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Abstract—A well-known challenge with symbolic systems is that
they are constrained by their domain: that is, they require a prede-
termined set of facts to compute over and struggle to handle novelty.
Machine learning techniques offer a potential resolution to this
problem by allowing exploration that expands the symbolic domain.
To this end, we describe the “real–sim–real” problem, where an agent
must construct its own simulation environment for training and then
deploy the learned policy (correcting the simulation as necessary).
We then present an approach which addresses this problem, and
demonstrate that an agent can use sensor data to construct its own
simulation environment, train in it, and then use this newly-obtained
knowledge to solve a task planning problem. Further, we show
that when there is a mismatch between the generated simulation
environment and the real environment, this mismatch can be resolved
by the agent through exploration in the real world, and then be again
applied to solve the better-understood task planning problem. We
integrate this work with prior work on object-centric policies, where
the agent trains directly on the environment to understand how the
environment should be manipulated, which improves sim-to-real
transfer and allows training to occur in real time.

I. INTRODUCTION

Symbolic domains are known for their ability to perform long-
horizon task planning, but require a fully specified domain in order
to operate. This is in contrast to approaches like Reinforcement
Learning (RL), which struggle with long-horizon planning but excel
in providing creative solutions to problems without requiring an
explicit symbolic model. The development of new behaviors and
an understanding of how they may contribute to a task planning
problem is essential to addressing novelties, which is an area
that reinforcement learning excels in. Of particular interest to us
is novelties which impede progress towards a task because the
environment was not well understood prior to deployment. These
“environmental task novelties” occur frequently in human-robot
interaction domains in particular: for example, a robot should not
fail to complete a task simply because it enters a room it has not
seen before, or a cabinet that opens differently than anticipated.

To work towards addressing this challenge, we propose a
framework where agents autonomously construct simulation
environments based on real-world observations, and then train in
this environment before deployment. We describe how the use of
a Visual Language Model (VLM) can be employed to iteratively
assemble a simulation environment. We then show that we can
train on the environment directly to produce behaviors that are

Fig. 1: The Kinova arm completes its task in a toy kitchen environment,
which it has no prior knowledge of. This is accomplished by training in
the simulation environment which is autonomously constructed and refined
through exploration in the real world. Though the simulation environment
is improper, we will provide a mapping function which allows it to provide
enough information to the symbolic agent to be useful in creative problem
solving. In this way, the simulation is used as a symbolic exploration tool,
which is refined through real-world interactions until the task can be solved
symbolically.

grounded in symbolic knowledge and which can be mapped to
symbolic behaviors. By taking this neurosymbolic approach, the
reinforcement learning agent provides its creativity to grounded
long-term reasoning of a symbolic agent, combining the strengths
of both. We use reinforcement learning as a source of creativity,
allowing an agent to explore how the environment can be interacted
with symbolically. This provides an autonomous agent the ability to
“imagine” the solution “in its head”, similar to how we might first
visualize the solution to a challenging problem before attempting it.

Further, we show that even though the environment may be
incorrectly constructed, this is not prohibitive to operation. First,
because of the symbolic grounding and use of the environment as an
symbolic exploration tool, the environment construction only need
to be largely similar. We then show that interaction with the environ-
ment can provide additional information to update environmental
knowledge, working towards solving the current task. Much in the
same way that our mental simulation of the environment is improved
through failed attempts that work towards the final successful one,
we show the agent is able to learn valuable information which refines
the simulation while providing symbolic knowledge.

Thus, we show a neurosymbolic framework that can handle a
portion of the novelties problem by contributing:

• A definition of the “real–sim–real” problem, where an agent
constructs a simulation for training, and then trains for



deployment in its environment;
• A method for autonomously constructing a highly imperfect

yet suitable simulation for acquiring symbolic knowledge;
• Training agents on this imperfect environment to provide

symbolic knowledge about the task’s solution (extending [27]);
• A planning mechanism which uses knowledge in a planning

problem to solve the task or learn more about it, facilitating
long-horizon reasoning in novel situations; and

• Demonstrating that the combination of these features allows
an agent to solve a task containing novelties that would
otherwise break purely symbolic planners.

We begin by formalizing the underlying assumptions and
mechanisms of our approach before demonstrating it in a real-world
robotic domain. Additional evaluations illustrate the strengths and
limitations of the method, and suggest future directions for enabling
more general and robust symbolic reasoning in the presence of
incomplete knowledge.

II. BACKGROUND

Creative Problem Solving. In creative problem solving, an
agent is tasked with finding novel solutions to task planning
problems. For example, in the “MacGyver Problem” [24], an
agent is tasked with solving a new problem with limited resources
(requiring that the existing resources be used in a creative manner
should the task be solved). Some approaches to address this class of
problem have focused on the development of motor behaviors that
solve new tasks, e.g., [11, 10]. In another approach, hierarchical
reinforcement learning is used to imitate human creative problem
solving strategies [6]. Other approaches do not explicitly consider
themselves to be robot creativity but could fall under this description:
for example, [2] demonstrates that a symbolic system can perform
problem solving in a novel domain by providing an abstraction
of motor control behavior. In each of these, creativity provides an
agent with improved ability to task solve by provided an improved
ability to problem solve: rather than failing when a novel scenario is
encountered, this class of agents will take steps explore and solve it.

Neurosymbolic Approaches in Robotics. By “neurosymbolic”
systems, we refer to approaches where the strengths of symbolic
logics (long horizon explicit reasoning) are combined with
the strengths of reinforcement learning or similar approaches
(discovering new information or behaviors from high volumes of
data). The result of combining these two different approaches to
robot behavior is that the respective strengths cover the respective
weaknesses: a symbolic agent can benefit from the creativity of
reinforcement learning while a reinforcement learning agent can
benefit from the high-level direction provided by explicit reasoning.

This approach of employing a symbolic system for high level
behavior and reinforcement learning as subsymbolic has been
previously explored. For example, the DIARC architecture [25] has
integrated reinforcement learning strategies for problem-solving
(e.g., [18], see [12] for detail). Other examples provide towards
complex action planning by, for example, integrating a symbolic
sense-plan-act robot architecture with an LLM as a neurosymbolic
planner [4], or improving the understandability of learned policies
by integrating the learning process with symbolic logics [13]. Other
approaches have shown that this integration provides an improved

situational awareness in an agent [21], and both [9] and [16] show
that this allows agents to reason in the abstract: as we will discuss,
this is a highly valuable skill for an agent to possess. Our simulations
can be considered a form of reasoning in the abstract because the
simulations cannot be used directly for control policy training, but
can still provide valuable information as a source of exploration.

Object-Centric Reinforcement Learning. In object-centric
reinforcement learning [27], the action and observation space are
the objects in the environment. This approach allows an agent to
learn the positions and velocities over time (e.g., forces) required to
accomplish a task. By mapping the steps taken in the environment
to executable robot behaviors, the task can be accomplished. These
robot behaviors can be provided by a symbolic architecture and
solved using classical kinematic solvers, allowing the reinforcement
learning agent to provide creative problem solving skills while
remaining within a symbolic architecture for planning, reasoning,
and understanding.

This approach presents several advantages for our work (while
also introducing some assumptions that can be limiting, see
discussion in Section V). One-shot policy transfer is enabled from
a simulation environment to a real-world deployment. Similarly,
one-shot policy transfer is enabled across homogenous and, in
some cases, heterogenous agents. Because the policy remains
symbolically grounded, it is symbolically interpretable. Actions are
dramatically faster to learn. However, this does require a mapping
function that translates intended behavior to real-world action.
This is often a safe assumption to make – classical kinematic
planners are widely available – but must be mentioned. However,
it is this mapping which permits imprecise construction of the
simulation environment (as we will discuss). In this sense, the agent
is performing a more abstract and hypothetical reasoning.

Vision Language Models (VLMs). VLMs have recently
provided roboticists a powerful new tool for autonomously
understanding a robot environment. Consider, for example, the
“Flamingo” model [1], which successfully demonstrates few-shot
learning on image and video datasets alongside textual input, or
the various proprietary ChatGPT models [3] These advances have
been rapidly adopted by roboticists. Consider, as a non-exhaustive
sampling from the last year, usage of VLMs to enable better
interpretation of human instruction [7], better intuition of the
properties of objects which they will grasp [8], better interpretation
of human behavior to enable more socially-appropriate robot
navigation [26], or teaching via demonstration [29]. In each of
these, the VLM provides a form of common-sense knowledge that a
broader architecture can benefit from. Our approach does the same.

Autonomously Constructing Simulations. In [17], the authors
present an approach in which a physics simulation is generated based
on sensor data for use in an object manipulation task. The successful
transfer of real-world data to inform a simulation environment, then
application of this data to learn a reinforcement learning policy, is
shown to be effective. It is also, to our knowledge, the first (and
currently, perhaps only) use of the term “real–sim–real” as a research
goal, although we do contribute a more formal representation of
the problem. Like us, their approach uses observations of existing
candidate objects to assemble a simulation environment. However,
we build off of this work by contributing the ability to learn new



information about the environment and re-integrate it into the
simulation. Further, we contribute construction of larger objects by
assembling smaller candidate geometries (as we will discuss), and
make use of a VLM (which provides additional assumptions about
the environment). Finally, we contribute the formulation of the
real–sim–real problem in a manner that can be integrated within a
symbolic architecture, and then show this allows for the integration
of symbolic and reinforcement learning approaches.

III. PROPOSED METHOD

To present our method, we first present the problem formally
and then describe a technical approach to solving it. We later
demonstrate this approach.

Problem Representation. We present the “real–sim–real” prob-
lem, which closely mirrors the “sim to real” problem, but adds the
additional steps of constructing and then improving the simulation
environment from observations of the real-world environment.

Building from [27], we first consider an environment as being
composed of a set of objects. We define an object o ∈ O as an
element of the robot’s scene which can be impacted by forces in the
environment. An object will have some degrees of freedom in linear
and rotational dimensions, and may or may not be constrained.
For example, some objects can be lifted and rotated freely, while
others, like doors, are limited to a specific rotation. We must
therefore define an object mobility function ζ(o) which, given some
o ∈ O, returns the n-tuple describing the degrees of freedom of
that particular object. From this n-tuple we can produce an action a
describing which degrees of freedom should be impacted and how.

In the same way, we must then define the object state transition
function σ(o, a) which, given an object, returns the 18-tuple
describing the full pose of the object after applying the action1.
Although simulation environments often provide this information
directly, real-world environments will require some observation
strategy, such as vision processing2.

Continuing to build upon [27], we can use this construction to
produce an MDP M= 〈S,A,σ,r〉 where S is the set of states pro-
duced by applying the object state transition function ζ to all objects;
A is the set of actions constrained by the state transition function σ;
σ is used as the state transition function; and r is the reward function
where r(s) for some s∈S provides a reward for task completion.

Crucial for this work is to finally define some mapping between
object manipulations and actions which can be employed by
the robot. We state that for every every object mobility function
ζ(o), there exists a corresponding object manipulation function
η(o) which the robot can employ to actually produce the motion
described by ζ. If it should be the case that η cannot provide some
mobility described by the appropriate ζ, then ζ must be reduced
to correctly reflect the capabilities of the platform. We modify the
construction of [27] by stating that it may also be the case that
there will be multiple manipulation functions for a single object.

1Composed of x, y, z, roll, pitch, and yaw positions; plus the x, y, z, roll, pitch,
and yaw velocities, plus the accelerations.

2While vision processing is the most common and approachable method of
learning about the environment, note that we do not require the observations come
from on-robot vision. A language parsing system, for example, could allow a human
partner to describe the scene with spoken language.

This allows the representation of uncertainty about the agent’s
environment: it may not know how an object should best be grasped
or otherwise interacted with, and so we allow multiple simultaneous
options to be considered. It will be necessary to discover which
option is reality at deployment time.

The real–sim–real task, then, is to first perform the “real to
sim” task. In this task, an agent must autonomously determine
the full set of objects (which is O) and the way those objects
can be manipulated (the mobility function, ζ(o)). Finding O can
generally be performed using object recognition and understanding
techniques. Finding ζ(o) is more challenging, and initially requires
common-sense knowledge before further real-world exploration
can occur. Then, the “sim to real” task can be performed. However,
in the real–sim–real task, the agent must continue to iterate
between simulation and real environment to refine the simulation
as necessary, until the task can be completed.

Object-Centric RL Framework. As previously discussed, we
leverage the object-centric RL approach introduced in [27]. In this
approach, the observation space and action space are the environ-
ment itself. This provides the ability to treat reinforcement learning
as a source of creative symbolic knowledge discovery, rather than
a strategy for precise motor control policies. This distinction is
highly valuable, because the simulation environments are often
imprecise. Therefore, rather than attempting to transfer a full motor
control policy, we transfer the knowledge of what events must
occur to solve the task and then resolve these events using classical
kinematics solvers. For example, to open a door our approach does
not learn a motor policy that opens it: instead, it learns that the
door must be opened and that a kinematic solver can be employed
to grasp the door and pull it open. This leverages the strengths of
reinforcement learning as a creative problem solver while allowing
symbolic knowledge and solving to provide long-horizon reasoning.

This assumes a perfect controller, which is actually a realistic
assumption to make: all real-world deployments of kinematics
systems assume that the system can operate in its environment,
and that if it cannot it will fail. We do not claim to add kinematic
ability beyond what the mechanical system can already perform,
only that we can extend the set of symbolic operators to extend the
task planning problem.

Constructing Simulation Environments. To construct a
simulation environment Sim, we start with common sense
knowledge about different “primitive objects” p ∈ P . These
primitive objects are the most basic representation of individual
components which make up larger, more complex objects. For
example, a kitchen scene is composed of a set of drawers underneath
a cabinet. Should an agent encounter a scene it has never observed,
we do not assume that it is in its set of primitive objects. However,
we do assume here enough common sense knowledge to identify
the primitive objects within it, and that different representations
of each object are known (although which final scene is “correct”
cannot be known at this time). This does introduce a limitation: a
set of basic prior knowledge must be assumed about what kinds
of objects the agent may encounter and that a 3D model exists for
it; however, we reduce this requirement by allowing basic objects
(hinges, drawers, etc) to construct more complex ones (as described
next). These primitive objects will provided to the simulation



environment using the standard .SDF format, and so any 3D format
supported by .SDF files is feasible (ranging from full .STL meshes
to the hand-assembled planes and prisms we show here).

Critically, however, we do not assume that a scene is produced
by only one combination of primitive objects. When a drawer is
encountered, it may open to the left, the right, or pull out; handles
may require a twist, latch, or pull; the range of motion may be
many degrees or just a few inches. Each of these possibilities
introduces additional possible combinations. We explore reducing
these combinations in the next section.

Similarly, we define “primitive location relations” r∈R, which
is a first-order symbolic representation of how the location of each
each p∈Sim can physically relate to other p in the environment. For
example, we might state that on(block,table), meaning the
block is on the table, or above(microwave,sink), meaning
the microwave is above the sink. These relations are constrained
to the implementation: for object A to be placed “on” object B in
simulation, a function must be implemented which sets the location
of object B to the location plus height of object A. However, these
functions are easy to implement; in our demonstration we provide
functions for “on”, “above”, “left of”, “right of”, “below”, “in front”,
“behind”, and “inside”. When constructing a simulation by defining
transforms within an .SDF file, the modifications made to the
transforms is straightforward. However, it will not be accurate (e.g.,
for above – how high above?). This inaccuracy will be addressed by
not treating the environment as a perfect digital twin, but as a tool
for mental simulations that informs future real-world exploration.

The value of such a construction is that it can be produced by
a VLM and can be interpreted programmatically. As outlined in
Algorithm 1, a simulation is constructed by first asking a VLM for
possible objects in the scene (Alg 1:3) before then using this knowl-
edge to query for position relative to some reference object (Alg 1:6)
This strategy does introduce ambiguity in assembly: for example,
when we state that two shelves are above a desk, does this indicate
that the shelves are stacked on top of each other or that they are next
to each other? However, as we will later discuss, we only use this
simulation for exploration that will inform a symbolic system and
so this ambiguity is not actually problematic for problem solving.

An additional source of ambiguity introduced here comes from
multiple candidate implementations of an object: For example, the
VLM may correctly identify a hinged door, but may not be able
to identify if it opens out, left, right, etc. To address this, the task
of constructing a simulation environment is actually to construct
a set of viable simulation environments, from which the “real”
environment can later be selected. Therefore, when ambiguity is
observed, the set of simulation environments is expanded to include
each possible simulation (Alg 1:7-10). This concept also includes
how different object manipulation functions may be mapped onto
one conceptual object: it may be necessary to turn, push, or pull
a door, and each of these cases should construct a new environment.

Algorithm 1 Construction of a simulation environment.
Input: A camera feed.
Output: A set of simulation environments suitable for training via
object-centric RL.

1: Let primitive objects P=∅, relationsR=∅.
2: Let S be a set of simulation environments.
3: Query VLM to obtain P . see footnote 3

4: Randomly select reference object o fromR
5: for n where 1≤n≤|P | do
6: Get pn relative to o via VLM, add toR see footnote 4

7: if only one 3D model for this o then
8: Place 3D model of o in sim as specified byR
9: else

10: Expand S such that each 3D model for omaps to an s∈S
11: end if
12: end for
13: return the full set of simulation environments

Algorithm 2 Refining the set of simulation environments.
Input: A set of real-time sensor inputs and set of simulation environments.
Output: Reduced sim set.

1: E={e0,e1,...e|E|} is a set of sim environments.
2: a is an action applicable to the current state s.
3: Perform a and observe the current state s′.
4: for each e∈E do
5: s′e is s′ in e after a.
6: if s′e 6= s′ then
7: Remove e fromE.
8: end if
9: end for

10: returnE.

Refining Simulation Environments through Exploration.
To refine the simulation environment (via Algorithm 2), we make

use of the fact that multiple simulation environments have been
constructed and it is therefore possible to produce multiple potential
solutions to a single problem. In some cases these minutiae will not
be relevant to the task at hand, and so they can safely be ignored.
However, in many cases, they will be highly impactful: if an object
is found to be difficult to grasp, or if a handle must be twisted
before being pulled, etc.

In the case that it is impactful, it is observable. We employ a
simple observability heuristic of task success versus failure, with
our method of detecting failure being that effort to complete the
task should not exceed some predetermined reasonable value.
However, more complex task observability strategies are available,
all of which are beyond the scope of this work. For broader works
on identifying robot task failure, consider as a survey [28] or as a
taxonomy [14]. But, more complex strategies than failure detection
are additionally worth considering. For example, tactile sensing

3The VLM is provided a list of possible objects where 3D models have been
obtained, and asked to list which are visible. E.g., “Provide a list of objects in the
scene. Possible objects are the ‘desk’, ‘shelf’, ‘microwave’, ‘cabinet’.”. This allows
the set of objects the simulation will produce remain within the set of items the
symbolic agent is capable of addressing. Regular expressions are then used to ensure
that only known words are passed to the rest of the system (responses like “OK,
here’s a list” are pruned).

4Similar to querying for possible objects, the object relations are provided. E.g.,
“Where is the desk relative to the shelf? Possible positions include ‘on’, ‘above’,
‘left’, or ‘right’.”. Regular expressions are again used to refine the output.



Algorithm 3 Action selection with real–sim–real.
Input: A set of simulation environmentsE and a symbolic goal sg

Output: Action selected.
1: while A solution has not yet been returned: do
2: Randomly select some e∈E.
3: Construct reward where 1 iff sg, 0 otherwise
4: Attempt to solve sg in e.
5: if sg can be solved in in e then
6: return the policy
7: else
8: Remove e fromE
9: end if

10: if |E|==0 then
11: return failure.
12: end if
13: end while

in robot manipulators has long been explored [23, 15], and would
provide interesting future work.

Handling Novelties with Real–Sim–Real. Performing task
completion using this method is similar to the standard task
planning problem, where an agent must find what series of action
operators produce the desired goal state from a start state. However,
where the typical construction of this problem would assume that
there exists an action the agent knows it can perform to complete
the goal at hand, we drop that assumption. It is instead necessary to
find a new action operator that can bridge from two plannable states.

To perform this, a new action selection strategy is presented as
Algorithm 3. In it, a reinforcement learning problem is constructed
to accomplish some state, allowing the reward function to be
constructed as a sparse binary reward (one if the goal state is
accomplished, zero otherwise). We do not train a robot-based
agent on the simulation environment and attempt to transfer to the
environment, because this would not be effective (the environment
is not suitably accurate). Instead, we use the object-centric
reinforcement learning approach, in which the environment is
manipulated by the agent directly to learn, in an abstract sense,
what needs to be done to the environment to accomplish the task.
A representative environment is chosen at random: this environment
will either produce an action sequence which solves the task, or it
will not and the agent will address this problem when it arrives at it.

This then constructs the broader task handling strategy
(Algorithm 4). This is an extension of the typical sense–plan–act
cycle: Algorithm 4:1-6 is, in fact, standard task planning and
execution. However, we append the ability to attempt creative
problem-solving in the event that no solution is available. In this
case, the agent must produce a set of simulation environments,
and use the new action selection strategy to generate a reasonable
next step. If the chosen next step happens to be successful, then
the agent has solved (or made progress towards solving) the task.
In the event that it is is unsuccessful, then it has learned about its
environment: the task failure suggests that the assumptions that
produced its current environment cannot be correct, and so these
environments built with the failed assumption can be pruned. When
action selection is reattempted, it is reattempted with a new set of
assumptions that have not yet been disproven.

Algorithm 4 Task handling with real–sim–real.
Input: Real-time sensor inputs, symbolic goal, and symbolic planner.
Output: A completed task.

1: while goal state sg remains unachieved do
2: if there exists some τ={a0,a1,...a|τ|} to solve the goal then
3: for each a∈τ do
4: Take action a
5: end for
6: return task completed.
7: else
8: Produce set of simulation environments (alg 1)
9: Select set of actions τ to solve the novelty (alg 3)

10: for each a∈τ do
11: Perform a
12: Refine simulation environmentsE (alg 2)
13: end for
14: end if
15: end while
16: return task completed.

Fig. 2: Deployment environment. The Kinova 7-DoF arm (visible on
the left), can reach all elements of the kitchen play set (center). An Intel
RealSense camera (right) captures the full scene.

IV. DEMONSTRATION

We consider a hypothetical kitchen environment in which the
robot is tasked with helping to prepare food. However, a critical
step of moving food from one location to another is impeded by
the agent’s lack of knowledge: though it knows its task should be
completed with food in a pot on the stovetop, it does not know
the steps to take to retrieve that food. Further, it does not have
prior knowledge of the environment. While a set of common-sense
knowledge about the environment is provided, this set of knowledge
is still not enough to provide certainty about the environment
dynamics. Despite this lack of knowledge, and the novelty that the
agent will therefore encounter, the agent is able to learn enough
about its environment to solve the task.

Setup. We employ the Kinova ULe3, a 7 degree-of-freedom
robot arm that interfaces to the ROS MoveIt! suite. Mounted to the
end of the arm is the Robotiq 2f-85, a segmented two-finger gripper.
We modify the gripper slightly (by simply adding rubber bands)
to more easily accommodate the different types of grasping it will
encounter, but it is otherwise standard. The robot is placed alongside
a children’s play kitchen produced by the furniture manufacturer
IKEA (the “DUKTIG”). This provides a reasonably robust and



standard environment for replication. Toy plush foods provide
easy-to-manipulate stand-ins for real food. This also simplifies the
complex task of object manipulation that falls outside the scope
of our research. An Intel RealSense allows the entire scene to be
pictured. A minor modification to the gripper is made to better
allow it to interact with the handle. Scene is pictured as Figure 2.

The agent is provided with some prior knowledge, but not enough
to complete its task. It has basic knowledge of object manipulation
as it relates to the objects it can produce: for example, that if a handle
is grasped and the arm moves to the appropriate location, it will have
moved the door on which the handle is mounted. This knowledge
is all represented using symbolic planning logics, and implemented
using the “unified-planning” python library [19]. To allow the task
to be completed, the agent is provided with symbolic knowledge of
the task to be completed: the food in the top cabinet must be placed
in the pot. The location of the pot is known as a symbolic fact, as is
the symbolic knowledge of the food being ‘in the pot’ (or not being
in the pot, depending on the timestep). This also produces the sparse
binary reward function for the reinforcement learning problem.

The reinforcement learning agent is constructed using PPO, as
implemented by stable-baselines [22]. The VLM is provided by
ChatGPT (the GPT-4o model, as of January 2024).

Crucially, however, the agent is not provided with knowledge
of how to complete this task, and it is missing critical planning
operators to allow it to do so. While it can identify when the cabinet
has been opened, it does not know that this is necessary to complete
its task. Similarly, the agent does not know what specific type of
cabinet it is about to encounter: it knows that some cabinets have
handles that must be turned while some can be pulled directly. This
particular environment has a latch that can simply be pulled, but
we bias the agent towards incorrectly assuming the handle should
turn for purposes of the demonstration.

The system is evaluated based on its ability to complete the task.
The agent will attempt to interact with the environment despite the
fact that it has incomplete information and incomplete symbolic
operators. We evaluate as a demonstration. Note that despite
the usage of reinforcement learning, the learning process occurs
within a fully symbolic and deterministic framework. For this
reason, testing the agent over many seeds is not attempted, because
this would not be appropriate: the deterministic output of the
system means the results are identically successful or unsuccessful,
depending on the implementation.

Learning and Adapting to Novel Situations. When the agent
begins its task, it is unaware of how to complete it: the symbolic
knowledge of what steps must be employed to result in this
cabinet being open is not available. It is therefore forced to employ
Algorithm 1. It constructs a set of simulation environments, one of
which may accurately model the real-world environment. Through
experimentation in simulation, it finds a possible solution to the
problem (per Algorithm 3), visible as Figure 1. With this, an action
to attempt is deployed.

In the case of this demonstration, the appropriate action is to
grab the handle. However, the agent is unaware of this: it is equally
feasible that the handle should be twisted. Not knowing which is

appropriate, it incorrectly selects the ‘twisting’ behavior5. When
the action is deployed, the effort measured in the wrist reveals that
turning has failed. Therefore, per Algorithm 2, the environment that
produced this incorrect behavior cannot be correct, and so a new
environment must be selected. The agent resets and selects a new
environment: in this case, the handle does not require turning, and so
a behavior is realized that it can simply be pulled. This assumption
happens to be correct, allowing the task to be resolved as planned.

Despite the initial task failure, the agent has not failed in its
overall task. The task initially failed because insufficient knowledge
is available about the correct way to solve the task. Without
knowing which simulation is accurate, the agent made its best guess
and applied it to the real world. Although the guess was incorrect,
this failure is valuable: it provides a deeper understanding of the
real environment, providing both symbolic knowledge and allowing
the simulation environments to be pruned so that they are not
explored further. In this manner, the agent has both learned valuable
information about its environment while solving the task.

Full Demonstration. Thus, we arrive at the full demonstration
outlined in Figure 3. In Figure 3a, the Kinova has been tasked with
a symbolic task to retrieve a piece of food from the top cabinet and
place it in the pot at the bottom. The agent has previously constructed
a simulation environment of the scene, and has been manually
informed that the desired food is in the top cabinet (necessary
because this information is not directly observable, see Section V).

The agent has been tasked with a symbolic requirement of
placing a food in the pot found on the counter. This concept is
known to the agent symbolically, but the full task is not: knowledge
of how to open the top cabinet is intentionally left missing. The
agent has generated a simulation environment, and ambiguity in
the mapping function has turned one simulation environment into
several: it may be the case that the environment can be solved by
deploying the ‘turn handle’ strategy, or it may be fine to simply
pull. The agent first attempts the ‘turn handle’ strategy (Figure 3b),
and fails (Figure 3c). It can therefore reject the assumption that the
handle should be turned, and moves to a new one: that the handle
can simply be pulled (Figure 3d) leading to the door being opened
(Figure 3e). The agent now returns to symbolic task planning: the
food can be grabbed (Figure 3f, g) and placed in the pot (Figure 3h).

V. LIMITATIONS

This approach introduces three key assumptions that can be
considered limitations and opportunity for future work. We employ
existing architectures, such as vision language models and inverse
kinematics solvers, which do have their own well-documented
challenges beyond our scope here – for example, VLMs may not
comprehensively perceive their environment and IK solvers may
encounter singularities. While these assumptions do also present
issues for other types of agents, we observe that they are worth
additional consideration in our approach. We now discuss these
assumptions in more detail.

The Common Sense Assumption. We assume there exists
a certain set of “common sense” knowledge in two key ways.

5While this selection would generally occur at random, we do force it to chose
the wrong option for purposes of this demonstration



(a) Tasked with putting food in pot,
but not aware of how to use cabinet.

(b) Deploying the chosen strategy. (c) Fail: turning handle is wrong
action (known via monitoring force).

(d) Pulling instead is successful.

(e) Door is opened, and symbolic
task resumes.

(f) Symbolic planner runs kinematic
solver to grasp the handle.

(g) Food is grasped. (h) Task complete.

Fig. 3: Demonstration of proposed method.

First, the VLM is trained on a high volume of data and therefore
carries implicit assumptions. These assumptions are, in a sense,
common sense knowledge: for example, what we consider as being
a ‘table’ versus a ‘desk’ can be identified by a VLM even though
these are both surfaces with table legs; similarly, how we define
‘above’ versus ‘on top off’. Another form of common sense is in
the primitive 3D models employed by the agent: the programmer
is forced to impart some of these assumptions when they construct
each primitive model, perhaps assuming that a shelf will be flat or
that a cabinet can only open in one of a handful of ways.

In some ways, these assumptions are clearly limiting: while this
approach does substantially widen the ability of an agent to handle
novelty, it does still require that the novelty can be represented as
a composition of known primitives. However, in other ways these
assumptions can be valuable: common sense knowledge provided
by a VLM can inform the physics dynamics of a simulation (e.g.,
by providing a reasonable assumption about the mass or friction
of an object). Regardless, common sense knowledge remains a key
element of this approach.

The Observability Assumption. We assume that everything
that is necessary to complete the task is observable to the agent, or
otherwise available. In the case of the food in the top cabinet, for
example, the agent is unable to see and perceive that it is there, and
so we are forced to provide it this knowledge directly. While this
is a limititation, it is not as prohibitive as it may sound.

First, recall that this approach is integrated into a symbolic
framework. As a result, the ability to inject symbolic knowledge
is trivial. This knowledge can be provided by more than just vision
processing: language can be used as a tool to provide symbolic
knowledge (consider [20, 5]), and so this approach could become
used as a part of a larger human interaction task where the goal is
spoken alongside other task-critical information.

Additionally, this knowledge could be obtained during
deployment-time and trigger a new generation of simulation
environments. While our approach to exploring the environment
focused on identifying task failure, approaches focusing on agent
surprisal would be a valuable method of identifying that an agent

has encountered new information that may be task-relevant and
worth reconstructing a set of simulations over.

Effort of domain construction. This work does introduce a
duplication of effort for the programmer: it is necessary to maintain
both a physics domain for the reinforcement learning agent and a
symbolic domain for the symbolic agent. For a purely reinforcement
learning based approach, the symbolic domain would not be
necessary; conversely, for a purely symbolic approach a set of com-
ponents for a reinforcement learning domain would not be necessary.
Additionally, a truly general agent will possess object primitives that
it may never encounter (but must be prepared for anyway).

This is certainly a limitation, but not one that eliminates the viabil-
ity of this approach. The ability to address novelty in reinforcement
learning and symbolic domains has broad impact, and the ability
to perform this outside of a simulation environment (which further
differentiates our work from prior art) us also worth considering.
However, in cases where handling novelty is not a priority, this
approach admittedly adds development effort that would not
otherwise be necessary. The decision to implement it, then, becomes
a tradeoff that should be carefully considered before attempting it.

VI. CONCLUSION

This work advances research towards an open challenge in robots
that use reinforcement learning. Novelty handling in RL agents
remains a valuable and unsolved problem, but by working towards
the real–sim–real problem we have shown that these agents can more
reasonably handle never-before-seen environments. With the object-
centric RL approach, where the agent learns directly on the objects
in the environment, our system simplifies the mapping between
simulation and reality as a classical kinematics problem, which
enables deployment while also benefiting from other features of that
approach (in particular, symbolically grounded behavior). Future
work could extend this approach by strengthening the common-
sense knowledge assumption and further explore its application in
dynamic, real-world tasks. Working towards this problem enables
robots bring the strengths of reinforcement learning to real-world
environments with novelties that could not otherwise be addressed.
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