
Fixing symbolic plans with reinforcement learning in object-based
action spaces

Christopher Thierauf1 and Matthias Scheutz2

Abstract— Reinforcement learning techniques are widely
used when robots have to learn new tasks but they typically
operate on action spaces defined by the joints of the robot. We
present a contrasting approach where actions spaces are the
trajectories of objects in the environment, requiring robots to
discover events such as object changes and behaviors that must
occur to accomplish the task. We show that this allows robots
to learn faster, to learn semantic representations that can be
communicated to humans, and to learn in a manner that does
not depend on the robot itself, enabling low-cost policy transfer
between different types of robots. Our demonstrations can be
replicated using provided source code1.

I. INTRODUCTION

Reinforcement learning (RL) is generally an effective
strategy for allowing robots to learn novel skills, but they
generally struggle with long-horizon tasks when compared
to symbolic approaches. Conversely, symbolic approaches
generally do not obtain the same degree of flexibility and
robustness as learned policy-based approaches. Recently,
there has been an increased interest in combining the two
approaches synergistically, with symbolic reasoning and
planning producing a high-level structure and reinforcement
learning being used to learn policies that are mapped to
symbolic planning operators (e.g., [1], [2]).

In this paper, we propose a method for reconceptualizing
the action and observation spaces in RL to better supports
this potential synergy. The idea is to allow the RL to directly
manipulate the environment instead of doing so via the
robot’s effectors. By constructing action spaces that are based
in what must happen to the objects in the environment and
not the motor manipulation of the robot itself, we can learn
explainable policies that remain symbolically grounded while
still producing solutions that symbolic solvers may struggle
with. Additionally, these reinforcement learning problems
can be automatically constructed from symbolic plans, and
learned policies can be applied to different robots.

To describe our approach, we will first provide context
with the broader literature, and then describe the proposed
method of constructing a reinforcement learning problem
that uses object manipulations for the action and observa-
tion space, and how such a problem can be autonomously
generated using a symbolic planning approach. We then
demonstrate in simulation as well as on two real-world robot

*This work was in part supported by ONR grant N00014-24-1-2024.
1Department of Computer Science, Tufts University, Medford, MA 02155

christopher.thierauf@tufts.edu
2Department of Computer Science, Tufts University, Medford, MA 02155

matthias.scheutz@tufts.edu
1https://github.com/cst0/object_space_solver

platforms that our proposed methods indeed provides several
key benefits: a substantial improvement in training time, the
ability to communicate the results of policies, and low-cost
policy transfer between heterogenous robot platforms.

II. BACKGROUND

Utilizing reinforcement learning and symbolic AI ap-
proaches to find creative robot behaviors has been explored
as the problem of “self-discovery of motion primitives” [3].
More recently, robot creative problem solving has been
addressed using experimentation-based planners [4], hierar-
chical reinforcement learning [5], or action babbling-based
approaches [6], [7] (for a summary, see [8]). In particular,
creative tool use has been explored as “the MacGyver Prob-
lem” [9], with related solutions incorporating the discovery
of potential tool use [10], [11], [12], [13], [14].

Our proposed approach is closer to [1], [2], where re-
inforcement learning is used as a mechanism to enable
exploration beyond the limitations of the pre-configured
symbolic framework. Here, an agent in a simulation en-
vironment is shown to be capable of performing a long-
horizon task using the structured planning and reasoning of
a symbolic approach. However, when the agent encounters
a novelty preventing successful completion of the existing
plan, reinforcement learning mechanisms provide a fall-back
strategy of exploration until a state is achieved from which
the agent may continue planning.

Thus, our work is related to repairing symbolic plans with
RL. As relevant work in this space, consider [15], where
the authors demonstrate statistical-based approaches provide
an effective strategy for these more “open-world” cases, in
which symbolic knowledge must be expanded to accomodate
novelty. Within RL specifically, this set of cases relates in
part to cases where the domain model itself will be incorrect.
RL as a strategy to repair these cases has been explored in
[16] [17] and [18], each independently finding that models
of the world can be adapted to address cases outside the
initial domain constructed by the designer. These approaches
suggest that RL has capacity for symbolic plan repair, which
is demonstrated in simulated environments in [19] (similar to
[1]). These works additionally show these hybrid approaches
can outperform either approach independently.

In [20], the authors identify the same tradeoff between
symbolic and reinforcement learning approaches that we now
explore. In their work, symbolic planning is employed for
long-term planning while RL is used to provide implementa-
tions of behavior. Similarly, we have seen symbolic planning

https://github.com/cst0/object_space_solver


used to provide a form of scaffolding for reinforcement
learning strategies (a technique we will also adopt) [21], [22].

Where we differ from all of the above approaches which
merge symbolic and RL approaches, however, is in our fun-
damental construction of the problem action and observation
spaces, and the method in which we integrate these for robot
behavior. In short, where it is common to see reinforcement
learning as subsymbolic, we instead remain symbolic at both
the decision-making and execution levels, making use of RL
to provide new solutions to the symbolic solver. We are
therefore able to grow the symbolic agent’s skillset to include
new behaviors which can be used in planning, retaining
the advantages of symbolic approaches without remaining
constrained by them.

In demonstration-based approaches [23], [24], [25], the
authors demonstrate how training can be accelerated by
presenting examples of successful task completion. It is easy
to imagine presenting examples of successful environment
manipulations, and in the same way, we expect to remain
fully compatible with this approach. The same cannot be
said of transfer-based approaches [26], however: we will
specifically demonstrate how transfer between heterogenous
robot platforms is made fundamentally different with our
approach (with unique pros and cons to be discussed). We ex-
pect heuristics-based approaches such as [27] or optimzation
approaches [28] to remain broadly compatible for reasons
we will later discuss in detail, but providing comprehensive
analysis of the full spectrum of RL-acceleration techniques
is well beyond the scope of this paper and so we do not
make this claim.

III. PROPOSED METHOD

At a high-level, our approach is to first identify all possible
degrees of freedom in the environment. Each of these degrees
of freedom (for example, the full Cartesian motion of a block
on a table, or the one linear motion of a sliding drawer) is
provided to the RL agent directly. By allowing the agent to
learn the task directly, rather than needing to learn the details
of environment and robot interactions before approaching
the task, training time improves. In doing so, we empower
an agent to understand the sequence of object interactions
that must occur to solve the actual task, and leave motion
planning as an already-solved problem that does not need to
be addressed by the agent here. Further, by using symbolic
planning as a framework to construct a reward function, the
produced policy remains useful for a symbolic plan.

Thus, in order, we:
1) Construct a simulation environment in which an RL

policy can train, but do not place a robot in this
environment;

2) Provide the agent with the ability to manipulate po-
sitions, velocities, or forces applied to objects in the
environment directly;

3) Provide the ability to manipulate each joint in the
environment (e.g., hinges) to the agent’s action space;

4) Train on this space to produce a policy which describes
how the environment should be manipulated;

5) Convert this understanding to a series of actions that
can be performed on the robot, using an object-position
to robot action mapping.

We start with a description of requirements and system
inputs and then construct the “Object–Centric Planning Prob-
lem”, followed by demonstrations.

A. Preliminaries

Our approach aims to construct a reinforcement learning
problem which can integrate into a symbolic framework by
creating an “object-first” approach to RL. We thus must first
define an object o as some element of the robot’s scene which
can be impacted by forces in the environment (perhaps it can
be slid, lifted, etc); the set of all possible objects in the en-
vironment will be O. These degrees of freedom will include
linear or rotational velocities and accelerations, but may be
constrained (for example, a block can perhaps be lifted to
any orientation while a drawer is constrained by its hinges).
We can then define an object mobility function ζ(o) which,
given an object, returns the n-tuple describing the degrees of
freedom of that particular object. It is this n-tuple which can
produce some action a describing which degrees of freedom
will be impacted, and to what extent (e.g., “0.1 meters/second
in the x direction” or “0.2 radians/second in roll and 0.3
meters/second in z”). Similarly, we can then define the object
state transition function σ(o, a) which, given an object,
returns the 18-tuple describing the full pose of the object
after applying the action2. In simulation environments this is
straightforward to obtain, in real-world environments this is
more challenging, requiring, for example, vision processing
or prior knowledge.

From this, we now have the tools necessary to construct
our reinforcement learning problem as an MDP M =
〈S,A, σ, r〉 where S is the set of states (produced by applying
the object state transition function ζ to all objects); A is
the set of actions (each of which will meet the constraints
provided by the state transition function σ); σ is used as the
state transition function; and r is the reward function where
r(s) for some s ∈ S provides a reward for task completion.

For integration into a symbolic framework, we will fo-
cus on the construction of the reward function r. From
previous literature we know that this reward function can
be constructed from symbolic representations (as we will
later discuss). While existing approaches generally focus on
using these symbolic representations as a form of scaffolding
to better constrain the RL agent for efficiency, we observe
that a symbolic representation of the reward function also
enables the integration of a reinforcement learning policy
into a broader symbolic planning problem.

For example, the knowledge that “the block is on the table”
can be used to define a sparse binary reward:

r =

{
1 if on(Table, Block)
0 otherwise

2Composed of x, y, z, roll, pitch, and yaw positions; plus the x, y, z, roll,
pitch, and yaw velocities, plus the accelerations.



It is also possible to imagine more complex reward functions
using first-order logic to provide increasingly specific con-
straints: the block must be on the table, and the drawer it
comes from must be closed, and no other objects must have
been knocked over, etc.

Finally, we define some mapping between object manip-
ulations and actions which can be employed by the robot.
We state that for every every object mobility function ζ(o),
there exists a corresponding object manipulation function
η(o) which the robot can employ to actually produce the
motion described by ζ. If it should be the case that η cannot
provide some mobility described by the appropriate ζ, then
ζ must be reduced to correctly reflect the capabilities of the
platform.

B. Modules enabling approach
In operation, several key components work in conjunction

to produce our results (Figure 1). First, a symbolic agent
(Figure 1, highlighted in green) is assumed to be functioning
as expected: it can be provided with goals which produce
an action planning and execution problem. As extensive
prior work has demonstrated, these symbolic domains can be
solved symbolically, producing a series of symbolic actions
(such as “go to pose (x, y)”). These symbolic actions can then
be executed (e.g., a kinematic solver can construct a series of
motor movements which accomplishes the symbolic goal).

Inevitably, however, there will come a point where the
symbolic domain is missing some key information to solve
the problem, e.g, an operator to bridge the gap between two
symbolic states. In these cases, we can use RL to learn a
policy that effects that mapping (e.g., using the techniques
described in [1], [2]).

C. Approach in Practice
Here, we will utilize the stable-baselines implementation

of PPO to follow state-of-the-art standards, as our approach
does not introduce any new RL algorithms. It is thus also
reasonable to assume that other RL approaches should work.

We also a custom PyBullet [29] environment for each
environment in which the agent must train. Again, we have
not introduced any novel requirement to the RL problem,
and so a variety of environments could be used in the place
of PyBullet: MuJoCo [30], for example, also provides the
ability to manipulate the position and velocity of objects in
a scene.

On the symbolic side of our implementation, we have
kept the very broad requirement of representation within
a first-order logic. This enables substantially streamlined
implementation into other architectures: note that the widely-
used “Planning Domain Definition Language” (PDDL) meets
this definition, although we will not extensively explore
an integration here. These behaviors, being symbolic, have
a symbolic representation which can be executed. More
specifically, we make use of the MoveIt [31] framework
to implement an “open drawer” and “grab object” behavior
(though importantly, for the sake of our experimentation, the
agent will lack knowledge of how these actions may be used
in a broader planning problem).

IV. ANALYSIS OF BENEFITS AND DRAWBACKS OF THE
PROPOSED APPROACH

In extensive experimentation with our proposed system,
we have observed both key advantages as well as potential
costs which we discuss next.

A. Training time improves

Reformulating the reinforcement learning problem to fo-
cus on the objects in a space offers substantial reduction in
training time. This is conceptually reasonable: practitioners
in this space will anecdotally agree that much of the time
spent training reinforcement learning agents on challenging
tasks comes from the agent needing to learn first how it
can manipulate objects in its environment before it can then
learn how to optimally solve the task. This is particularly
true for the sparse binary rewards we employ. By removing
the need to learn environment interactions, we offer the agent
the potential to learn substantially more quickly.

Additionally, recall that we make use of RL not to produce
the specific motor control policy, but to discover what must
occur in the environment. This provides another venue in
which training time will be accelerated: we no longer require
the most efficient motor control policy, because the generated
converted sequence will remain the same regardless of any
minor optimizations. This is in stark contrast to policies
which must also learn to make their motor controls more
efficient when attempting to complete the task. The con-
sequence of these is a control policy that is substantially
simpler to learn, and as a consequence, it is reasonable to
expect it to generally be faster.

B. Policies remain within symbolic frameworks

Using symbolic logics to construct a reward function
allows us to ensure that the resulting reinforcement learn-
ing policy remains symbolically grounded. This, in turn,
offers a number of substantial benefits. First, symbolic plans
generally outperform reinforcement learning plans when
attempting to provide solutions to long-horizion tasks (at
the cost of their brittleness, which we aim to address here).
By prioritizing the use of RL to make symbolic plans more
robust to deviations from expectation, we produce a hybrid
approach that allows the reinforcement learning agent to
make use of the strengths of symbolic approaches.

Second, symbolic plans are generally more straightforward
to communicate through natural language. While there has
been progress in explainability of RL policies that should
not be discounted, the goal of converting policy to language
involves converting RL to symbols. By already providing
the approprate symbols, rather than needing to learn or infer
them, language descriptions can be more straightforward to
produce and more accurate.

Finally, it is more straightforward to reuse policies if
they remain symbolically grounded. Consider a case where
an agent learns that it can open a box, thus solving its
reinforcement learning task. If the only framework provided
to this task is its reward function, the agent will only
ever produce a context-specific policy that solves the given



Fig. 1: High-level representation of the interaction between RL and Symbolic systems. If the symbolic system (highlighted
in green) is unable to resolve a plan, it can construct a goal state which the Symbolic/RL mapper converts to a reward
function. The RL Agent (highlighted in blue) finds a policy describing what must occur in the environment to solve the
problem. The policy can then be mapped into a series of symbolic steps, which can be passed on to a kinematic solver for
execution.

task. There may come a new problem in which the agent
would benefit from the knowledge that it has learned: for
example, grabbing an object within the box. An agent which
exclusively makes use of RL as its strategy would be forced
to relearn the knowledge that the box can be opened. While
certainly this is not prohibitive to the agent (it will eventually
relearn this and succeed), our hybrid-symbolic approach does
not incur this cost. Instead, the fact that an open-box state
can be achieved is known and can be reasoned upon: in this
case, knowing a policy to open the box can be employed to
obtain a needed state to grab the block.

C. Enables reduced-cost domain transfer

The nature of our approach making use of symbolic
execution strategies after a policy conversion step is that
the policy remains unconstrained to a specific platform.
Any platform which has the same actions implemented is
capable of executing these converted policies. Additionally,
it is possible to envision cases where the agent will not have
the same precise method of constructing an effect, but will
have a method of producing the desired outcome anyway. For
example, consider one agent which can lift and place a block
versus another which can only push it. Because actions are
defined not by the manner in which they are performed, but
are instead defined by the way they impact the environment,
these are two equally viable actions for a specific subset of
problems.

Of course, this hinges on the assumption that a set of such
actions exists. As we will next discuss, this is not a zero-
cost assumption. It remains difficult to quantify the degree to
which this will (or, case depending, may not) reduce the cost
of transfer. For this reason we claim ‘reduced cost’ transfer
rather than ‘zero cost’.

D. Requires both symbolic and RL domains

In a purely symbolic implementation of an agent, it is
not necessary to provide a physics domain. Similarly, it
is not necessary to provide a full symbolically represented
domain to a RL domain. In this sense, we have introduced
an additional cost of requiring both. Whether this additional

cost is outweighed by the advantages will be application-
specific. Conversely, however, it is worth noting that any
approach which attempts to achieve resilient symbolic plan-
ning will also require implementation, and so this cost can
be considered minimal.

E. Requires underlying representations and implementations

Our approach requires underlying implentations of be-
haviors: In our implementation these behaviors are based
in more traditional kinematic motion planning strategies,
although they certainly could be implemented directly from
RL strategies. While this is a limitation, we argue that it is
not a prohibitive one: any deployed system would be required
to have such an implementation ready for use. Therefore,
when taken in combination with the key advantages of this
approach, we view it as a form of “computational creativity”:
when symbolic plans fail, this approach offers a method of
finding new behaviors which may then become a part of a
plan solution.

V. DEMONSTRATIONS

To demonstrate the value to real-world robot platforms, we
take a simulation environment of a real-world environment
in which an agent must learn to open a drawer and remove a
block. The Kinova Gen 3 (a 7-DoF arm) with a Robotiq 2f-85
(a 2-fingered gripper) is placed on a table and must complete
the same task. The same environment can be modified by
placing the Fetch Robotics “Fetch” (a mobile manipulator)
in the same environment with the same task.

We modify the environment slightly for the aid of the
robots. The handle on the filing cabinet has been replaced
with one which is larger and slightly spring-loaded for
compliance, to better acommodate the precision limitations
of the platforms. This is an acceptable simplification because
we are not interested in exploring problems of hardware
precision. Similarly, the block has been prevented from
sliding around when within the cabinet using a piece of
foam: this is also an acceptable simplification because we are
only interested in exploring cases where there is a reasonable
mapping between real world and simulated environments.



Fig. 2: PyBullet recreation of the real-world environment
for the agent to explore. The filing cabinet drawers can
both be opened, with a block in the top drawer that can
be manipulated. The table remains static, per η, because the
robot would be unable to change its position.

A. One-Shot sim–to–real within a symbolic framework.

The object manipulation function η provides the agent
with the ability to perform one-shot sim–to–real. This is
possible because this function is rooted in the assumption that
pre-existing mappings between possible object movements
and robot behaviors have been constructed. We use the same
policy as trained in simulation previously, and so the agent
is unaware of the critical knowledge that the drawer must be
opened before the block can be accessed.

For our demonstration (Figure 3), the Kinova Gen 3 is
already provided with a mapping η, primarily implemented
using the ROS MoveIt framework. With this framework, the
sequence of observed events – the drawer opening, moving
the block, placing it on the table – can be converted to a
series of robot behaviors: the arm catching and sweeping
the drawer open, grabbing and lifting the block, releasing
the block. In this way, despite missing the knowledge of
cause and effect in a symbolic space, we show that using
RL as a creative solving approach is capable of resolving
the gaps in the symbolic plan.

B. One-Shot policy transfer with heterogenous agents.

In the same way we enable sim–to–real policy transfer,
we enable policy transfer between heterogenous agents. We
assume Robot A has some object manipulation function ηA

and Robot B has some object manipulation function ηB ,
and that there exists a one to one mapping between ηA

and ηB . These assumptions are reasonable because of the
requirements of our approach, and they permit us to execute
a policy on robot A in the same way we would execute a
policy for robot B.

To demonstrate this, we take the existing environment and
replace the Kinova robot with the Fetch mobile manipulator
platform (Figure 4). Both these platforms have their own

independent implementations of the central behaviors. How-
ever, the mapping between those behaviors is one-to-one:
thus, any behavior that we deploy onto the Kinova, we see
is deployable onto the Fetch.

C. Semantic policy descriptions.

Our approach also enables some level of communication
about discovered policies. We could expand our MDP M
to be of the form M = 〈S,A, δ, r, E〉, where we state that
each e ∈ E is a textual explanation for all {r(s) : s ∈
S}. However, this would quickly become challenging to
construct and generalize. Instead, thanks to our integration
in a broader symbolic architecture, a more comprehensive
solution is available. Recall from our previous formalism
that we associate each problem formulation with effects and
preconditions in the form of a first-order logic. A number of
approaches exist to convert these symbolic descriptions to
text which can be communicated. As a non-comprehensive
review, consider “Semiotic Schemas” [32], or approaches
more rooted in training data like [33], [34], or the energy-
function model based [35].

In our demonstration, however, we take advantage of the
recent developments in using large-language models (LLMs)
to enable textual descriptions of behavior (which again has
been previously explored, consider [36], [37]). To produce
our demonstration, we make use of the Mixtral open-source
large language model [38]. We provide the LLM with the
prompt:

“State to action conversions:
holding(mug) –>i will hold the mug
on(desk,paper) –>i will put the paper on the desk”

Observe here that we have not provided specific information
about the task it will next be queried about, to help ensure
generalizability. With the training completed and converted
into a series of observed effects, the LLM can now be queried
by providing an incomplete example of the preceding pattern:

“drawer(open) –>”

The LLM, finding the most probable next set of characters,
attempts to continue the pattern:

“I will open the drawer”

By repeating this for each action, a series of text responses
are produced, enabling communication of the generated
policy.

VI. FUTURE WORKS

As previously discussed, this approach to RL carries
valuable benefits in the research direction of creating robots
which are better able to address open-world scenarios. How-
ever, there remains a variety of potential future directions
woth exploring.

First, we have chosen to employ classical kinematic
solvers to execute our symbolic behaviors. This choice was
motivated by the goal of integration into a broader sym-
bolic architecture where symbolic behavior implementations
can already be assumed, but an avenue of research worth



(a) (b) (c) (d)

Fig. 3: A Kinova solving the multi-step task. From the start (a), it (b) opens the drawer using a symbolic open-drawer action,
then (c) grabs and (d) places the block.

(a) (b) (c) (d)

Fig. 4: Because the same symbolic actions are available to the Fetch (a), it can also (b) open the drawer and then (c) grab
and (d) place the block.

considering would be to construct a hierarchical problem in
which the task is addressed at a high-level using an object-
based approach, and then at an execution level using a more
traditional reinforcement learning approach.

Second, we suffer from the same limitation that many
other reinforcement learning strategies do: it is necessary for
the agent to be provided with a safe environment in which to
explore potential policies. In practical terms, this requires an
agent to be provided with some simulation environment in
which it can train, before a policy can then be deployed. We
remain subject to this limitation. For agents which attempt
to use reinforcement learning in novel environments, it will
be necessary for practitioners to find strategies which loosen
this requirement.

VII. CONCLUSION

We have presented a technique which allows a robot
agent to “unstick” broken symbolic plans, by employing
reinforcement learning as creative problem solver to quickly
find how the environment must be manipulated, to the benefit
of a symbolic agent (the speed-up was accomplished by
learning in object spaces as opposed to the robot’s joint
space). We have shown that this offers both practical and con-
ceptual advantages. Although there remains future work to be
completed (most notably, in the autonomous construction of
these spaces), this hybrid approach which takes advantages
of the respective strengths of RL and symbolic approaches
provides a promising direction for quickly finding general-

ized solutions to task that are fully explainable and can be
deployed to robots with different actuators without the need
for retraining.

REFERENCES

[1] S. Goel, Y. Shukla, V. Sarathy, M. Scheutz, and J. Sinapov, “Rapid-
learn: A framework for learning to recover for handling novelties in
open-world environments.” in 2022 IEEE International Conference on
Development and Learning (ICDL). IEEE, 2022, pp. 15–22.

[2] P. Lorang, S. Goel, P. Zips, J. Sinapov, and M. Scheutz, “Speeding-up
continual learning through information gains in novel experiences,” in
4th Planning and Reinforcement Learning (PRL) Workshop at IJCAI-
2022, 2022.

[3] E. Ugur, E. Şahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 3260–
3267.

[4] V. Sarathy and M. Scheutz, “Biplex: Creative problem-solving by
planning for experimentation,” in International Conference on Com-
putational Creativity, 2022.

[5] T. R. Colin, T. Belpaeme, A. Cangelosi, and N. Hemion, “Hierarchical
reinforcement learning as creative problem solving,” Robotics and
Autonomous Systems, vol. 86, pp. 196–206, 2016.

[6] E. Gizzi, M. G. Castro, and J. Sinapov, “Creative problem solving by
robots using action primitive discovery,” in 2019 Joint IEEE 9th In-
ternational Conference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob). IEEE, 2019, pp. 228–233.

[7] E. Gizzi, A. Hassan, W. W. Lin, K. Rhea, and J. Sinapov, “Toward
creative problem solving agents: Action discovery through behavior
babbling,” in 2021 IEEE International Conference on Development
and Learning (ICDL). IEEE, 2021, pp. 1–7.

[8] E. Gizzi, L. Nair, S. Chernova, and J. Sinapov, “Creative problem
solving in artificially intelligent agents: A survey and framework,”
Journal of Artificial Intelligence Research, vol. 75, pp. 857–911, 2022.



[9] V. Sarathy and M. Scheutz, “The macgyver test-a framework for
evaluating machine resourcefulness and creative problem solving,”
arXiv preprint arXiv:1704.08350, 2017.

[10] T. Fitzgerald, A. Goel, and A. Thomaz, “Modeling and learning
constraints for creative tool use,” Frontiers in Robotics and AI, vol. 8,
p. 674292, 2021.

[11] S. Tuli, R. Bansal, R. Paul et al., “Tooltango: Common sense gen-
eralization in predicting sequential tool interactions for robot plan
synthesis,” Journal of Artificial Intelligence Research, vol. 75, pp.
1595–1631, 2022.

[12] L. Nair and S. Chernova, “Feature guided search for creative problem
solving through tool construction,” Frontiers in Robotics and AI, vol. 7,
p. 592382, 2020.

[13] L. Nair, J. Balloch, and S. Chernova, “Tool macgyvering: Tool con-
struction using geometric reasoning,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 5837–5843.

[14] L. Nair, N. Shrivatsav, and S. Chernova, “Tool macgyvering: A novel
framework for combining tool substitution and construction,” arXiv
preprint arXiv:2008.10638, 2020.

[15] A. Bendale and T. Boult, “Towards open world recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1893–1902.

[16] J. H. A. Ng and R. P. Petrick, “Incremental learning of planning actions
in model-based reinforcement learning.” in IJCAI, 2019, pp. 3195–
3201.

[17] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-
aware unsupervised skill discovery,” in Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2019.

[18] W. Piotrowski, R. Stern, Y. Sher, J. Le, M. Klenk, J. deKleer, and
S. Mohan, “Learning to operate in open worlds by adapting planning
models,” arXiv preprint arXiv:2303.14272, 2023.

[19] P. Parashar, B. Sheneman, and A. K. Goel, “Adaptive agents in
minecraft: A hybrid paradigm for combining domain knowledge with
reinforcement learning,” in Autonomous Agents and Multiagent Sys-
tems: AAMAS 2017 Workshops, Visionary Papers, São Paulo, Brazil,
May 8-12, 2017, Revised Selected Papers 16. Springer, 2017, pp.
86–100.

[20] D. Gordon, D. Fox, and A. Farhadi, “What should i do now? mar-
rying reinforcement learning and symbolic planning,” arXiv preprint
arXiv:1901.01492, 2019.

[21] L. Illanes, X. Yan, R. T. Icarte, and S. A. McIlraith, “Symbolic plans
as high-level instructions for reinforcement learning,” in Proceedings
of the international conference on automated planning and scheduling,
vol. 30, 2020, pp. 540–550.

[22] F. Yang, D. Lyu, B. Liu, and S. Gustafson, “Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-
making,” arXiv preprint arXiv:1804.07779, 2018.

[23] B. Price and C. Boutilier, “Accelerating reinforcement learning through
implicit imitation,” Journal of Artificial Intelligence Research, vol. 19,
pp. 569–629, 2003.

[24] X. Zhang and H. Ma, “Pretraining deep actor-critic reinforcement
learning algorithms with expert demonstrations,” arXiv preprint
arXiv:1801.10459, 2018.

[25] M. Ahmadi, M. E. Taylor, and P. Stone, “Ifsa: Incremental feature-
set augmentation for reinforcement learning tasks,” in Proceedings
of the 6th international joint conference on Autonomous agents and
multiagent systems, 2007, pp. 1–8.

[26] L. A. Celiberto Jr, J. P. Matsuura, R. L. De Màntaras, and R. A.
Bianchi, “Using transfer learning to speed-up reinforcement learning:
a cased-based approach,” in 2010 latin american robotics symposium
and intelligent robotics meeting. IEEE, 2010, pp. 55–60.

[27] R. A. Bianchi, C. H. Ribeiro, and A. H. Costa, “Heuristically acceler-
ated q–learning: a new approach to speed up reinforcement learning,”
in Brazilian Symposium on Artificial Intelligence. Springer, 2004, pp.
245–254.

[28] C. Kamanchi, R. B. Diddigi, and S. Bhatnagar, “Successive over-
relaxation q-learning,” IEEE Control Systems Letters, vol. 4, no. 1,
pp. 55–60, 2019.

[29] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[30] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[31] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[32] D. Roy, “Semiotic schemas: A framework for grounding language in
action and perception,” Artificial Intelligence, vol. 167, no. 1-2, pp.
170–205, 2005.

[33] J. Thomason, A. Padmakumar, J. Sinapov, N. Walker, Y. Jiang,
H. Yedidsion, J. Hart, P. Stone, and R. Mooney, “Jointly improv-
ing parsing and perception for natural language commands through
human-robot dialog,” Journal of Artificial Intelligence Research,
vol. 67, pp. 327–374, 2020.

[34] A. Broad, J. Arkin, N. Ratliff, T. Howard, and B. Argall, “Real-time
natural language corrections for assistive robotic manipulators,” The
International Journal of Robotics Research, vol. 36, no. 5-7, pp. 684–
698, 2017.

[35] D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions,”
The International Journal of Robotics Research, vol. 35, no. 1-3, pp.
281–300, 2016.

[36] A. Koubaa, “Rosgpt: Next-generation human-robot interaction with
chatgpt and ros,” 2023.

[37] S. Wang, Z. Zhou, B. Li, Z. Li, and Z. Kan, “Multi-modal interaction
with transformers: bridging robots and human with natural language,”
Robotica, vol. 42, no. 2, pp. 415–434, 2024.

[38] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary,
C. Bamford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand
et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.


	Introduction
	Background
	Proposed Method
	Preliminaries
	Modules enabling approach
	Approach in Practice

	Analysis of benefits and drawbacks of the proposed approach
	Training time improves
	Policies remain within symbolic frameworks
	Enables reduced-cost domain transfer
	Requires both symbolic and RL domains
	Requires underlying representations and implementations

	Demonstrations
	One-Shot sim–to–real within a symbolic framework.
	One-Shot policy transfer with heterogenous agents.
	Semantic policy descriptions.

	Future Works
	Conclusion
	References

