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Abstract

The ability of AI agents and architectures to detect and adapt
to sudden changes in their environments remains an outstand-
ing challenge. In the context of multi-agent games, the agent
may face novel situations where the rules of the game, the
available actions, the environment dynamics, the behavior of
other agents, as well as the agent’s goals suddenly change.
In this paper, we introduce an architecture that allows agents
to detect novelties, characterize those novelties, and build an
appropriate adaptive model to accommodate them. Our agent
utilizes logic and reasoning (specifically, Answer Set Pro-
gramming) to characterize novelties into different categories,
as to enable the agent to adapt to the novelty while maintain-
ing high performance in the game. We demonstrate the effec-
tiveness of the proposed agent architecture in a multi-agent
imperfect information board game, Monopoly. We measure
the success of the architecture by comparing our method to
heuristics, and vanilla Monte-Carlo Tree Search approaches.
Our results indicate precise novelty detection, and significant
improvements in the performance of agents utilizing the nov-
elty handling architecture.

Introduction
Recent applications of game AI employ sophisticated search
and learning algorithms to train the agent in the hopes of de-
feating a human opponent. One such example is AlphaGo
(Silver et al. 2016), a computer program designed by Google
DeepMind. AlphaGo and other AI agents often focus heav-
ily on perfect information games, which are closed-world
environments where the rules of the game, the goals of the
players and the full state of the board are always known by
all agents. This characteristic often simplifies the training of
AI agents due to the assumption that the environment does
not change over the course of training (Brown, Sandholm,
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and Amos 2018; Nash 1951). Many games rely on the no-
tion of incomplete information in which the opponents’ ini-
tial states, game rules, or even actions are unknown, and in-
formation must be discovered through interactions (Boney
et al. 2021; Wanyana and Moodley 2021). Incomplete in-
formation games are even more challenging when novelties
are added to the game. Novelties are changes to the envi-
ronment that occur after the agent has been trained or de-
ployed in an operational setting. Such changes can include
novel entities present in the game, novel environmental dy-
namics, and even novel game rules. Novelties present a spe-
cial challenge to existing methods for training AI agents as
those methods typically make the closed-world assumption.
(Ganzfried and Sandholm 2011; Koller and Pfeffer 1995;
Heinrich and Silver 2016; Brown and Sandholm 2019).

To address the challenges of open-world environments,
this paper proposes an architecture that enables AI agents to
detect, characterize, and adapt to novelties in a multi-agent
stochastic games. We utilize a general novelty-handling
framework as an extension to the Distributed Integrated Af-
fect Reflection Cognition (DIARC) architecture (Schermer-
horn et al. 2007; Muhammad et al. 2021; Scheutz et al.
2019), and logical reasoning to detect, learn and adapt to
novelties in open-world environments. Our paper provides:
(1) a new architecture framework to handle novelties in a
multi-agent stochastic environment and (2) a new logical
reasoning approach to characterize novelties in order to learn
and accommodate them during the planning phase. After
the system detects the novelty, our architecture accommo-
dates the planning agent, in this case, a Monte-Carlo Tree
Search (MCTS) agent, by updating the planning agent’s cus-
tom evaluation function and knowledge base.

We tested the architecture with four novelty classes: 1)
action-effect; 2) action-precondition; 3) state triggers; and
4) novel entities. We injected more than 20 novelties from
these four classes into the Monopoly environment. The re-



sults indicate that our novelty handling can detect and sup-
port more than 20 novelties with high precision. A third-
party team then evaluated our architecture by injecting nov-
elties hidden from our research team. This evaluation allows
us to maximize the results’ integrity and quantify the effec-
tiveness of the architecture in a multi-agent imperfect infor-
mation environment. The third-party team also evaluated our
agent’s performance against other approaches that attempted
to solve the game of Monopoly in terms of novelty detection
accuracy and win ratio. The results indicate that our agent
can detect novelty with a high accuracy rate while maintain-
ing a dominant performance against other competitors.

Background & Related Works
Methods based on model-free deep reinforcement learning
(RL), imitation learning, and variants of Markov decision
processes (MDP) have shown great potential in dealing with
multi-agent game environments such as Monopoly (Haliem
et al. 2021; Brown, Sandholm, and Amos 2018). However,
these approaches are not explicitly developed to deal with
novelties in the environment. Even though these methods
have shown excellent results in imperfect information en-
vironments, addressing novelties remains a challenge.

RL methods have been proposed for non-stationary envi-
ronments (Padakandla, K. J., and Bhatnagar 2020; Choi, Ye-
ung, and Zhang 2000; Hester and Stone 2012), e.g., online
learning and probabilistic inference were used to learn an
offline policy in a lifelong non-stationary environment (Xie,
Harrison, and Finn 2020). This method uses past and present
experience to learn a new representation of the world. Other
approaches have attempted to develop algorithms that learn
a suitable control policy in dynamically-changing environ-
ments. However, RL approaches do not explicitly character-
ize novelties, and adaptation to novelties may often take as
long as training the agent from scratch (Goel et al. 2021).

Deep RL methods have been utilized to solve imperfect
information games (Heinrich and Silver 2016). Such meth-
ods have been shown to converge reliably to approximate
the Nash equilibrium of the game. However, solving the
problem in a larger and more complex environment remains
a challenge. Other model-free methods for non-stationary
environments include context detection and environmen-
tal model for reinforcement learning (da Silva et al. 2006;
Choi, Yeung, and Zhang 2000). While such methods can
handle small expected changes in the environment such as
traffic light control in rush hour. It remains a challenge to
deal with more complex changes, especially in a stochastic
environment. One example of such complex changes is traf-
fic control when an unexpected event blocks the road.

Integrated symbolic planning and learning methods are
new approaches to handle novelties in the open-world en-
vironment (Sarathy et al. 2021; Chitnis et al. 2021; Muham-
mad et al. 2021; Neary et al. 2021; Kaelbling and Lozano-
Perez 2013; Pinto et al. 2021; Boult et al. 2021). However,
most of the current target environments are deterministic en-
vironments with complete information known to the agent.
In contrast, we propose an architecture that combines sym-
bolic reasoning, and stochastic planning to detect and ac-
commodate novelties on the fly in imperfect information en-

vironments. Improvements are needed for these approaches
to perform well in an imperfect information environment,
where a part of the information is hidden, such as adversary
mental models, other agent’s behavior models, or random
components in the environment.

Preliminaries
Domain Knowledge and Symbolic Planning
At the beginning of the planning process, we assume the
agent starts with a complete domain knowledge of environ-
ment(Gizzi et al. 2021). The domain knowledge contains
information such as entities, predicates, symbolic states,
and operators in the environment. Formally, we denote the
domain knowledge K = 〈E ,P,F , S,O〉. The set E =
{e1, · · · , en} is a finite set of all entities in the environ-
ment. Predicates set P = {p1(x), · · · , pn(x)}, p ⊂ E , con-
tains all the predicates in the environment and their negation.
The negation of any particular predicate pi(x) is defined as
¬pi(x), with pi(x),¬pi(x) ∈ P . The set O = {o1, · · · , on}
is a finite set of all operators in the environment. Fluents
set F = {f1(x), · · · , fn(x)}, f ⊂ E , contains all fluents
in the environment. Fluents in the environment are sim-
ply numeric variables, or boolean variables that the agent
may deal with during task performance. The set of symbolic
states set is represented by S. We encode all the information
above into a planning domain using Answer Set Program-
ming (ASP) (Baral 2003). Each operator oi in operator set
O is defined by a preconditions set δi(o) ∈ P and an effects
set βi(o) ∈ P . A preconditions set δi(o) of an operator oi
includes all the predicates that need to be satisfied in order
to execute the operator. Meanwhile, the effects set βi of an
operator oi indicates the expected predicates or expected re-
sults after a successful execution of operator oi. For negation
of predicate ¬pi(x), preconditions set δi must be unsatisfied
before execution, and effects set βi must be false after exe-
cution. Finally, we construct the planning task T which in-
cludes entities set, predicates set, operators set, initial state
and goal state of the environment, T = 〈E ,P,O, s0, sg〉, so
the agent can solve all the tasks appropriately.

Multi-Agent Markov Decision
In order to model the decision making agent in stochastic
environment, we formalize the environment in which the
agent operates as a multi-agent Markov Decision Process
(MMDP) (Boutilier 1970). An MMDP modelM is defined
by a tuple M = 〈α, S, {Ai}i∈α,Σ, R, T, γ〉, where α is a
finite set of agents, identified by i ∈ {1, 2, · · · , n}; S is a
finite set of states in the environment; a finite set of actions
A contains all actions of each agent i; Σ is a joint transition
function so that Σ : S × A × S → (0, 1], i.e, the prob-
ability mass function, such that Σ(s, a1, a2, · · · , an, s) =
P (s′|s, a1, · · · , an). R is the joint reward function so that
R : S × A × S → R. T is a finite set of discrete time
steps t ∈ {1, 2, 3, · · · , T}. Finally, γ ∈ (0, 1] is the discount
factor which determines the importance of immediate and
future rewards. A solution to an MMDP problem is a policy
π. Policy π is defined as a procedure for the action selection
of an agent at a specific state. A policy π is a map from states



to actions so that π : S → A, where A is represents the set
of joint actions in the multi-agent case.

Constrained MMDP in Monopoly
We customize the traditional MMDP to describe the
Monopoly domain in a high-level concept. In traditional
MMDPs, actions are performed as a sequence {Ai}i∈α, in
which each player takes turns to take actions. However, in
Monopoly, on each turn, a subset of agents ωk, such that
ωk ⊂ α and k = 1, 2, 3, · · · , n or all agents are allowed to
act. For example, when a player decides to auction property,
all other players can bid on the property. There is also a case
where only two players interact with each other in a trade.

Novelty
Novelty is a change in the environment where the agent can
neither detect the change from logical deduction nor past
experience (not in the knowledge base). Novelty set N can
be defined as N = 〈α′, S′, {A′

i}i∈α′ , E ′,F ′〉m where, α′

represents a finite set of novel agents, so that α′ ∩α = ∅. S′

is a set of novelty set, such that S′ ∩ S = ∅. A′ represents a
set of novel actions of each agent i, such that A′ ∩ A = ∅.
We assume that the preconditions δ′ and effects β′ of the
new action setA′ are completely unknown to the agent, both
must be discovered through agent’s interactions. E ′ is used
to denote the set of novel entities in the environment, such
that E ′∩E = ∅. Finally, F ′ is used to denote the set of novel
fluents in the environment, such that F ′ ∩ F = ∅.

Problem Formulation: Novelty Detection and
Novelty Adaptation
We utilize the DIARC framework to plan, learn and adapt
to novelties in the environment (Schermerhorn et al. 2007;
Scheutz et al. 2019). The framework allows us to map enti-
ties E , symbolic states S, predicates P , fluents F and opera-
tors O in the current environment to the knowledge base K.
Based on this information, we can determine the planning
task T . However, since novelties are injected into the envi-
ronment, the plan must be changed in order to adapt to new
conditions or rules. In an effort to adapt to novelty, we must
detect and identify the new changes, update the knowledge
base accordingly, then adapt with a new plan.

As described in Section 3.2, the pre-novelty en-
vironment is described as a MMDP model M =
〈α, S, {Ai}i∈α,Σ, R, T, γ〉. We define a detection function
d(s, a), used to determine if there is any change in the envi-
ronment at a particular state s, and action a; and an identi-
fication function ι(s, a), used to determine the cause of the
change based on logical reasoning. The objective of these
functions is to model the environment after novelty (post-
novelty) M′, such that M′ = 〈α′, S′, {A′

i}i∈α′ ,Σ′, R′,
T, γ′〉. In which, α′ is the new number of agents in the envi-
ronment post-novelty. S′ is the finite states set post-novelty,
this set may includes a new initial state s′o and a new goal
state s′g . The set {A′

i}i∈α′ is the finite actions set with re-
spect to each agent α in the environment. Σ′ is the new
transition function. R′ is the new reward function post nov-
elty. Finally, γ′ is the new discount factor value post novelty.

From the new model of the world M′, we can modify the
planning task T into T ′ = 〈E ′,P ′,O′, s′0, s

′
g〉.

Novelty Handling Architecture
Agent Architecture
The previous version of novelty-centric DIARC can sup-
port novelty detection in single-agent MDP and determin-
istic environments. We extend the novelty-centric DIARC
architecture to handle multi-agent stochastic environments.
The detailed architecture is shown in Figure 1. The archi-
tecture includes four main components: environment, nov-
elty handling, knowledge base, and planning agent. In detail,
the environment component contains the game simulator,
game interface, and a goal management system. The knowl-
edge base includes game information such as actions, inter-
actions, agent information, and relations. Then, the novelty
handling component operates to detect and identify novelty
that may get injected at the beginning of the operation pro-
cess. A deeper explanation of the novelty handling system
is located in Novelty Handling section. After the change is
determined, the novelty handling component interacts with
the knowledge base by updating the detected novelty. The
system then updates this novelty in the knowledge base with
its new effects or new states. When the agent receives the
updated information, the Monte-Carlo Tree Search (MCTS)
planning agent can plan accordingly. Our MCTS agent’s
custom value function accounts for the property value of
all the agent’s assets Massets, short-term expected gain
Rs, long-term expected gainRl, and a Monopoly beneficial
gain termMMonopoly which is discussed in depth in Monte
Carlo Tree Search Planning Agent section.

Novelty Categorization and Handling
We categorize novelty into four different types: action-
effect, action-precondition, state triggers, and novel entities.

Action Effect Novelty In this novelty class, a new effect
β′(ai) is triggered by an existing action, one that was pre-
viously unknown to the agent’s knowledge. This new effect
is different from the expected effects set β(o) that is known
to the agent. In this case, effect β(ai) triggered by action ai
has been changed. We illustrate this novelty using auction
tax novelty, where there is a new additional fee on top of
the player’s bids in the auction. In order to detect this nov-
elty type, we apply action at to state St with effect β(at)
which will result in a state St+1 (expected result). If the ex-
pected state St+1 does not equal to actual state S′

t+1, and
β(at) can not be found in the overall effect set β(o), there is
at least one novelty that was injected into the environment.
After the novelty is detected, we update the new effect to our
knowledge base by adding the new effect which correlated
to the action into the effect set planning agent.

Action Precondition Novelty This class of novelty refers
to changes in the preconditions of an action. To illustrate
this novelty in the Monopoly game, we inject a restricted
color novelty, where building houses in a specific color set
is not permitted. In this class of novelty, the precondition
set δ(ai) ⊂ δ(o) of at least one action has been changed in



Figure 1: The overall architecture of the novelty handling framework in a stochastic environment

the environment; this includes the case where new precon-
dition sets are added. We apply Algorithm 1 to detect the
novelty and update the agent’s knowledge base accordingly.
Two scenarios may occur in this type of novelty. In the first
scenario, all preconditions for action are satisfied. However,
the action fails to be completed successfully during its ex-
ecution. In the second scenario, the action is successfully
executed despite some unmet preconditions. After the nov-
elty is detected, we compute the new set of preconditions of
the action. We also evaluate the novelty’s effects on our plan
and update our planning custom value function accordingly.
For example, restricted color novelty may negatively affect
our long-term expected gain and Monopoly beneficial gain.
After the novelty is detected, we adjust the value function as
to avoid investing in the restricted color.

State Trigger Effect Novelty A new effect is triggered in
this novelty class when the game or the player is in a specific
state. The new effects β′(si) are entirely unknown to the
agent’s knowledge. In a typical scenario, state St and next
state St+1 would be the same if the agent does not perform
any action. However, state St can now trigger an effect in the
game that can cause state St+1 to change without any action.
For instance, we demonstrate this novelty in Monopoly by
changing the Go Increment, where we change the amount of
money players may receive after they pass Go. In order to
detect this class of novelty, we must compare the discrep-
ancy between the actual next state and the expected next
state. If no action is taken in the current time step, the actual
next state of the environment has changed. Thus, there is a
difference between the actual and expected next state. This

event means there is at least one state trigger effect novelty is
injected into the environment. After the novelty is detected,
we update the state knowledge base by adjusting the state-
transition Σ according to the new changes, Σ → Σ′. We
also update all the components of the MCTS value function
accordingly in order to accommodate the novelty.

Novel Entities In this novelty class, a completely new en-
tity is added to the environment. These new entities include
additional new dices, new properties, or new property types
to new rules, new win conditions. Some of the new entities
are categorized as below:

1. New Action: This class of novelty contains new actions
available to the agent. In detail, this novelty extends the
action space A to a new action space A′ which includes
all the old actions and new actions.

2. New State: This class of novelty contains new states to
the environment. In detail, this novelty extends the state
space S to a new space S′.

If new entities are injected into the environment, changes
may occur in the state space S, and action space A. Hence,
we provide a simple detection mechanism to detect this type
of novelty. In this detection mechanism, we monitor the state
space, action space, and goal space. Suppose there is any
certain change at any particular time that results in the differ-
ent new state space S′, and action space A′. The system de-
tects these changes and reports the novelty immediately. The
system updates the state space, and the action space, based
on the novelty detection results. Finally, this new knowledge
is applied to the MCTS planning agent. Novelties that can
change action and goal spaces are essential to detect and



Algorithm 1 Action Precondition Novelty Detection

1: Initialization: State Space S, Action Space A, precondi-
tion Set of all actions δ(o),

2: ND = False . Novelty Detected
3: t = 0 . Time step
4: while Game is not end do
5: Case 1: All precondition δ(at+1) for action at+1 are

satisfied but action at+1 is not executable
6: if δ(at+1) == True ∧ at+1 == False then
7: ND = True
8: Case 2: At least one precondition for action
At+1 is not satisfied but action at+1 is executable

9: else if δ(at+1) == False ∧ at+1 == True then
10: ND = True
11: else
12: ND = False
13: end if
14: if ND == True then
15: δ(o).insert(δ(at+1)) . Update Precondition

Set
16: Massets ←M′

assets . Update assets value
17: Rs ← R′

s . Update short-term gain
18: Rl ← R′

l . Update long-term gain
19: MMonopoly ←M′

Monopoly . Update
Monopoly beneficial value

20: end if
21: t = t + 1
22: end while
23: return ND

adapt since they can dramatically change the game dynamic
(i.e. winning conditions, or new important actions).

Novelty detection and identification using Answer
Set Programming (ASP)
We monitor the game board as communicated by the game
server and continually compare it with our “expectation” of
the game board state. To compute our expectation of the
game board state, we use answer set programming (ASP) to
represent states of the game board, represent various actions
and their preconditions, end effects, and do hypothetical rea-
soning about the effect of actions on the game board state.
The game server gives us the real game board states and ac-
tions that have occurred between two states. Starting with a
particular game board state, when we notice a discrepancy
between our expectation of the next game board state and
the real next game board state we surmise that something
must have changed with respect to the game, i.e., a novelty
may have been introduced which makes some aspect of our
domain (of the game) representation incorrect.

Next, the agent uses a novelty identification module
to characterize the novelty. This module has several sub-
modules (which can be run in parallel), each focused on
determining a specific type of novelty. Each novelty iden-
tification sub-module uses the same ASP code (except two
changes) that is used for hypothetical reasoning about the ef-
fect of an action. The first change is that, a particular param-

eter, which is the focus of that particular sub-module, which
was originally a fact, is now replaced by “choice” rules of
ASP that enumerate different values that the parameter can
take. The second change is that constraints are added to re-
move possible answer sets where the predicted game board
state does not match with the observed game board state.
The answer sets of the resulting program give us the values
of the parameter which reconcile the predicted game board
state and the observed game board state. If there is only one
answer set, and thus a unique parameter value, then if this
value is different from, the value that we had earlier, then
we have identified a novelty. Now we can update our ASP
code that was used for hypothetical reasoning by simply re-
placing the earlier value of the parameter by the new value.

Monte Carlo Tree Search Planning Agent
Our agent uses Monte-Carlo Tree Search with a custom
value function as a method for selecting its next action.
MCTS is a method which can be used to make an optimal
decision or choose the winning path based on the statistical
simulation of each state or move in the game.

Selection: In this stage, a leaf node is chosen that has the
highest score. The score is computed using a customized
value function. The function accounts for property value of
all the agent’s assetsMassets, short term expected gainRs,
long term expected gainRl, and a Monopoly beneficial gain
termMMonopoly . i.e.

V =Massets +Rs +Rl +MMonopoly

A leaf node is a node that contain no child nodes. To ensure
the algorithm thoroughly explores different paths, it selects
a leaf node that has been ignored for a certain amount of
iterations instead of the leaf node with the highest score, or
most potential to win.

Expansion: Child nodes are created that contains the
next board state from the selected parent node. The expan-
sion stops after a fixed search depth or level. Due to the
randomness of the dice’s roll, we only applied a one-step
look-ahead for the expansion. This constraint prevents the
agent from taking too long to go through irrelevant nodes.
This optimization results in an asymmetrical tree growth
where the search more frequently focuses on visiting rele-
vant nodes. Further enhancements were made to MCTS to
encode domain-specific game knowledge into the search.

Simulation: After expansion, a simulation of the game is
run to calculate the success probability of each node.

Back Propagation: Based on the simulation results,
MCTS updates every node in the winning path. The optimal
decision is chosen according to a desired distribution.

Environment Implementation
Monopoly
Traditional Monopoly, shown in Figure 2, is a multi-player
adversarial game where players roll dice to move across the
board. Monopoly is an imperfect information game since
community cards, chest cards, and trades potential are un-
known. The game can support up to 4 players, describe in
Table 1. The 4 players start at the same position, the Go



Figure 2: Classic Monopoly Board
tile. The game’s objective is to be the last player standing
in the game after bankrupting others. This goal is reached
by buying properties, monopolizing color sets, and develop-
ing houses on properties. If one player lands on a property
owned by another player, they get charged rent or a fee. Af-
ter monopolizing color sets and developing houses, players
can charge higher rent or fees when the other players land
on their properties. Any plan of action in the game needs
to be adapted to dice rolls and decisions of other players.
These characteristics of the game make it more challenging
for integrated planning and execution. In the game simula-
tor, novelties can be injected on top of the standard game to
study how the agent reacts to these changes.
Novelties in Monopoly
We implement all four types of novelty discussed in Novelty
Handling section into a classic Monopoly game. Some ex-
amples of actual Monopoly novelty are described as below:
• We illustrate action effect novelty in the Monopoly game

using a sell property percentage novelty for action effect
novelty. In a classic Monopoly game, when a player sells
their property to the bank, they receive 50% value of the
property. However, when we inject sell property percent-
age novelty, the sell rate goes from 50% to 75%.

• To demonstrate the action precondition novelty class in a
Monopoly game, let us look at the restricted color nov-
elty which is shown in Figure 3. The figure describes the
game’s current state where properties ownership is illus-
trated using players’ icons, and buildings are shown using
house and hotel icons. When players monopolize a prop-
erty’s color set in the Monopoly game, players can build
houses and hotels on those properties. However, when the

Player Symbol
1 Dark Star
2 Blue Square
3 Yellow X Mark
4 Purple Circle

Table 1: Symbol description for players in the game

Figure 3: Restricted Color - Action Precondition Novelty

Figure 4: Assigned Properties - State Trigger Effect Novelty

restricted color novelty is injected into the game, players
can not build houses and hotels on a specific color set.

• We illustrate state trigger effect novelty using assigned
properties novelty, show in Figure 4. In a classic
Monopoly game, all players start at the same position and
own no property. The bank owns all the properties at the
beginning of the game. When assigned properties novelty
occurs, all players are assigned random properties at the
beginning of the game. All the properties are distributed
equally to 4 players and the bank do not own any proper-
ties at the beginning of the game.

• For new entities novelty, we create a new board orienta-
tion by swapping positions of properties and making mul-
tiple copies of these properties, show in Figure 5.

Evaluation & Results
Internal Evaluation
For the internal evaluation, we conduct experiments to test
the novelty detection performance, and adaptive agent per-



Figure 5: Swap and Extend Board - New Entities Novelty

formance for all four types of novelty. We collect data in a
tournament set up, in which a series of games are played
to determine the winner. To measure the novelty detection
performance, we perform 10 tournaments of 20 games for
each novelty within a novelty type. We test at least 5 indi-
vidual novelties for each type. Each novelty is injected at a
random point of the tournament. We then measure the per-
cent of correctly detected trials (CDT), recall, and detection
delay in terms of the number of games after novelty was in-
jected. In this case, a trial includes all the tournaments that
are tested for one novelty. Percent of CDT is the percent
of trails that have at least one True Positive and no False
Positives. To evaluate adaptive agent performance, we mea-
sure the win rate of the MCTS agent with and without the
support of novelty handling architecture against a heuristic
agent which embedded some of the most common strategies
in Monopoly. Finally, we compute novelty reaction perfor-
mance (NRP) of the agent based on the following formula:

NRP =
WPostNovelty

WPreNovelty

Where, WPostNovelty is the win rate of the MCTS agent
post-novelty. WPreNovelty is the win rate of the MCTS
agent pre-novelty. Table 1 demonstrates the novelty detec-
tion performance in 200 tournaments. The results show that
our model has 100% percent of correctly detected trials for
novelty detection across four types of novelty. The overall
results are expected though it is important to note that the
recall rate of action effect novelty, and action precondition
novelty is lower than the other two types of novelty. It also
takes more games for the agent to detect these novelty cate-
gories. These results are due to the nature of action novelty
and action precondition novelty. We can only detect these
novelties types when a specific action is executed. Due to
the randomness of the Monopoly game, the action may not
happen throughout one entire tournament. For example, we
cannot detect restricted color novelty when the agent does
not have a chance to monopolize and try to build houses

on the specific color set. Table 2 shows the overall perfor-
mance against a heuristic agent which knows the novelty.
Even though the agent with architecture support outperforms
the vanilla MCTS agent without novelty handling, there is
not much of a difference between them. Some novelties can
have an essential effect on the game. For example, restricted
color and extended board novelty can significantly affect the
agent’s strategies for buying and trading properties. On the
other hand, other novelties such as sell house, or sell prop-
erty rate can have minimal effects on the game.

External Evaluation
The external evaluations were performed by a third party,
which created a different set of novelties and evaluated our
agent based on three different novelty levels below:
• Level 1 [Class]: In this level of novelty, a new class of

object or a change in existing objects is injected in the
Monopoly game. Auction tax novelty is a good example
to present this class.

• Level 2 [Attribute]: For attribute novelty, some existence
actions or effects are changed. For instance, jail fine can
be changed from $50 to $200.

• Level 3 [Representation]: In this level, a new novelty can
change the board orientation or structure. An example of
this novelty is swap and extend the Monopoly board.
A total of 500 tournaments were run to collect the data.

More than 50 novelties were injected in total during the
evaluation process. Tournaments were started with a clas-
sic Monopoly game with no novelty. At some random point
throughout the tournament, novelties were injected. To avoid
ambiguity between novelties, only one level of novelties was
injected in a tournament. The overall results are shown in Ta-
ble 4. The results consist of three performance metrics: M1
(CDT), M2 (NRP), and M3, overall win rate of the agent
against the baseline agent.

Table 4 shows the results of our agent and the best com-
petitor’s performance in different novelty setups. With re-
spect to the percent of CDT, our agent outperformed our

Novelty Type Percent
of CDT

Recall Detection
Delay
(number of
games)

Action Effect
Novelty

100.00% 95.56% ±
50.00%

2.60±3.65

Action Pre-
condition
Novelty

100.00% 84.44% ±
50.62%

2.37±2.90

State Trig-
ger Effect
Novelty

100.00% 100.00% 0.20±0.40

New Entities
Novelty

100.00% 100.00% 0.13±0.18

Table 2: Internal Evaluation Results for Novelty Detection



Novelty Type Win rate of
MCTS agent
with the ar-
chitecture

Win rate of
non-adaptive
MCTS

NRP

Pre novelty win rate: 76.48%
Action Effect
Novelty

79.94% ±
1.74%

73.20% ±
2.04%

1.05

Action Pre-
condition
Novelty

82.09% ±
2.17%

68.00% ±
2.83%

1.07

State Trig-
ger Effect
Novelty

74.85% ±
6.93%

67.60% ±
11.13%

0.98

New Entities
Novelty

75.50% ±
6.38%

68.80% ±
10.93%

0.99

Table 3: Internal Evaluation Results for Agent’s Perfor-
mance Against Heuristic Agent with Novelty

Novelty Level 1: Class
Metrics Performance Top Competitor’s

Performance
Mean ± SD Mean ± SD

M1. Percent of
CDT

30.94%± 8.16% 14.78%± 7.21%

M2. NRP 86.49%± 4.94% 73.65%± 4.73%
M3. Win rate 54.97%±18.62% 54.50%± 8.13%

Novelty Level 2: Attribute
M1. Percent of
CDT

71.89%± 8.27% 67.67%± 7.56%

M2. NRP 113.44%±4.30% 64.82%± 5.42%
M3. Win rate 75.47%± 13.9% 59.02%± 9.42%

Novelty Level 3: Representation
M1. Percent of
CDT

23.33%± 6.44% 9.44%± 4.33%

M2. NRP 116.97%±3.96% 78.97%± 4.23%
M3. Win rate 78.22%± 2.69% 58.99%± 6.87%

Table 4: External Evaluation

competitor across all the novelty levels. In detail, our agent
performed two times better in all novelty types. Despite
some limitations on novelty detection in class and repre-
sentation novelty, the agent also achieved a very high NRP
rate across all different settings. The results indicate that our
agent can adapt to changes in Monopoly environments, es-
pecially in level 2 and level 3 novelty. Our agent win ratio
was 76.48% against the baseline agent before novelties were
injected. After novelties were injected, our agent perfor-
mance remained relatively the same at 75.47% and 78.22%
for level 2 and 3 novelty. In comparison, the win ratio of the
next best agent is only around 60%. The results also suggest
that we should improve novelty detection on level 1 and level
3 novelty in which our architecture only had around 30% of
CDT. Overall, the evaluation results reflect our agent’s capa-
bility to detect novelties accurately and adapt to those nov-
elties to enhance the agent’s performance.

Discussion

The results indicate that the MCTS agent provides outstand-
ing solutions for the game despite the complexity of the ar-
chitecture and different levels of novelty. The win rate is rel-
atively high (above 70%) for most novelty types and dif-
ferent accommodation methods. Regarding novelty identifi-
cation, we compose individual ASP novelty detection com-
ponents for each type of novelty, e.g., the novelty of factor
change when freeing a mortgaged property or the novelty
of penalty change when getting out of jail. If one specific
novelty is injected in the game, say the novelty of penalty
change when getting out of the jail, when the action re-
lated to this novelty type is executed (get out of jail in
this case), the ASP novelty detection component composed
explicitly for this novelty type will be triggered, so that we
will know which type of novelty is injected.

Conclusion and Future Work

This paper presented a new agent architecture for novelty
handling in a multi-agent stochastic environment that can
detect, characterize, and accommodate novelties. Results
from internal and external evaluations highlight the effec-
tiveness of the architecture at handling different levels of
novelty. However, the results also show some architecture
limitations in novelty detection and identification.

A limitation of our architecture is that it cannot explic-
itly handle multiple novelties at the same time. The novelty
detection mechanism may not distinguish which novelty is
causing the observed changes from what is expected. An-
other limitation is that some novelties can only be detected
if the agent performs an action or is put into a specific sce-
nario. For example, when the agent successfully builds a ho-
tel, the agent is most likely in a winning position and will not
sell the hotel, hence any novelties related to selling proper-
ties will not be encountered. In other words, our agent does
not explicitly explore the environment looking for novelties.

These limitations guide us to new approaches to improve
the architecture. The first approach is probabilistic reason-
ing, which can help us overcome the multiple novelties lim-
itation. For this approach, the agent can operate an add-
on classification model to identify the exact novelty once
the novelty is detected. Additionally, probabilistic reasoning
may provide a more robust way to identify novelties instead
of solely relying on logical reasoning. The second approach
is to learn and explore the environment fully. This approach
tackles the missing novelty limitation. This method can sug-
gest the agent take actions that it has not taken before, and
help the agent to discover new novelty. We can also explore
a new direction to detect and accommodate novelty (Pi-
otrowski and Mohan 2020; Peng, Balloch, and Riedl 2021;
Li et al. 2021). While the new potential approaches may
cause the agent to worsen its performance to explore the en-
vironment thoroughly, it may benefit the agent in the long
run when the agent can utilize that novelty to reach the final
goal.
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