[17] D. McFarland. Towards robot cooperation. In From Animals
to Animats 3. Proc. of the Third International Conference on
Simulation of Adaptive Behavior, 1994.

[18] R. Montemanni, L. Gambardella, A. Rizzoli, and A. Do-
nati. A new algorithm for a dynamic vehicle routing prob-
lem based on ant colony system. In Second International
Workshop on Freight Transportation and Logistics, 2003.

[19] J. Pearl.
���
� —an algorithm using search effort estimates. In

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, volume 4, pages 392–399, 1982.

[20] G. Rabideau, T. Estlin, S. Chien, and A. Barrett. Work-
ing together: Centralized command sequence generation for
cooperating rovers. In Proceedings of the IEEE Aerospace
Conference (IAC), March 1999.

[21] S. Russell and P. Norvig. Artificial Intelligence, A Modern
Approach. Prentice Hall, 1995.

[22] M. Scheutz. The evolution of simple affective states in
multi-agent environments. In D. Cañamero, editor, Proceed-
ings of AAAI Fall Symposium, pages 123–128, Falmouth,
MA, 2001. AAAI Press.

[23] M. Scheutz and P. Schermerhorn. Steps towards a theory
of possible trajectories from reactive to deliberative control
systems. In R. Standish, editor, Proceedings of the 8th Con-
ference of Artificial Life. MIT Press, 2002.

[24] M. Scheutz and P. Schermerhorn. Many is more but not
too many: Dimensions of cooperation of agents with and
without predictive capabilities. In Proceedings of IEEE/WIC
IAT-2003. IEEE Computer Society Press, 2003.

[25] E. Spier and D. McFarland. Possibly optimal decision mak-
ing under self-sufficiency and autonomy. Journal of Theo-
retical Biology, 189:317–331, 1998.

[26] E. Stergaard, G. Sukhatme, and M. Mataric. Emergent
bucket brigading - a simple mechanism for improving per-
formance in multi-robot constrainedspace foraging tasks.
In Proceedings of the 5th International Conference on Au-
tonomous Agents, May 2001.

[27] P. M. Thompson and H. N. Psaraftis. Cyclic transfer al-
gorithms for multivehicle routing and scheduling problems.
Operations Research, 41(5):935–946, 1993.

[28] H. Wang and D. Xue. An intelligent zone-based delivery
scheduling approach. Computers in Industry, 48:109–125,
2002.

16


