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Abstract

This paper presents a hybrid cognitive model engaged in ex-
periments demonstrating a successful mechanism for applying
top-down contextual bias to a neural speech recognition sys-
tem to improve its performance. The hybrid model includes
a model of social dialogue moves, which it uses to selectively
bias word recognition probabilities at a low level in the neu-
ral speech recognition system. The model demonstrates how
symbolic and neurologically inspired components can success-
fully exchange information and mutually influence their pro-
cessing. Furthermore, the biasing mechanism is grounded in
brain mechanisms of perceptual decision making.
Keywords: Speech Recognition; Liquid State Machine; Dia-
logue Context; Top-Down Bias; Signal-to-Token Conversion

Introduction
Complex knowledge-based cognitive processes are imple-
mented in various electro-chemical mechanisms in the human
brain. While high-level cognitive processes are often viewed
as symbolic and discrete, low-level neuronal processes are
typically construed as subsymbolic and continuous. More-
over, high-level processes are taken to operate on structured
representations, while low-level processes will usually not
be representational at all. Two key challenges in cognitive
science are thus to (1) understand how high-level processes
are realized in “neural hardware” and (2) how they can in-
teract with low-level processes (e.g., how discrete symbolic
knowledge can influence continuous subsymbolic processes
and vice versa). We will focus on the second challenge in this
paper.

While connectionist computational modeling has made
significant progress in addressing (1) over the years, pro-
ducing more and more refined neurologically plausible mod-
els of cognitive functions (e.g. for a discrimination task
(Machens, Romo, & Brody, 2005-02-18 00:00:00.0)), fewer
efforts have been made to address (2). Only recently, hierar-
chical Bayesian models have been proposed as a natural, sys-
tematic way to connect higher-level to lower-level processes
(Kemp & Tenenbaum, 2008). We will follow this modeling
approach. Our goal is not to provide realistic implementa-
tions of higher-level cognitive processes in lower-level neural
processes, but rather to focus specifically on the interactions

between the two types of processes and how they can inform
each other.

Hierarchical Bayesian modeling often focuses on the
“computational level” (Marr, 1982), showing how higher-
level processes can influence lower levels functionally (e.g.,
by showing how distributions of higher-level structures con-
strain distributions of lower-level items). In contrast, our ap-
proach attempts to address all three levels at the same time.
This is because these levels cannot be considered in complete
isolation in cases where higher-level processes have to inter-
act with lower-level processes in real-time contexts and with
real-world inputs. Specifically, we claim that the nature and
time-course of low-level processes imposes significant con-
straints on the possible ways of exchanging information with
higher-level processes. Proposals that do not intrinsically in-
corporate those constraints might result in functioning, but
unrealistic models which are of limited use in cognitive theo-
rizing. For example, a hierarchical Bayesian model of natural
language processing might be able to show that high-level
knowledge about grammar can successfully bias low-level
speech processing, but whether that particular computational
way of biasing is actually feasible and realistic in humans can
only be determined by taking algorithmic and implementa-
tion constraints into account. This is because there are many
ways in which higher levels might be able to positively influ-
ence lower levels at the computational level, none of which
are realized in humans.

To that end, this paper makes three contributions: first, we
will present a general way of integrating high-level processes
operating on structured symbolic knowledge with low-level
neural processes with unstructured signals; second, we will
show in the specific context of real-time biologically plausi-
ble speech recognition how high-level knowledge about dio-
logues and mental states of interlocutors can be used to dy-
namically adjust parameters in the neural speech recognizer
to improve recognition performance, and third we will pro-
vide results from a real-time evaluation of the implemented
model. The model includes a biologically plausible neural
speech recognizer, a statistical/symbolic natural language un-



derstanding system, and a logic-based model of pragmatical
and mental state inference. Previously, we have addressed
the bottom-up transfer of information, i.e., conversion from
the continuous stream of auditory neural firings to symbolic
word tokens expected by a natural language processing sys-
tem (Veale & Scheutz, 2012b). In this paper we address
the reversed direction, the top-down transfer of information
and biasing of low-level processes. Specifically, high-level
knowledge-based representations of dialogue and interaction
context will be used to bias the auditory neural firings to im-
prove word recognition performance in spoken language dia-
logues.

Background

In humans and other animals, perceptual decisions are mod-
ulated by system state in a top-down manner. Top-down bi-
ases have been documented empirically in a variety of con-
texts such as vision search (Chen & Zelinsky, 2006), percep-
tual decision about motion (Hanks, Mazurek, Kiani, Hopp,
& Shadlen, 2011), auditory disambiguation (Hannemann,
Obleser, & Eulitz, 2007)), and others. Furthermore, we are
beginning to understand the mechanisms underlying these bi-
ases thanks to a combination of neurophysiological studies
and behavioral research (e.g. see (Hanks et al., 2011). Per-
ceptual decisions can be well-modelled using parallel diffu-
sion processes (Ratcliff, Gomez, & McKoon, 2004), and there
is evidence that these processes are realized in the brain as
neural integrators collecting evidence for each alternate hy-
pothesis independently. Prior probabilities influence the neu-
ral integrators based on the past experience of the organism.
These influences have been shown to be caused by top-down
biases, although some evidence exists that sensory cortex
parameters also adapt to match environmental priors (Fiser,
Chiu, & Weliky, 2004), which are outside the scope of this
paper (Veale & Scheutz, 2012a). The shape and parameters
of the thresholds and the bias functions responsible for top-
down biases on behavior are still under active investigation
(Hanks et al., 2011). However, the detailed behavior of these
processes is not necessary to implement a working model that
takes advantage of the general mechanism of top-down bias
to improve perceptual decisions.

In this paper we are specifically interested in top-down bi-
ases on auditory word recognition. Contextual biases on word
recognition are ubiquitous in the everyday world. For exam-
ple, visual context and gesturing can be used in noisy situ-
ations to produce a sensible hypothesis for what a speaker
is saying. This is not a novel observation. Top-down bi-
asing of speech recognition probabilities have been investi-
gated in a traditional speech recognition system (e.g. (Young,
Hauptmann, Ward, Smith, & Werner, 1989)). Our work dif-
fers from this previous work in that the speech recognition
system is built of biologically-plausible neural circuits mod-
elling the early human auditory system. Although the general
concept of using context to bias state in the speech recognizer
is similar, the non-symbolic nature of the speech recognizer

in our system requires serious reconsideration of how to ac-
tually implement the top-down bias. In this paper we adopt a
simple approach and bias the temporal integrators represent-
ing the competing word categories, which directly influences
the symbolic output of the speech recognizer.

The next section presents a short overview of the two most
relevant portions of the hybrid model used in this paper. It
describes the mechanism for top-down biasing of the neural
speech recognizer, and overviews how the system operates.

Model Overview
The architecture of the cognitive model used for the experi-
ments in the Experiment Setup Section is summarized in Fig-
ure 1. The neural speech recognizer (LSM ASR) is responsi-
ble for translating the acoustic signal into text tokens, which
are sent to the NLP component. The NLP component parses
the text tokens, and performs semantic analysis and utterance
type classification. The dialogue system receives semantic
information from NLP and updates the agent’s beliefs, based
on a pragmatic analysis (Briggs & Scheutz, 2011). The dia-
logue component also tracks the state of the current dialogue
exchange, allowing for predictions about expected upcoming
utterance types. Details of how biasing is implemented in the
speech recognizer and Dialogue components are presented in
the sections below. The model is implemented in the DIARC
cognitive architecture (Schermerhorn et al., 2006), whose nat-
ural language capabilities have been demonstrated in human-
robot interaction scenarios 1 (Cantrell, Scheutz, Schermer-
horn, & Wu, 2010; Cantrell, Schermerhorn, & Scheutz, 2011;
Briggs & Scheutz, 2012).

The Dialogue Component
The dialogue component contains knowledge of common di-
alogue exchange patterns, such as those in Table 1.

Table 1: Dialogue exchange patterns

Exchange Pattern Dialogue Move Sequences
Statement-Ack Pair Stmt(α,β)→ Ack(β,α)

Yes-No QA-Pair (pos) AskY N(α,β)→ ReplyY (β,α)
→ Ack(β,α)

Yes-No QA-Pair (neg) AskY N(α,β)→ ReplyN(β,α)
→ Ack(β,α)

QA-Pair AskWH(α,β)→ Stmt(β,α)
→ Ack(α,β)

Stmt(α,β) denotes a statement utterance direct from agent
α to agent β, while Ack(β,α) denotes an acknowledgment
(e.g. “okay”) from β to α. AskY N and AskWH denote a yes-
no question and general question, respectively.

In this paper we focus on sending bias information to the
LSM ASR component in the case of yes-no question-answer
(QA) pairs. When the dialogue component detects a yes-no
QA-pair has been entered, it sends a list of expected words

1http://www.youtube.com/watch?v=RJ1VSIi1CM4



Figure 1: Information flow through the natural language system. The blue arrow indicates the top-down dialogue context bias
on the ASR component introduced in this paper.

to the LSM ASR component, specifically “yes” (ReplyY ) and
“no” (ReplyN). For each expected word xi, a weight value
0 ≤ wi ≤ 1 is also sent to the LSM, denoting how much to
weight xi relative to other biased words (where 0 is equivalent
to no bias and 1 indicates maximum bias).

The Speech Recognizer

The neural speech recognition system employed in this pa-
per has previously been used to perform speech recognition
for real-time human-robot interaction tasks (Veale & Scheutz,
2012b). The system converts from speech input streams to
word tokens that can be used by other components of the
cognitive model. The speech recognizer employs the liq-
uid state machine (LSM) computational paradigm (Maass,
Natschlager, & Markram, 2002) to perform recognition on
audio input streams. The LSM is implemented using spiking
neurons, and readouts are trained via linear regression. Fig-
ure 2 presents the main components of the speech recognizer.

Sound is processed into auditory nerve firings correspond-
ing roughly to the strength of frequency channels in audi-
tory input (Figure 2, left). These neurons project to several
groups of pre-processing neurons (superior olivary complex)
via groups of differently parameterized synapses, resulting in
neurons sensitive to the onset/offset/passthrough activity for
each cochlear channel. These pre-processing neurons in turn
project randomly to the recurrent circuit (liquid), which is a
large circuit of randomly connected spiking neurons. “Read-
outs” (discussed below) are trained via linear regression on a
corpus of sound files, with supervisor vectors set to +1 for all
instances of the target category and −1 otherwise. Addition-
ally, all readouts are counter-trained against a “noise” corpus
in which every readout’s supervisor vector is −1.

Signal-to-Token Conversion Readouts (perceptrons) are
trained via linear regression to respond positively to liquid
activity patterns similar to liquid activity patterns evoked by
the word examples they were trained on. Readouts are in-
tegrated over time with exponential decay (low-pass filtered,
time constant 20 ms), and the value of these are continuously
summed into the diffusors (right). In the model, readouts,
integrators, and diffusors are only updated every 20 ms. The

value of the readout integrator for readout r, σr is thus defined
by the following equation (where τσ is the time constant and
Ir is the input from the corresponding readout):

∂σr

∂t
=
−σr

τσ

+ Ir (1)

The diffusors compete with one another proportional to
how strong their input is. The value of readout r’s diffusor,
∆r, is updated according to the following rule:

∆r(t) = (∆r(t−1)+σr) ·
σr

∑ j (σ j)
(2)

This mechanism prevents the diffusion processes of am-
biguous words from reaching threshold simultaneously. Us-
ing this system, there must be the equivalent of 100 ms of
strong unambiguous evidence for a particular word category
before it crosses threshold. This evidence could be provided
by longer but weaker evidence, or by top-down bias.

Biasing Mechanism The biasing mechanism functions by
injecting energy into the readout integrators, i.e., one level be-
fore the diffusion processes. The biaser specifies which cat-
egories should be biased, and the relative strengths for those
biases. In the current paper, the amount of energy injected
with a unit strength of 1.0 is equal to amount that is injected
when the corresponding readout is active, thus up to “dou-
bling” the input to the integrator at times when its presynap-
tic readout is active. Note that this implements the “simplest”
diffusion model bias, involving linear bias to the diffusor’s
input diffusing to a constant threshold.

The result of bias is that biased words have “stronger” re-
sponses from their internal integrators, which translates to
greater force of growth towards the diffusion threshold. This
results in both faster reporting of the word (when the diffu-
sor crosses threshold), and also stronger “confidence” in the
word when the words offset is reported at the end of the word.

The LSM ASR was trained on five spoken instances of
eight different words from the same speaker: yes, no, guess,
bess, jess, joe, bob and a null response (background noise).
The audio files used for testing are the same words spoken
by a different speaker of the same gender. The words were



Figure 2: Visualization the neural model described in this paper. The pictured circuit has only 4 input channels, and a 3×3×10
recurrent circuit. The actual circuit has 84 input channels and a 5×4×20 recurrent circuit.

chosen because several rhyme or have similar phonetic com-
ponents to the “target” words “yes” (“guess”, “bess”, “jess”)
and “no” (“joe”), or share none (“bob”).

The scenario we examine in this study consists of a simple
yes-no QA-pair. The system is initiated with an intention
to know whether its interlocutor possesses a particular
mug in the belief component. The dialogue component,
which queries the belief component for intentions to know
information, generates the appropriate yes-or-no question:

Robot: Do you have the mug?

After this NL reuest is generated, a response audio file is
presented to the system. These audio files consist of “yes”
and “no” responses recorded from a different speaker. Four
conditions were examined: (1) “Yes” response, no bias; (2)
“Yes” response, with bias; (3) “No” response, no bias; (4)
“No” response, with bias. Data from the LSM (integrated
readout activity and word recognition score) was recorded at
10 millisecond intervals over the duration of the input.

Results
The time course of the diffusors (solid lines) and readout in-
tegrators (dashed lines) for every word category are shown in
Figures 3a (a “yes” trial) and 3b (a “no”trial). The primary
comparison to make is the difference in the trajectories be-
tween the biased (each figure, bottom) and unbiased (each fig-
ure, top) trials. If the top-down biasing is working correctly,
one should see a jump in activity over the unbiased trials for
the contextually-appropriate words (“yes” and “no”), and no
corresponding jump in any other words. This is precisely
what is observed: even accidental weak responses to incorrect
words (“bess” – purple in Figure 3b) do not seem to change
significantly between biased and unbiased trials, whereas re-
sponse to the appropriate word (“no”, yellow) does. Similarly

for Figure 3a, the activation of the contextually-inappropriate
yet similar-sounding word “jess” (teal) does not change sig-
nificantly between the biased and unbiased cases, yet the ac-
tivation of the contextually-appropriate yet incorrect word
(“no”, yellow) is increased. Meanwhile, the activation of
the contextually-appropriate and correct word (“yes”, red) is
stronger in the biased case and quickly advances to threshold.

As a control, a third set of experiments were run in
which the responder responded with the similar-sounding but
contextually-inappropriate word “joe” (Figure 4). In this
case, the trajectories for all words do not differ significantly
between the bias and unbiased conditions. However, in the bi-
ased condition (Figure 4, bottom), a slight jump in the recog-
nition of the contextually-appropriate word “no”is seen near
the end of the utterance. This is expected because the tail-
ing end of “no” is similar to “joe”, and the additional con-
textual bias on the “no” category was sufficient to produce a
small amount of drift in the diffusor for the period of similar
sounds.

Experimental Setup
In terms of quantifying the advantage, one can look at the
point at which recognition of the word reaches the confidence
threshold (black horizontal bar). The diffusor in the “yes”
unbiased condition (Figure 3a, top) crosses the recognition
threshold at approximately 540 ms, whereas with bias the dif-
fusor crosses the recognition threshold at approximately 470
ms (bottom), demonstrating a reduced recognition time. Note
that the readout values for both “yes” and “no” responses are
significantly increased in the biased condition compared to
the unbiased condition, as both are anticipated as possible
answers (whereas the readouts for the other word nodes re-
main relatively unchanged in amplitude). In the “no” unbi-
ased condition, the diffusor crosses the recognition thresh-
old at approximately 480 ms (Figure 3b, top), whereas with
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(a) Response to “yes” stimulus.
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(b) Response to “no” stimulus.

Figure 3: LSM ASR responses to “yes” and “no” stimuli in no bias condition (top) and bias condition (bottom). The trajectory
of activity for the readouts and diffusors for all trained words in response to the injected sound is plotted over time after
the question is asked. Dotted lines represent the individual readout integrators for each word, while solid lines represent the
diffusors. In both cases, the diffusor for the correct word (red solid line on left, yellow solid line on right) crosses the threshold
significantly quicker in the bias condition (bottom). The influence of the top-down bias mechanism can be clearly seen in the
increased activity of the readout integrators for “yes” and “no” (red and yellow dotted lines, respectively) in the bias condition.

bias the diffusor crosses the recognition threshold at approx-
imately 360 ms, again demonstrating a a reduced recognition
time. Keep in mind that these are different words that be-
gin at slightly different times and which extend for different
amounts of time and have different volumes and distances
from the training corpus. Thus it is important to focus on the
differences within a word to see the performance increases
resulting from top-down biasing.

Future Work
Expanding and refining the contexts in which top-down bi-
asing of the speech recognizer will occur will provide am-
ple opportunities for future research. For instance, incremen-
tal parse hypotheses in the NLP component could be used to
identity likely upcoming words. Certain sentential modifiers
(e.g. “I am now at the store” vs. “I am still at the store”)
can be used in conjunction with belief models and contextual
knowledge for prediction purposes. If, for example, common
ground in the dialogue exchange was established such that
both speaker and listener knew the speaker was at the store
previously. The partial sentence, “I am still at–” would be
highly indicative of “..at the store”. These semantic and belief
model implications of these modifiers can be reasoned about

in our pragmatics system (Briggs & Scheutz, 2011). Addi-
tionally, some yes-no questions are actually conventionally
indirect forms of general questions. For instance, “Do you
know who has the mug?” is often an indirect form of, “Who
has the mug?” and may elicit a name in response. Our natural
language system has mechanisms of recognizing and reason-
ing about such indirect speech acts (Briggs & Scheutz, 2013,
forthcoming), and therefore more precise biasing algorithms
ought to be investigated.

Conclusion
This paper introduced a hybrid neural-symbolic model that
demonstrates not only the bottom-up communication of cog-
nitive tokens from continuous sensory streams, but also the
top-down biasing of neural speech recognition using predic-
tions based on expected dialogue moves. The top-down bias-
ing of the neural speech recognizer results in faster and more
confident word recognition for contextually appropriate word
categories during dialogue exchanges. The top-down biasing
mechanisms are biologically accurate in that the effect of the
top-down signal on high-level neurons in the speech recog-
nition circuit parallels that observed in “diffusion” neurons
recorded from primate association cortex.
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Figure 4: LSM readout results for “joe” response for no bias
condition (top) and bias condition (bottom). Conventions are
equivalent to figure 3. The diffusor for the actual uttered
word “joe” does not significantly differ between the biased
and unbiased conditions, crossing the threshold (black hori-
zontal line) at roughly the same point in both conditions.
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