
Self-Debugging Robots: Fault recovery through
reasoning and planning

Christopher Thierauf
Human Robot Interaction Laboratory

Tufts University
Medford, MA

christopher.thierauf@tufts.edu

Matthias Scheutz
Human Robot Interaction Laboratory

Tufts University
Medford, MA

matthias.scheutz@tufts.edu

Abstract—Unexpected perturbations in an open-world task
environment can cause various types of faults and failures
which have to be dealt with to ensure long-term autonomous
operation. We present an inference framework that enables an
autonomous robot to generate and test fault hypotheses in open-
world scenarios. The tests involve different types of introspective
and overt behaviors based upon a derived fault hypothesis
which informs behaviors which explore the failure. With suitable
exploration, the robot can find the most sensible strategy to
resolving the current failure condition if possible, allowing the
task to be completed. We demonstrate the operation of our
methods on a fully autonomous robot over a series of scenarios,
ranging from a challenging yet solvable sensor occlusion case to
mitigable or simultaneous failure cases.

I. INTRODUCTION

As robots are being increasingly considered for deployment
in unstructured and chaotic environments, they will inevitably
experience different types of failures, either endogenously
(e.g., a software crash or network failure) or exogenously
(e.g., a jammed actuator or blocked sensor). Fig. 1a, for
example, shows a robot rendered inoperable as a result of
an obstruction occluding its head-mounted depth sensor: it
perceives obstacles everywhere it turns, which prevents its
navigation planner to find an obstacle-free path to its target
location. As a result, the robot fails at its task.

Now suppose the robot had the ability to explore the nature
of the failure, perhaps by checking whether it could see its own
gripper to test if the camera was operational (Fig 1b), and by
moving its gripper in front of its LIDAR unit to verify that
LIDAR and arm are working correctly (Fig 1c). Performing
these explorations would allow the robot to trace the fault to
the camera. With a failure adequately explored, the robot can
attempt to resolve it: for example, perhaps knowing the camera
is obstructed in some way can be resolved by sweeping its
arm close to the camera to remove the obstruction (Fig 1d),
allowing it to resume its task.

We present such a system that utilizes the robot’s existing
sensing and planning capabilities to perform diagnostic tests
and behaviors that allow it to track down potential faults
and mitigate them. Importantly, the robot does not require
predefined tests or mitigation behaviors, nor does it need
to learn how to detect and recover from perturbations over
time. Rather, our approach leverages explicit representations

(a) (b)

(c) (d)

Fig. 1: Fetch robot with obscured camera (a) creates an
observation problem, which is tested camera by looking at the
gripper (b). This test does not pass, presenting ambiguity: is
the camera or the arm broken? The arm is tested by blocking
the LIDAR (c), showing it is operational. This testing has
enabled the agent to infer something is blocking the camera,
which it has an action to resolve (d).

of causal relations among different components in the robot’s
architecture (from sensors, to computational modules, to actua-
tors) as a basis for introspective monitoring and the exploration
of the potential effects of any detected discrepancies from
nominal operation. Tracing the causes of the discrepancies
to potential fault states, the robot can utilize its task and
motion planners to perform self-testing behaviors in an effort
to narrow down potential faults, ideally to a single cause

which it can then attempt to mitigate, again using its task and
motion planners. Our proposed approach allows the robot to
find solutions, when they exist, even in situations the agent has
never experienced (which is typically not possible for trained
policies). In cases where solutions are unavailable (e.g., with
permanent hardware failures), we will show that our proposed
approach is still able to mitigate or self-assess to the potential
benefit of an operator.

To present our approach, we start with a review of prior
work on fault detection, and contrast it with our proposal of
taking explicit actions in an attempt to acquire more informa-
tion about the nature of the failure. We introduce the formal
representation of our approach, and how it enables autonomous
hypothesis generation and testing to provide a first-order
logical representation of potential failure states which serves to
define a planning problem for autonomous failure resolution.
The implemented methods are then demonstrated on a fully
autonomous robot which is able to explore and resolve its
failure state. The conclusion summarizes our approach and
provides an outlook for future work.

II. BACKGROUND

Fault detection and diagnosis (FDD) has a long history
in robotics, traditionally using model-based approaches to
identify discrepencies, diagnose potential causes, and take
appropriate action to mitigate them if possible (influentially
surveyed in [17, 18] and more recently in [12, 16]). A
survey of particular interest is [5] which explores the set of
techniques for FDD through usage of Bayesian networks: these
approaches use networks of states to make inferences of how a
fault state may have come about. In many ways, our approach
reflects a Bayesian net in that we will be utilizing a directed
acyclic graph in a diagnostic context. It is easy to imagine our
work benefiting from work in this area, such as approaches to
efficiently generate Bayesian diagnostic graphs (e.g., [20, 26]).

However, while our approach is similar to a Bayesian
network in that it uses a directed acylic graph (DAG), we
allow for functional dependencies among nodes other than
conditional probabilities. Most importantly, the key distinction
between our work and any FDD work is that we are interested
in active fault exploration, i.e., in utilizing robot behaviors
that explore the agent’s environment systematically to obtain
useful information about the fault state which can form the
basis for planning to mitigate it. Hence, our approach is more
closely related to work in execution monitoring (surveyed
in robotics specifically in [25]): specifically, the goal of
integrating some form of task planning with an FDD system.
IPEM (Integrated Planning, Execution, and Monitoring) [1]
presents an early approach in this space by detecting and
adapting to failure (though their approach uses a more direct
mapping between observation and failure than ours). [8] also
presents a system that maintains a logical representation of
the world tightly integrated with robot behavior systems,
enabling a real-world robot to self-monitor and constructing a
knowledge and reasoning problem. Later, [33] presents FLUX,
which leverages fluent calculus and a series of Constraint

Handling Rules [11] to maintain an agent’s understanding of
its environment through (in part) failed actions. As with [35],
they are interested in allowing the multi-step plans of robot
agents to be more robust and adaptable (though the latter, as
with [21], connects their task planning more tightly with grasp
planning rather than general behavior).

More recently, [23] integrate their “observers” approach into
linear temporal logic to produce a fault-tolerant robotics archi-
tecture. In [7], the authors enable explainability by connecting
plan execution monitoring (more specifically, the failures
observed in this process) to logical states for explainability and
replanning. Presumably, as with our approach, a task planner
could leverage the output of any of these systems for failure
resolution (as demonstrated by [7]).

Task planning has also been explored in diagnostic contexts:
XFRM [2] presents an early example, in which active moni-
toring is used to react to a variety of failure triggers. A more
recent work in the same area is [15], in which open-world
planning is also used to attempt to reason about and plan
around potential failure. However, approaches of this nature
are largely reactive, and are forced to make use of knowledge
as it is observed, rather than discovering actions which may
be able to reveal more about the open-world or failure context.

Despite this progress, none of these approaches intentionally
take actions to probe the nature of a failure, generating fault
hypotheses that can be explored and disproven, and arriving
at a minimized set of possible failures which form a planning
problem to resolve or mitigate it, as ours does. Doing so
requires a tight integration between a knowledge and reasoning
system, planning system, and robot behaviors.

Cognitive architectures meet this need, and are an area
of research that we are particularly interested in. These ap-
proaches have been explored on humanoid-inspired platforms
[4], and are frequently deployed on more traditional mobile
robot platforms [14, 27]. These approaches have also been
made platform-general, as explored in ACT-R/E [34], SOAR
[22], ADAPT [3], and others. Similarly, symbolic planning
systems have a long history in robotic architectures: Stemming
from the seminal [24] is the previously-discussed [2] and [15],
along with many other applications using the still widely-used
PDDL [9] and POMDP (applications surveyed in [6]).

For the implementation, we leverage the DIARC cognitive
architecture [30] for its ability to perform explicit robot action
and action planning based on an understanding of robot actions
and environment states [32] as well as the Robot Operating
System (ROS) [28] for providing interfaces to the robot manip-
ulator’s navigation/kinematic stack [36]. Thus, our proposed
system is characterized by the following five properties:

1) passive monitoring of ongoing task execution of an
autonomous (robot) agent;

2) detecting failure and producing a reasonable set of
potential causes for the failure;

3) producing a set of explicit robot actions which could
reduce the set of detected potential causes by producing
a task planning problem;

4) executing these robot actions, while continuing to mon-

itor, in an attempt to produce a more accurate under-
standing of the agent’s environment;

5) making use of the collected information in an attempt
to resolve the current failure.

1 and 2 have been previously explored in the literature,
while 3-5 are our novel contributions described next.

III. OPEN-WORLD FAULT MITIGATION THROUGH ACTIVE
HYPOTHESIS TESTING

To illustrate our approach, we will use a Fetch robot per-
forming a navigation task which it can complete autonomously
and without difficulty thanks to a differentially-driven wheeled
platform with odometry sources from wheels and two Inertial
Measurement Units (IMUs). Additionally, both the on-board
LIDAR unit in the robot’s base and the head-mounted depth
camera are used for obstacle avoidance. However, when the
robot’s head is obstructed (Fig. 1a), blocking one of the sensors
used for obstacle avoidance, the navigation algorithm will
(incorrectly) believe that there is an obstacle everywhere it
turns. As a result, the robot cannot continue its trajectory and
fails to reach its destination. We will in the following use this
example to describe the robot’s failure detection, testing, and
resolution processes.

A. Requirements

We keep implementation requirements minimal to allow
for integration into a wide variety of systems. These core
requirements are an agent capable of making some base set
of observations, and a symbolic agent planning system. Such
functionality is common on robotic platforms.

We formalize the robot’s operating environment as a Markov
Decision Process (MDP) M = 〈S,A, F, γ〉, where S is the
set of environmental states, A is the set of the robot’s actions,
F is a set of fluents numerically describing aspects of the
robot or its environment, and γ(s, a) is the transition function
returning the distribution of possible states the robot can be
in when executing action a ∈ A in s ∈ S. This representation
allows for both structured representations of the environmental
states (e.g., “the gripper is holding an object”) or robot-centric
conditions (e.g., “the gripper fingers are currently 2mm apart”)
which enable the agent to compare expectations with measured
data for self-evaluation (e.g., “when the gripper is holding an
object, fingers should be more than 0mm apart”).

This MDP M contains the pieces necessary to construct
a planning domain. As discussed in much prior work1, the
planning domain Σ = (S,A, γ) can be used to produce a
planning problem where the agent starts from some s0 ∈ S
and aims to achieve sg ∈ S, producing a plan P (in the form
of a sequence of actions a ∈ A).

Note that although usage of states often implies total domain
observability, we do not make this assumption. As we will
outline, a key piece of our approach is to acknowledge that
there may be a discrepancy between expected and observed
outcomes. Further, we consider a rolling window of size k >

1See in particular Ghallab et. al. [13]

0 for our fluents, allowing this data (e.g., sensor inputs) to
be represented as ft,k = {ft, ft−1, . . . , ft−k}. This is done
to make it possible to address various forms of sensor noise
collected on the robot.

B. The Fault Discovery (FD) Graph

The core of our approach is to introduce a “Fault Discovery”
(FD) layered directed acyclic graph G = (N , E). We draw
a directed edge Ea,b ∈ E from node Na ∈ N to node
Nb ∈ N to indicate a causal dependence of the state or process
represented by the node (e.g., how a wheel or navigation
algorithm can be impacted by the state of having a jammed
wheel). Nodes are of the form N = (u, c, v, r) where u is a
state in which this node is active and c is a self-evaluation
strategy (“checker”) which determines a value v storing the
current evaluation of this node. We informally associate each
node with some aspect of the agent for purposes of our own
interpretation (e.g., saying that a node represents the agent’s
camera unit). As we will discuss, we place minimal restrictions
on v to allow a wide variety of implementations within existing
architectures. Finally, a node may or may not be marked as
relevant (r ∈ {relevant, irrelevant}) to acknowledge that it
may or may not be possible to check the value of a node in
the current state.

At each layer, checkers associated with a node N are able
to use the robot’s perceptions as well as the values of other
nodes in the graph to update a value for this particular node.
For example, the robot may expect to see a high degree
of similarity between similar sensors, between commanded
versus actual motor output, etc. providing evidence that some
subset of its operation is performing as expected: observing
that three sources of odometry are in agreement is evidence
that each of the three sources is functional; observing that
progress towards a navigation goal is being made is evidence
that both the odometry stack and wheels are operational, etc.
Through propagation, we are then able to gain insight into
processes which may not be directly observable.

Checkers associated with nodes having no parents are
informed by observations about the world and the agent,
providing the only input to the graph. If the state u of
the node is met by the agent’s current state, this node is
marked as r = relevant and the value of v is updated
using information within F , as determined by the particular
checker implementation. Checkers in other nodes use the
values and operational status of their parents to determine
their values and relevancy status. The relevancy status is set to
“irrelevant” when all parents have a status of “irrelevant”, and
is “relevant” if the conditions set by the checker determine
that the node is relevant. If all values v ∈ G represent
probabilities of normal operation of the respective nodes n,
then the checker can calculate the conditional probability of
P (N |parents(N)) given its parents. Alternatively, spreading
activation (as implemented in neural networks) could be used,
or logic-based implications of the form

∧
parents(N)→ N .

In our implementation, we introduce some threshold level l,

N0 N1

N2 N3 N4 N5

N6 N7 N8 N9 N10

Node Checker
• N0 Left wheel command = observation
• N1 Right wheel command = observation

Node Informal Description
• N2 Left wheel encoder
• N3 Left wheel motor
• N4 Right wheel encoder
• N5 Right wheel motor

Node Failure State
• N6 Left encoder failure
• N7 Left wheel jam
• N8 Power failure
• N9 Right wheel failure
• N10 Right encoder failure

Fig. 2: A simple graph for an imagined two-wheel robot, with
encoders on each wheel capable of measuring the movement
of that wheel. Observer nodes in green, system nodes in
blue, problem nodes in red. N0 and N1 work to observe that
when in the state of commanding wheel movement, wheel
movement should be observed. This evidence of operation
propogates to nodes representing each mechanism, allowing it
to finally propogate to possible failure states. Note that despite
the minimal number of inputs, a large amount of information
can be inferred about the robot and its current operation, as
well as the states impacting the robot’s performance. While
N7, N8, N9 may appear indistinguishable from each other,
intentionally achieving the states associated with N0 or N1

may reveal useful information. N6 is indistinguishable from
N7 (and N9 from N10), suggesting to a system designer that
additional checker nodes would be valuable here.

which is a tunable parameter used to indicate a node is in an
error state if v < l.

Edges between nodes then reflect the “flow” of evidence
from observations to agent software processes and hardware,
and possibly to representations of environmental states which
may be impacting those processes and hardware. I.e., we draw
an edge from node a to node b when node a is able to provide
evidence that node b is functioning as expected. To make use
of this representation, we will break nodes into three distinct
types which continue to meet our existing definition of a node,
but specialize within that definition: observers, problems, and
systems. A minimal working example of such a graph is
presented as Fig. 2.

1) Observer Nodes: Within the framework of a neural
net, these are analogous to the nodes of an input layer. In
our approach, these nodes aim to represent states within the
environment which can be observed and evaluated, and so
the checker for a node of this type must take in information
relevant to this node’s state u. For example, the state of moving
forward may have a checker that observes current odometry
data. In some cases these are observations that can always be
made and should always be evaluated. For example, odometry
sources should always have a high degree of similarity, and
commanded motor outputs should be similar to measured
motor outputs. We expect these to always be the case, and so
the checkers associated with these nodes are always relevant:
u = ∅ to indicate every state can satisfy the requirements for
this checker.

2) Problem Nodes: These can be considered the output
nodes, where the outputs are states which describe some failure
(though as we will later explore, we will invert this graph to
use Observer nodes as an output layer, producing tests). In our
approach, these nodes aim to cover the case in which there is
a state with the potential to cause a problem, but that cannot
be explicitly determined. Nodes meeting this case will need
to be assigned their respective values by following the chain
of evidence through graph propagation. In this case, u is tied
to some state causing failure: the aim is not to represent (for
example) an IMU in failure, but rather to represent the state
that has caused that IMU to fail. Thus, we restrict this state
to representing things that may go wrong: jammed wheels,
burned-out motors, networking errors, etc. In this way, the
chain of evidence can be followed from an observation to a
potential state in the world which needs to be resolved. While
the state will be specific to this node, the checker will be the
general propagation strategy.

With observer and problem nodes alone the robot can per-
form simple mappings of observations to causes of failure. In
the more interesting cases, however, the relationship between
a failure to meet expectation and the potential cause is not
immediately clear. For example, is lack of similarity between
IMU and wheel odometry due to a faulty IMU, broken wheel
encoder, or wheel slippage? It is therefore useful to be able to
represent the relationship between states and the robot’s ability
perceive or be impacted by these states, and so we introduce
the final node classification.

3) System Nodes: These nodes are used to allow observa-
tions to propagate, and are analogous to hidden nodes. While
we do not place formal restrictions on what they represent, it
is often helpful to describe them as modeling the successful
operation of a process or component. They may describe
internal software processes which inform the checkers, or they
may represent hardware components which may be impacted
by a state in the environment. The checkers in these cases are
always informed by propagation: a node representing an IMU
(for example) should not self-evaluate, it should be evaluated
based on what evidence is available to demonstrate that it is
or is not operational. For these nodes, we set u = ∅ to state
that they are always ‘on’ and evaluated through propagation.

t = 0 N1

N4

N2

N5

N3 N1 N3N2

N4 N5

N1

N4

N2

N5

N3t = 1 t = 2

Fig. 3: Our algorithm on a simplistic graph. N1,N2,N3 are Observer nodes, while N4,N5 are Problem nodes. At t = 0, the
agent has no data input. At t1, the agent reaches the state for N2 and runs the associated checker, which fails. This failure
propagates to N4 and N5. By explicitly performing the action associated with N1, the agent can run another checker to rule
out N4 and conclude the problem is N5. N3 would have been an equally valid checker to select in this scenario.

C. Graph Construction

The graph used in our demonstrations is shown as Fig. 4. It
is important to note that this one graph provides all simultane-
ous functionality. This broad functionality scope justifies the
potential one-time graph construction cost. Additionally, it is
reasonable to assume that a robot system has been configured
prior to deployment (e.g., motion planning configurations,
motor turning parameters, etc.). The existence of an expert
capable of configuring these systems allows us to assume an
expert capable of configuring this one. However, we observe
that this is a cost already present in the previously-discussed
one-to-one mapping approaches (which our approach outper-
forms, as we can replicate the functionality of one-to-one
approaches while providing features they do not). We also
observe that, as we now discuss, much of graph construction
can be streamlined through automated processes.

1) Autonomous Graph Generation: First, observer nodes
generally fall into two categories: one is data streams which,
in some state of functional robot operation, ought to be highly
similar. Checkers of this category can be trivially generated
by recording a set of data during typical robot operation,
creating a linear regression problem to determine appropriate
correlations between sensors and/or robot commands. The
second category involves states which are obtained from taking
an action or from another state. In [10] and [19], the expected
outcome of an action from a state is learned through past
robot experience. It is easy to imagine the creation of checkers
by using this data to form a base expectation. In our case,
we collect a subset of data from successful operation, and
run regression offline. In any case, the agent can produce a
series of checkers where, if an action is taken or a state is
obtained, the check will pass if the expected corresponding
effect is detected. We exclusively use checkers of these two
types, though more individually hand-crafted checkers may be
useful in some applications.

For system nodes, we can again leverage DIARC’s first-
order symbolic logic approach to behavior. As discussed in
[30], robot behaviors in DIARC take the form of “action
scripts”, which are themselves comprised of an ordered com-
bination of one or more other action scripts or “primitive
actions”, with primitive actions being the coded functionality
that the robot executes. Each primitive action is ‘tagged’ with
the core system it depends upon (e.g., closeGripper()
depends upon the gripper). Relations between checks evaluat-
ing actions and the processes they depend on can therefore be

inferred as a fact of the architecture. Additionally, the system
nodes of a given action script can therefore be found as the
union of all systems of all actions within that script. Similarly,
knowledge of what systems contribute to a given topic allow
for checkers which make up that topic to be easily inferred.
Further, the observation of System nodes being effectively
hidden nodes would allow for existing training approaches to
be used to generate these nodes.

Finally, problem nodes must be constructed. The agent,
being symbolic or neuro-symbolic, has been provided with
a set of states. Some of these states are examples of failures,
and when a system or systems being non-operational provide
evidence of this failure state, we connect those nodes. While
the states themselves may also be dynamically constructed,
dynamically determining how connections should be drawn
requires insight which is challenging for autonomous systems.
Further, the step of solving the problems represented by the
states is challenging. We will discuss our work moving towards
solving these issues in Section V, but overall we recognize it
as a set of open problems well beyond the scope of this work:
we are forced to assume that states describing failures, and the
actions which resolve them, are already known to the agent.

When these approaches are combined in our specific setting,
a very large set of checkers, and many system nodes, are
produced autonomously. While this large set is not incorrect, it
is again useful to leverage human intelligence in pruning it. For
example, the Fetch actually has two IMU sensors: the graph
appropriately detects that these should have a high degree of
similarity, and we can reasonably infer that if they do not then
one is broken. However, we are not interested in modeling this
nuanced of a hardware system and so we consolidate their
data. By pruning this (and other similar cases), we produce
a graph that is largely equally functional while being more
straightforward to understand and process. For purposes of a
concise and easier-to-follow example, we will make use of a
largely hand-crafted graph (visible in Figure 4).

D. Algorithms

Given an FD graph (e.g., the simplified graph in Figure 3),
we can define the proposed general Fault Recovering Execu-
tion (FRE) algorithm (see Algorithm 1) for fault detection and
discovery, as well as hypothesis generation and testing, which
we now discuss.

At a high level, the algorithm takes an FD G, a set of
already-known failures K (initially K = ∅), and a sequence
of actions (P = P1, P2, . . . , Pk) which it aims to perform. At

Algorithm 1 Fault-Recovering Execution (FRE) for failure-
aware goal sequence execution

1: procedure FRE(P , G, K)
2: if |P | = 0 then
3: return success, all steps met.
4: Take action P0 (where P = {P0, P1, . . . Pk})
5: Set of errors detected this timestep D = ∅
6: for every node N ∈ G do
7: Run checker c for N
8: if N is Problem Node, r = relevant, and v < l then
9: D = D ∪ {N}

10: Set of test states T = ∅
11: if D = ∅ then
12: Remove P0 (where {P0, P1, . . . Pk})
13: FRE(P , G, K)
14: else
15: if |D \K| > 0 then . Narrowing down failure
16: for Each d ∈ D do
17: Td = u for all ancestor nodes of d
18: Remove unhelpful tests from T
19: Get agent’s current perceived state s0
20: if T contains a non-empty set of states then
21: t = SelectExperiment(T , D) . (Alg. 2)
22: Prepend (Σ, s0, {s0 ∧ t}) to P . (Note 3)
23: else . Failure resolution
24: Select state sd from some d ∈ (D \K)
25: Prepend (Σ, s0, {s0 ∧ ¬sd}) to P
26: K = K ∪ {d}
27: FRE(P , G, K)
28: else
29: return failure, plan is obstructed.

every timestep, the agent recursively attempts to take the next
action in the sequence (FRE:12) until there are no more actions
to take (FRE:3). With each action taken, the agent updates the
FD graph and uses it for failure detection (FRE:9).

If nodes are marked as being in a fault condition but have
not yet been explored (FRE:15), the agent needs to find what
set of states may be able to provide more insight as to what
the specific cause of the error is. To do so, we make use of
the fact that each node is associated with a state u: while
many of these states will not be informative (as perhaps they
have already been achieved), achieving one of these states will
satisfy the conditions to run a checker that may provide more
information to this node. We therefore collect all of the states
for all ancestors of this potential failure node (FRE:17).

The output of this algorithm is collected with respect to each
failure node which the agent believes may be responsible for
the current fault, producing a set of test states to examine
each failure node. However, not each state will be valuable:
states in which we already know the outcome are not worth
re-visiting, and states which relate to each failure node will
not provide valuable information, either. For this reason, the
agents performs a test state reduction step (FRE:18) before

proceeding. This reduction step first removes tests which are
relevant to every possible failure node, as these tests will be
unable to provide any clarifying insights. The next step is
to remove any tests in which the outcome is already known:
recording the set of already-performed tests K allows the agent
to avoid re-attempting tests that are unlikely to provide new
information2.

With the reduced sets of tests, we now attempt to find
the most productive test, to the extent that this is possi-
ble (FRE:18). For simplicity, we will assume here that all
fault states are equally likely (but nothing critical hinges on
this assumption). For each node indicating a fault condition,
the agent can find the number of times it appears in all fault
conditions which indicates how many failure nodes will be
impacted by the test at this node. Because the agent does not
know the outcome of the test, the most effective strategy is
one which impacts half of the failure nodes: if the test passes,
the failure must be in the other half; if the test fails, the failure
must be in this half.

Algorithm 2 Experiment selection

1: procedure SELECTEXPERIMENT(T , D)
2: Produce list of all potential test states St =

⋃
T

3: for each test t ∈ St do
4: Ct = # of occurrences of t in all T
5: Find midpoint m = d(max(C)−min(C))÷ 2e
6: for n from m to max(C) do
7: Attempt to select some St with n occurrences
8: if selection is successful then
9: return this St

This arrives at a node which we are now interested in
testing. The node has some state u, which can be provided
as a goal state for the planner, producing a set of actions
which can be prepended to P for execution (FRE:22)3. When
the algorithm recursively continues (FRE:27), a new action
is performed and the agent is provided with new insight into
the possible failure. At some point, the number of possible
tests will have been exhausted. This may be because there
is one possible failure remaining, there are several failures,
or there is total overlap between possible failures and their
respective tests. In any of these cases, no further exploration
can be performed and so the agent moves to failure resolution.
The agent has some set of states which may be causing the
failure, and which take the form of logical predicates. The
negated form of these predicates can be provided as a planning
problem and attempted (FRE:25).

IV. ADDRESSING FAILURE

The goal of the demonstration is to evaluate the robot’s
ability to identify a problem, hypothesize a set of potential

2It is certainly possible for an error to be intermittent or for a test to fail.
For our purposes, however, we do not consider these cases.

3Note that we use here the notation used in [13] to describe the solution
to a planning problem as (Σ, s0, Sg), where Σ is the planning domain, s0 is
the initial state, and Sg is set of states where the goal is satisfied.

012 3 4 5 6 7

8

9

1011

12

13

14

15

16

171819

202122

23

24

25 26

27

28 29

30

31 32

33

N Description N Description
0 Similar odom, command velocity 1 Similar fused odom, wheel odom
2 Similar fused odom, imu odom 3 Move base actions succeed
4 Gripper can obstruct LIDAR 5 Camera can see gripper
6 ‘goToPose’ action succeeds 7 ‘graspObject’ action succeeds
8 Platform mobility process 9 Odometry fusion process
10 Object manipulation process 11 Obstacle detection process
12 Depth camera unit 13 RGB camera unit
14 Laser data processing 15 IMU data processing
16 Arm movement process 17 Gripper unit
18 7-DoF arm unit 19 Torso unit
20 Differential drive unit 21 Head unit
22 LIDAR unit 23 IMU unit
24 Arm Broken 25 Camera Obstructed
26 Camera Broken 27 Gripper Broken
28 Hardware E-stop activated 29 Software E-stop activated
30 IMU broken 31 LIDAR obstructed
32 LIDAR broken 33 Gripper obstructed

Fig. 4: Recreation of the graph for the Fetch robot. Nodes in green highlight observer nodes; blue highlights system nodes,
red highlights problem nodes. This one graph is used to model a variety of potential failure cases and their relationship with
various observations and robot systems.

causes, test those hypotheses, and then resolve the problem.
The demonstration is provided in video form4. Our first
demonstration is summarized as Fig. 1. The algorithms pre-
sented in Section III have been fully integrated into the DIARC
cognitive robotic architecture [30] running on ROS [28] and
evaluated on an autonomous Fetch robot [36] performing
navigation tasks.

Most critically, note that the same configuration is running
across all demonstrations: we therefore show that our approach
is able to correctly discern a failure case from a wide set
of simultaneous possibilities. Our system is not arriving at
a pre-configured conclusion or a “trial-and-error” approach.
Rather, it is working through a logical and dynamic process
of reducing the set of possible failure cases through intentional
self-exploration.

A. Resolvable Failure

We first consider our motivating example: the condition
where the head-mounted depth camera of the Fetch used for
obstacle avoidance is obstructed (e.g., by fallen debris, see
Fig 1a). Without fault detection and mitigation, the execution
of the task fails while with our proposed approach, the robot
can mitigate the fault. Specifically, the robot first observes
that although wheel odometry and IMU odometry suggest it
is moving as commanded by the navigation planner, progress
towards the movement goal is not being made. As a result,
while many of the checkers in the FD graph pass, the particular
checker observing navigation progress fails, causing the robot
to halt the current plan to enter the self-evaluation condition.

4Provided as supplementary material. Link in this footnote withheld for
double-blind review.

Searching through the graph, the robot finds a set of problem
nodes which are in failure states. Introspecting on the graph
reveals a state at_face(self,gripper) with a checker,
which links to some of these failure nodes. Based on the
construction of the graph, the robot knows that it can achieve
this state where it expects to be able to identify a fiducial
marker mounted to the gripper. When the action is performed
(Fig 1b), the test fails as a result of the obstructed camera.

However, after propagating the new evidence through the
FD graph, it is unclear whether the failure is due to a camera
problem or an arm problem. Hence, another test is necessary,
and through the same test generation discovery process the
state at_laser(self,gripper) is found. Performing this
action (Fig 1c) and running the corresponding checker informs
the robot that, as expected, placing the gripper in front of the
LIDAR unit obstructs it. As before, the FD graph is updated.

The robot is now in a condition where, despite having more
than one remaining potential failure node, there are no new
tests it can perform because the potential problem states –
broken(self,camera) and obstructed(self,camera)

– both manifest themselves in the same way. While the robot
does not have any plan to resolve a broken camera, it can
find one to resolve the obstructed camera: the agent finds
a plan which is identical to its current perception except
that not(obstructed(self,camera)) is satisfied. From
this, the planner produces a face-sweeping action which is
performed to resolve the current failure (Fig 1d). With the
next recursive step, the FD graph is updated as the navigation
is re-attempted, which occurs successfully as a result of the
resolution of the fault.

B. Mitigable Failure

Some failure cases cannot simply be resolved. Instead, we
are forced to mitigate their impact. Our approach additionally
handles these cases thanks to the re-planning step: plans
which might previously have been deprioritized can now be
selected as the most viable strategy after the benefit of better
understanding the current state of the agent and world.

One such set of cases includes sensor failures: if a critical
sensor fails in the field, it is highly unlikely that it will be
able to self-repair. Instead, it will be necessary for the agent
to reduce the set of potential failure states as much as possible,
and then find a new plan to resolve the goal while minimizing
the impact of the ongoing failure. For example, consider a
case where the robot has suffered damage to the LIDAR unit:
this is a failure case the agent cannot resolve on its own,
and the LIDAR data is a necessary for effective completion
of the navigation task. While it is possible to use the head-
mounted depth imaging, the robot is sensibly configured by
the manufacturer to rely heavily on the high-rate LIDAR unit
for obstacle avoidance.

Before beginning this demonstration, we have obscured
the LIDAR unit to prevent it from providing sensi-
ble data. We have also provided the agent with a
reconfigureSensing(x,y) action which, if activated,
will reconfigure the sensing configuration such that the agent
x will ignore data being produced by the sensor y. As before,
the agent is then provided with a navigation goal, which fails
as a result of the obstructed sensor.

The agent constructs a test to self-test its sensing. This
time, however, at_face passes: the agent therefore infers
that obstructed(self, laser) or broken(self,
laser) must be true. A sweep in front of the LIDAR
unit to satisfy not(obstructed(self,laser)) does
not resolve the problem, and so broken(self,laser)
must be the current state. For the sake of mitigation, the
reconfigureSensing action on the LIDAR unit is al-
lowed to be a satisfactory resolution to the laser being broken.

Upon running this action, the set of navigation processes is
reconfigured to operate at a much lower speed and to ignore
the faulty LIDAR data. With the failure case being marked
as ‘resolved’, goal progress resumes. With the navigation
processes no longer perceiving obstacles from the LIDAR unit,
it is able to complete the navigation task (though, at a less
efficient speed than otherwise expected).

It is useful to note that it would be trivial to add a “go to the
repair station” action, and to provide an ongoing goal of “be
repaired if broken”. Modifying the reconfigureSensing
to trigger the state of being broken would then produce a
behavior where the robot could return to a repair station after
completing its goal (or hand off the goal to another agent and
return immediately to the repair station, etc.).

C. Simultaneous Mitigable Failure

In some cases, failures will present simultaneously: for
example, a power surge may damage both a sensor and a drive

motor. Our approach is capable of handling several simulta-
neous failures through the same mechanisms as detecting any
single failure: where we would previously narrow down to a
series of indistinguishable failures and attempt solutions until
we resolved the one, we now attempt solutions until we have
resolved all of them.

To demonstrate this case, we imagine the Fetch having
suffered a major collision: this one event has caused the gear
drive of the left drive wheel to skip every other rotation,
substantially reducing its rotation speed (which we simulate
by modifying control velocities in real time, unknown to the
rest of the architecture). In addition to this motor failure,
the head unit is no longer sending appropriate data. Unlike
previously, however, this failure case cannot be resolved by
clearing debris. Instead, we imagine that it is a substantial
damage which can only be resolved by long-term repairs. We
model this damage by blocking the sensor with tape.

The agent first identifies failure thanks to the same process
as the previous case, and the same debugging steps occur. This
time, however, attempting to clear debris has not succeeded.
With one of two possible solutions exhausted, the second is
selected: the reconfigureSensing strategy is used to
ignore the head sensing information going forward, allowing
the agent to suboptimally complete its navigation task.

However, this alone has not resolved the agent’s difficulties.
The robot’s movement still drifts sharply, which is observed by
a checker attempting to assert a high degree of similarity be-
tween commanded and executed command velocities. Thanks
to the extent of exploration already performed to resolve the
prior issue, no further exploration is necessary to determine
that an action to reconfigureDriving would be valuable.
This action analyzes past driving data to apply a corrective
counter-drift. With this action performed, driving behavior is
able to proceed as normal.

D. Simultaneous Non-Mitigable Failure

Finally, some failures are such that any agent will be unable
to resolve or even mitigate them. Consider a total motor power
failure which prevents any movement, or a critical data cable
that has frayed to the point of non-operation. Even in these
cases, we find that our approach provides utility in being able
to classify and identify potential failures. Although the agent
may remain unable to self-resolve or even operate, a trivial
“alert a human operator” action can be provided to the agent,
providing it with the ability to update an operator with the
information it has gathered about its failure case.

We demonstrate this case by again observing the navigation
task. In this scenario, however, the emergency stop is triggered
after navigation begins (cutting power to all motors but leaving
sensing and computation online). As a result, the robot halts
and navigation fails.

As with the demonstration of Section IV-A, the robot
identifies that progress towards the navigation goal is not being
made and triggers self-assessment. Again, introspection on
the graph produces at_face(self,gripper). However,
when this state is planned to this time, the checker fails.

A series of other tests are similarly generated, all of which
again fail due to an inability to perform any motion. As the
agent has correctly identified, there is a problem with a wide
variety of systems. As it further identifies, it has been unable
to narrow down the source of the problem beyond a wide array
of failures. However, of these, the most likely is one of the
power failure cases.

The robot has exhausted its tests, observed that no actions
can be taken, and that it therefore cannot resolve the problem.
The remaining solution is a “call for help” action to alert a
nearby human operator, which it performs.

V. DISCUSSION AND FUTURE WORK

Through the implementation of a novel performance mon-
itoring system, we have enabled a robot agent to detect that
a failure has occurred using the FD graph and take explicit
actions based on the potential failures nodes in the graph to
first isolate the fault and then attempt to mitigate the failure
using the architecture’s task planner. The core of the proposed
method (the FD graph together with the recursive algorithms
for determining faults and narrowing down potential causes) is
general and can be integrated into any robotic architecture. It
can be combined with machine learning approaches that learn
how to detect faults and how faults can be mitigated (these
models can be integrated as checkers and as a replacement for
mitigation planners, respectively). It also allows for different
mechanisms for propagating fault information in the FD graph
that can be tailored to the available information (e.g., binary
operational/non-operational values vs. probabilities of normal
operation for nodes in the graph).

Future work focuses on improvements to generating graphs
and on application areas. While we have shown portions of the
graph can be auto-generated, more challenging is the relation
of system nodes to failure nodes. We have shown that our
system can autonomously detect failure, but classifying novel
failures and relating them to states remains nontrivial. Further,
this would require the generation of motor primitives capable
of autonomous problem-solving, which falls far beyond the
scope of this work. However, we are encouraged by the
growth of creative problem-solving agents: such a system
could be integrated into this system, using the exploration of
the failure state as an effective tool to restrict the problem
space. Similarly, we observe the success of natural language
systems in cognitive architectures: in particular, there is much
exciting work in using natural language as a tool to instruct
new behavior to an agent. Our presented approach could
be used as one valuable piece of a human-agent problem-
solving dialogue, with the agent proposing potential failures
and solutions, and a human partner instructing new methods
to explore the failure or solve it.

We identify two key application areas for the methods in
addition to simply increasing a robot’s ability to finish its
tasks under different perturbations: human-robot interaction
and multi-agent tasks. The value of trust is well established
in HRI, and similarly, perceptions of robot effectiveness are
known to have a large impact on this metric[29]. Because our

approach is based on explicitly represented sets of potential
failure states, a more accurate description of failure can be
provided (see again [7]), improving human trust in the robot
even in cases where failures cannot be mitigated. In the multi-
agent domain, one might imagine two identical robots which
begin a task when one becomes damaged which turns a
homogeneous multi-agent system into a heterogeneous multi-
agent system where our methods could then be used to allow
one agent to correct for the changed capacity of the other to
maintain a high level of operation of the team (cp. to [31]).

VI. CONCLUSIONS

We proposed an integrated approach to fault detection and
mitigation in a Fault Discovery (FD) graph based on repre-
sentations of causal connections graph among different units,
processes, and states in a robotic architecture. We showed
tracing the dependencies of potential faults in graph allows
a robot to produce experiments to isolate faults and then plan
to mitigate them using the architecture’s task and navigation
planner. Future work will investigate more comprehensive
methods for graph generation, with an emphasis on how failure
states can be resolved once determined.

REFERENCES

[1] Jose A Ambros-Ingerson, Sam Steel, et al. Integrating
planning, execution and monitoring. In AAAI, volume 88,
pages 21–26, 1988.

[2] Michael Beetz. Improving robot plans during their
execution.

[3] D Paul Benjamin, Damian M Lyons, and Deryle W
Lonsdale. Adapt: A cognitive architecture for robotics.
In ICCM, pages 337–338, 2004.

[4] Catherina Burghart, Ralf Mikut, Rainer Stiefelhagen,
Tamim Asfour, Hartwig Holzapfel, Peter Steinhaus, and
Ruediger Dillmann. A cognitive architecture for a
humanoid robot: A first approach. In 5th IEEE-RAS
International Conference on Humanoid Robots, 2005.,
pages 357–362. IEEE, 2005.

[5] Baoping Cai, Lei Huang, and Min Xie. Bayesian net-
works in fault diagnosis. IEEE Transactions on industrial
informatics, 13(5):2227–2240, 2017.

[6] Anthony R Cassandra. A survey of pomdp applica-
tions. In Working notes of AAAI 1998 fall symposium
on planning with partially observable Markov decision
processes, volume 1724, 1998.

[7] Gokay Coruhlu, Esra Erdem, and Volkan Patoglu. Ex-
plainable robotic plan execution monitoring under partial
observability. IEEE Transactions on Robotics, 2021.

[8] Matthias Fichtner, Axel Großmann, and Michael
Thielscher. Intelligent execution monitoring in dynamic
environments. Fundamenta Informaticae, 57(2-4):371–
392, 2003.

[9] Maria Fox and Derek Long. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal
of artificial intelligence research, 20:61–124, 2003.

[10] Tyler Frasca and Matthias Scheutz. A framework
for robot self-assessment of expected task performance.
IEEE Robotics and Automation Letters, 7(4):12523–
12530, 2022.

[11] Thom Frühwirth. Theory and practice of constraint
handling rules. The Journal of Logic Programming, 37
(1-3):95–138, 1998.

[12] Zhiwei Gao, Carlo Cecati, and Steven X Ding. A survey
of fault diagnosis and fault-tolerant techniques—part
i: Fault diagnosis with model-based and signal-based
approaches. IEEE transactions on industrial electronics,
62(6):3757–3767, 2015.

[13] Malik Ghallab, Dana Nau, and Paolo Traverso. Auto-
mated Planning: theory and practice. Elsevier, 2004.

[14] Scott D Hanford, Oranuj Janrathitikarn, and Lyle N Long.
Control of mobile robots using the soar cognitive archi-
tecture. Journal of Aerospace Computing, Information,
and Communication, 6(2):69–91, 2009.

[15] Marc Hanheide, Moritz Göbelbecker, Graham S Horn,
Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Patric
Jensfelt, Charles Gretton, Richard Dearden, Miroslav
Janicek, et al. Robot task planning and explanation in
open and uncertain worlds. Artificial Intelligence, 247:
119–150, 2017.

[16] Inseok Hwang, Sungwan Kim, Youdan Kim, and
Chze Eng Seah. A survey of fault detection, isolation,
and reconfiguration methods. IEEE transactions on
control systems technology, 18(3):636–653, 2009.

[17] Rolf Isermann. Supervision, fault-detection and fault-
diagnosis methods—an introduction. Control engineer-
ing practice, 5(5):639–652, 1997.

[18] Rolf Isermann. Model-based fault-detection and
diagnosis–status and applications. Annual Reviews in
control, 29(1):71–85, 2005.

[19] Piyush Khandelwal, Fangkai Yang, Matteo Leonetti,
Vladimir Lifschitz, and Peter Stone. Planning in action
language bc while learning action costs for mobile robots.
In Twenty-Fourth International Conference on Automated
Planning and Scheduling, 2014.

[20] Pieter Kraaijeveld, Marek Druzdzel, Agnieszka Onisko,
and Hanna Wasyluk. Genierate: An interactive generator
of diagnostic bayesian network models. In Proc. 16th Int.
Workshop Principles Diagnosis, pages 175–180. Citeseer,
2005.

[21] Fabien Lagriffoul and Benjamin Andres. Combining task
and motion planning: A culprit detection problem. The
International Journal of Robotics Research, 35(8):890–
927, 2016.

[22] John Edwin Laird, Keegan R Kinkade, Shiwali Mohan,
and Joseph Z Xu. Cognitive robotics using the soar
cognitive architecture. In Workshops at the twenty-sixth
AAAI conference on artificial intelligence, 2012.

[23] Charles Lesire, Stéphanie Roussel, David Doose, and
Christophe Grand. Synthesis of real-time observers from
past-time linear temporal logic and timed specification.
In 2019 International Conference on Robotics and Au-

tomation (ICRA), pages 597–603. IEEE, 2019.
[24] Nils J Nilsson et al. Shakey the robot. 1984.
[25] Ola Pettersson. Execution monitoring in robotics: A

survey. Robotics and Autonomous Systems, 53(2), 2005.
[26] K Wojtek Przytula and Don Thompson. Construc-

tion of bayesian networks for diagnostics. In 2000
IEEE Aerospace Conference. Proceedings (Cat. No.
00TH8484), volume 5, pages 193–200. IEEE, 2000.

[27] Jordi-Ysard Puigbo, Albert Pumarola, Cecilio Angulo,
and Ricardo Tellez. Using a cognitive architecture
for general purpose service robot control. Connection
Science, 27(2):105–117, 2015.

[28] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, Andrew Y Ng,
et al. Ros: an open-source robot operating system. In
ICRA workshop on open source software, number 3.2,
page 5. Kobe, Japan, 2009.

[29] Maha Salem, Gabriella Lakatos, Farshid Amirabdol-
lahian, and Kerstin Dautenhahn. Would you trust a
(faulty) robot? effects of error, task type and personality
on human-robot cooperation and trust. In 2015 10th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 1–8. IEEE, 2015.

[30] Matthias Scheutz, Thomas Williams, Evan Krause,
Bradley Oosterveld, Vasanth Sarathy, and Tyler Frasca.
An overview of the distributed integrated cognition affect
and reflection diarc architecture. Cognitive architectures,
pages 165–193, 2019.

[31] James Staley and Matthias Scheutz. Evaluating task-
general resilience mechanisms in a multi-robot team task.
In Proceedings of the Artificial Intelligence Applications
and Innovations, 2021.

[32] Kartik Talamadupula, Gordon Briggs, Tathagata
Chakraborti, Matthias Scheutz, and Subbarao
Kambhampati. Coordination in human-robot teams
using mental modeling and plan recognition. In 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2014.

[33] Michael Thielscher. Flux: A logic programming method
for reasoning agents. Theory and Practice of Logic
Programming, 5(4-5):533–565, 2005.

[34] J Gregory Trafton, Laura M Hiatt, Anthony M Harrison,
Franklin P Tamborello, Sangeet S Khemlani, and Alan C
Schultz. Act-r/e: An embodied cognitive architecture
for human-robot interaction. Journal of Human-Robot
Interaction, 2(1):30–55, 2013.

[35] Jan Winkler, Georg Bartels, Lorenz Mösenlechner, and
Michael Beetz. Knowledge enabled high-level task
abstraction and execution. In First Annual Conference
on Advances in Cognitive Systems, volume 2, pages 131–
148. Citeseer, 2012.

[36] Melonee Wise, Michael Ferguson, Derek King, Eric
Diehr, and David Dymesich. Fetch and freight: Standard
platforms for service robot applications. In Workshop on
autonomous mobile service robots, 2016.

	Introduction
	Background
	Open-World Fault Mitigation through Active Hypothesis Testing
	Requirements
	The Fault Discovery (FD) Graph
	Observer Nodes
	Problem Nodes
	System Nodes

	Graph Construction
	Autonomous Graph Generation

	Algorithms

	Addressing Failure
	Resolvable Failure
	Mitigable Failure
	Simultaneous Mitigable Failure
	Simultaneous Non-Mitigable Failure

	Discussion and Future Work
	Conclusions

