
71

Planning for Agents with Changing Goals
Kartik Talamadupula† and Paul Schermerhorn§ and J. Benton† and

Subbarao Kambhampati† and Matthias Scheutz§

†Department of Computer Science
Arizona State University
Tempe, AZ 85287 USA

{krt,rao, j.benton}@ asu.edu

§Cognitive Science Program
Indiana University

Bloomington, IN 47406 USA
{pscherme,mscheutz}@ indiana.edu

Abstract
One of the most important applications of planning tech-
nology is guiding robotic agents in an autonomous fashion
through complex problem scenarios. Increasingly, real-world
scenarios are evolving in ways that require intensive interac-
tion between human actors and the robotic agent, mediated
by a planning system. We propose to demonstrate an inte-
grated system in one such problem that falls under the aegis
of an urban search and rescue (USAR) scenario. We show a
simulation of a run through one such problem where a mobile
robot is given certain goals to achieve in a layout of interest,
and discuss how the various capabilities of the planner are
instrumental in achieving the agent’s goals.

Introduction
One of the earliest motivations of Artificial Intelligence was
to provide autonomous control to robotic agents that carry
out useful service tasks. Application scenarios for these
kinds of tasks span a wide spectrum that includes military
drones and mules, household assistance agents and search
and rescue robots. The level of autonomy desired of such
robotic agents can be achieved only by integrating them with
planning systems that can plan not only for the initial goals,
but also updates to these goals and the state of the world.

Recent years have seen the emergence of fast planning
algorithms and systems that can be used to model a large
number of the features that distinguish real world applica-
tions from theoretical problem scenarios. Key among these
features are time, cost, resources, uncertainty and execution
failure. Though a few planners have modeled a subset of
these features in the past, the scale-up required to support
real world timeframes has only come about recently due to
the extensive use of heuristic search methods for plan syn-
thesis. Current planners still impose a number of restrictive
assumptions in order to support this scale-up; classical plan-
ners are the best example of this. The challenge is to identify
the essential features when considering planning support for
such real-world scenarios.

In this demonstration, we show one such planning sys-
tem aiding a robotic agent as it navigates a search and report
scenario. We describe the environment that the robot is exe-
cuting in, as well as its goals and actions, in detail. We then
provide a brief overview of the planning system that is inte-
grated with the architecture controlling the robot, and detail

some extensions that we had to provide in order to enable
successful modeling of the application scenario.

Scenario: Search and Rescue
One of the primary applications of robotic agents is in sce-
narios where a human actor has a plethora of knowledge
about the problem at hand, yet cannot act in the world due
to inherent dangers to human life – emergency response and
firefighting are among the best examples of such scenarios.
In such cases, having a robotic agent as part of the team
greatly increases the chances of achieving the desired end-
goals (rescuing people, putting out a fire etc.) without ex-
posing the human team-member to risks.

In this demonstration, we consider a specific scenario that
we had to provide planning support for to illustrate the chal-
lenges that crop up when planning for robots in real-world
scenarios. This is the urban search and rescue (USAR) sce-
nario – a team consisting of a human and an autonomous
robot is tasked with finding and reporting the location of crit-
ical assets (e.g. injured humans) in an urban setting (usually
a building). A given USAR task may consist of multiple
problems, each with different challenges. The human mem-
ber of the team usually has intimate knowledge of the set-
ting of the scenario, but cannot perform the required tasks
due to inherent dangers like fires, gas leaks, collapsed struc-
tures etc. The robot is considered autonomous because the
human only communicates with it sparingly, to specify the
goals that it must achieve and any information that might
be deemed useful for its execution in the world. Examples
of tasks in the USAR scenario include transporting essen-
tial materials to a specified location or entity; and reconnais-
sance tasks like reporting the locations of trapped or injured
humans to the commander and taking pictures of objects or
areas of interest. In the following, we present the specific
USAR task that we tested our system on in order to illus-
trate the inherent planning challenges.

Task: Search and Report
In this problem, the robot’s main goal is to deliver essen-
tial medical supplies to a specific location within the area
of interest – during its run, the robot may be given addi-
tional information and goals about other assets. The human
team-member (the commander) has intimate knowledge of
the building’s layout, but is removed from the scene and



72

can only interact with the robot via on-board wireless com-
munication. The robot begins in a long hallway that has
doors leading off into rooms on either side. Initially, the
robot is unaware that that these rooms may contain injured
or trapped humans, and its goal is to reach the end of the
hallway to deliver the supplies by a given deadline.

As the robot executes a plan to achieve that goal, the hu-
man commander notes that it is passing the rooms and re-
calls that injured humans may be trapped in these rooms.
The commander then passes on this information linking
rooms to injured humans to the robot, and specifies a new
goal on reporting the location of as many such humans as
possible given the time and resource constraints imposed by
the achievement of its original goal. In addition, the hu-
man commander remembers that rooms have doors, and that
these doors must be pushed open in order for the robot to
gain access to the room behind that door. The robotic agent
(and hence the planner) already has a “push” action encoded
as part of its domain theory - this action must be updated
in order to reflect the new information from the commander.
This requires a change to the world model that the planner is
using - the system must process information that is received
via natural language (from the commander) and relay it to
the system, where update methods are used in order to mod-
ify the model.

We demonstrate a run of the robotic agent through the
above scenario, while it is supported by the planner. Full
details of this demonstration can be found in the attached
document that details a storyboard.

Planning System
The planner that we use – SapaReplan – is an extension of
the metric-temporal planner Sapa (Do and Kambhampati
2002) that handles partial satisfaction planning (Benton,
Do, and Kambhampati 2009) and replanning (Cushing,
Benton, and Kambhampati 2008). Specifically, the planning
problem is defined in terms of the initial state, and the set of
goals that need to be satisfied. Actions have known (real-
valued) costs. Each goal can have a reward and a penalty
∈ [0,∞]. The reward is accrued when the goal is satisfied in
the final state, while the penalty is incurred for not satisfying
it. The costs, rewards and penalties are all assumed to be in
the same units. The net benefit of a solution plan is defined
as the sum of rewards of the goals it achieves, minus the
sum of penalties of the goals it fails to achieve, and minus
the sum of costs of the actions used in the plan. The use of
a reward / penalty model allows our planner to model both
opportunities and commitments/constraints in a uniform
fashion. A goal with zero penalty is a pure opportunity,
while one with zero reward is a pure commitment. A ”hard”
goal has finite reward but infinite penalty (and thus must be
achieved by any plan).

The planner consists of three coupled, but distinct parts:

• Search. SapaReplan performs a weighted A*, forward
search using net benefit as the optimization criterion.

• Heuristic. The heuristic used to guide the planner’s search
is based on well-known relaxed planning graph heuris-

tics where, during search, relaxed solutions are found in
polynomial time per state. Sapa uses a temporal relaxed
planning graph that accounts for the durations of actions
when calculating costs and finding relaxed solutions. In
the partial satisfaction planning extensions, the heuristic
also performs online goal selection. In essence, it solves
for all goals (hard and soft) in the relaxed problem and
gives a cost for reaching each of them (∞ for unreachable
goals). If the cost of reaching a soft goal is greater than
its reward, it removes that goal from the heuristic calcula-
tion. If the cost of reaching a hard goal is infinity, it marks
a state as a dead end. Finally, the difference between the
total reward and total cost of the remaining goals is calcu-
lated and used as the heuristic value.

• Monitoring / Replanning. The extensions for replanning
require the use of an execution monitor, which takes up-
dates from the human-robot team architecture (in this
case). Upon receiving an update, the planner updates its
knowledge of the “current state” and replans. Replanning
itself is posed as a new partial satisfaction planning prob-
lem, where the initial and goal states capture the status
and commitments of the current plan (Cushing, Benton,
and Kambhampati 2008).

Problem Updates New sensory information, goals, or facts
given by a human commander can be sent to the planner
at any time, either during planning or after a plan has been
output. Regardless of the originating source, the monitor
listens for updates from a single source from the architecture
and correspondingly modifies the planner’s representation of
the problem. Updates can include new objects, timed events
(i.e., an addition or deletion of a fact at a particular time, or a
change in a numeric value such as action cost), the addition
or modification (on the deadline or reward) of a goal, and a
time point to plan from. An example update is given below:
(:update
:objects

red3 - zone
:events

(at 125.0 (not (at red2)))
(at red3)
(visited red3)

:goal (visited red4) [500] - hard
:now 207.0)

All goals are on propositions from the set of boolean flu-
ents in the problem, and there can only be one goal on any
given proposition. In the default setting, goals are hard, lack
deadlines and have zero reward1. All fields in an update
specification, with the exception of “:now” (representing the
time we expect to begin executing the plan), may be repeated
as many times as required, or left out altogether. The in-
tent of allowing such a flexible representation for updates
is to provide for accumulation of changes to the world in
one place. In the particular example provided, a new object
“red3” of type “zone” is declared. In addition, three new
events are defined, one of them with a temporal annotation

1Since these goals are hard, they can be seen as carrying an in-
finite penalty; i.e., failing to achieve even one such goal will result
in plan failure.



73

that describes the time at which that event became true. A
new hard goal that carries 500 units of reward is also spec-
ified, and the update concludes with the specification of the
current time.

As discussed by (Cushing, Benton, and Kambhampati
2008), allowing for updates to the planning problem pro-
vides the ability to look at unexpected events in the open
world as new information rather than faults to be corrected.
In our setup, problem updates cause the monitor process to
restart the planner (if it is running) after updating its internal
problem representation.

Goal and Knowledge Revision
An important problem that the robot (and planner) must deal
with is the specification of the goals that must be achieved in
a given task. This goal specification may consist of the ac-
tual goals to be achieved, as well as the values of achieving
such goals, and priorities and deadlines (if any) associated
with these goals. The fact that the system’s goals are deter-
mined and specified by the human in the loop also introduces
the possibility that goals may be specified incompletely or
incorrectly at the beginning of the scenario. Such a contin-
gency mandates a need for a method via which goals, and
the knowledge that is instrumental in achieving them, can
be updated.

The biggest planning challenge when it comes to the prob-
lem of goal update and revision is that most state-of-the-art
planning systems today assume a “closed world” (Etzioni,
Golden, and Weld 1997). Specifically, planning systems ex-
pect full knowledge of the initial state, and expect up-front
specification of all goals. Adapting them to handle the “open
worlds” that are inherent in real-world scenarios presents
many challenges. The open world manifests itself in the
system’s incomplete knowledge of the problem at hand; for
example, in the search and report scenario, neither the hu-
man nor the robot know where the injured humans may be.
Thus an immediate ramification of the open world is that
goals may often be conditioned on particular facts whose
truth values may be unknown at the initial state. For exam-
ple, the most critical goal in the USAR scenario – reporting
the location of injured humans – is conditioned on finding
injured humans in the first place. In this section, we de-
scribe recent work on bridging the open nature of the world
with the closed world representation of the planner that has
been done in the context of the USAR problem.

Open World Quantified Goals
Open world quantified goals (OWQG) (Talamadupula et al.
2010) combine information about objects that may be dis-
covered during execution with partial satisfaction aspects
of the problem. Using an OWQG, the domain expert can
furnish details about what new objects may be encountered
through sensing and include goals that relate directly to the
sensed objects. Newly discovered objects may enable the
achievement of goals, granting the opportunity to pursue re-
ward. Formally, an open world quantified goal (OWQG) is
a tuple Q = 〈F,S,P, C,G〉 where F and S are typed vari-
ables that are part of the planning problem. F belongs to

the object type that Q is quantified over, and S belongs to
the object type about which information is to be sensed. P
is a predicate which ensures sensing closure for every pair
〈f, s〉 such that f is of type F and s is of type S, and both
f and s belong to the set of objects in the problem, O ∈ Π;
for this reason, we term P a closure condition. C =

∧
i ci

is a conjunctive first-order formula where each ci is a state-
ment about the openness of the world with respect to the
variable S. For example, c = (in ?hu - human ?z -
zone) with S = ?hu - human means that c will hold for
new objects of the type ‘human’ that are sensed. Finally G
is a quantified goal on S.

Newly discovered objects may enable the achievement of
goals, granting the opportunity to pursue reward. For ex-
ample, detecting a victim in a room will allow the robot to
report the location of the victim (where reporting gives re-
ward). Given that reward in our case is for each reported
injured person, there exists a quantified goal that must be al-
lowed partial satisfaction. In other words, the universal base,
or total grounding of the quantified goal on the real world,
may remain unsatisfied while its component terms may be
satisfied.

As an example, we present an illustration from our sce-
nario: the robot is directed to “report the location of all in-
jured humans”. This goal can be classified as open world,
since it references objects that do not exist yet in the plan-
ner’s object database; and it is quantified, since the robot’s
objective is to report all victims that it can find. In our syn-
tax, this information is encoded as follows:

1 (:open
2 (forall ?z - zone
3 (sense ?hu - human
4 (looked_for ?hu ?z)
5 (and (has_property ?hu injured)
6 (in ?hu ?z))
7 (:goal (reported ?hu injured ?z)
8 [100] - soft))))

In the example above, line 2 denotes F , the typed variable
that the goal is quantified over; line 3 contains the typed
variable S—the object to be sensed. Line 4 is the unground
predicateP known as the closure condition (defined earlier).
Lines 5 and 6 together describe the formula C that will hold
for all objects of type S that are sensed. The quantified goal
over S is defined in line 7, and line 8 indicates that it is a
soft goal and has an associated reward of 100 units. Of the
components that make up an open world quantified goal Q,
P is required2 and F and S must be non-empty, while the
others may be empty. If G is empty, i.e., there is no new goal
to work on, the OWQG Q can be seen simply as additional
knowledge that might help in reasoning about other goals.

Handling OWQGs in the Planning System
To handle open world quantified goals, the planner grounds
the problem into the closed-world using a process similar to

2If P were allowed to be empty, the planner could not gain
closure over the information it is sensing for, which will result in
it directing the robot to re-sense for information that has already
been sensed for.



74

Skolemization. More specifically, we generate runtime ob-
jects from the sensed variable S that explicitly represent the
potential existence of an object to be sensed. These objects
are marked as system generated runtime objects. Given an
OWQGQ = 〈F,S,P, C,G〉, one can look at S as a Skolem
function of F , and runtime objects as Skolem entities that
substitute for the function. Runtime objects are then added
to the problem and ground into the closure condition P , the
conjunctive formula C, and the open world quantified goal G.
Runtime objects substitute for the existence of S dependent
upon the variable F . The facts generated by following this
process over C are included in the set of facts in the problem
through the problem update process. The goals generated
by G are similarly added. This process is repeated for every
new object that F may instantiate.

We treat P as an optimistic closure condition, meaning
a particular state of the world is considered closed once the
ground closure condition is true. On every update the ground
closure conditions are checked and if true the facts in the cor-
responding ground values from C and G are removed from
the problem. By planning over this representation, we pro-
vide a plan that is executable given the planning system’s
current representation of the world until new information
can be discovered (via a sensing action returning the clo-
sure condition). The idea is that the system is interleaving
planning and execution in a manner that moves the robot to-
wards rewarding goals by generating an optimistic view of
the true state of the world.

Conclusion
In this paper, we proposed the demonstration of a robotic
agent being guided through a complex search and rescue
scenario by a planning system. We discussed the motiva-
tion behind using a planner in such a task, and described the
scenario in detail. We then gave a brief overview of the plan-
ning system in use, and the procedure via which the plan-
ner’s world knowledge is updated. Following this, we visit
the problem of updates to the agent’s goals, and describe a
construct that enables the planner to deal with such updates.
We conclude with an explanation of how this construct is
accomodated into the planning system.

References
Benton, J.; Do, M.; and Kambhampati, S. 2009. Anytime
heuristic search for partial satisfaction planning. Artificial
Intelligence 173(5-6):562–592.
Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Re-
planning as a Deliberative Re-selection of Objectives. Ari-
zona State University CSE Department TR.
Do, M., and Kambhampati, S. 2002. Planning graph-based
heuristics for cost-sensitive temporal planning. In Proceed-
ings of AIPS, volume 2.
Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and
efficient closed-world reasoning for planning. AIJ 89(1-
2):113–148.
Talamadupula, K.; Benton, J.; Schermerhorn, P.; Scheutz,
M.; and Kambhampati, S. 2010. Integrating a Closed-
World Planner with an Open-World Robot. In AAAI 2010.




