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Abstract

Much existing work examining the ethical behaviors of
robots does not consider the impact and effects of long-
term human-robot interactions. A robot teammate, col-
laborator or helper is often expected to increase task
performance, individually or of the team, but little dis-
cussion is usually devoted to how such a robot should
balance the task requirements with building and main-
taining a “working relationship” with a human partner,
much less appropriate social relations outside that team.
We propose the “Relational Enhancement” framework
for the design and evaluation of long-term interactions,
which composed of interrelated concepts of efficiency,
solidarity, and prosocial concern. We discuss how this
framework can be used to evaluate common existing ap-
proaches in cognitive architectures for robots and then
examine how social norms and mental simulation may
contribute to each of the components of the framework.

Like many other autonomous systems, social robots
promise to occupy an increasing range of social setting
to fulfill an ever-expanding set of work roles. Human be-
ings will be interacting with and working with them on a
more regular basis. In terms of the effects of that increased
presence, however, it is clear that evaluating robots as au-
tonomous systems in such interaction contexts is not as
straightforward as measuring the success of a single task
or the success of tasks not involving any human-robot in-
teractions (HRIs). Only relatively recently in the Google
car’s course of testing have emerged serious ethical ques-
tions about its decisions in dangerous circumstances (where
to go and whom to harm in a complex crash scenario). In
contrast to the DARPA Robot Challenge, which makes the
task goals clear and efficient completion paramount, social
robotics will typically have to track multiple concurrent ob-
jectives and values in order to integrate robots into society.

There are two facets of human-robot sociality and collab-
oration that we find deserve more explicit consideration for
evaluating collaborative work. First, the working relation-
ship between human and robot partners is itself an object
of evaluation and cultivation, devoted to a particular task
but judged as a team for completing tasks. As a dynamic
and interactive entity, this relationship may have interests
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in conflict with short-term efficiencies and task completion.
Secondly, the human-robot team may find itself in a socially
interactive environment, where interactions ripple outward
beyond the team and immediate task, engaging in various
ways with the rest of society. Evaluating a decision-making
architecture for robots as autonomous systems, then, must
incorporate more than productivity on a primary short-term
task– it may well need to gauge different scales of social
benefit that the team’s work can sustain in its environments.

We propose a framework to guide in the evaluation and
design of robots working in a heterogenous team of humans
and robots, in an environment with various levels of so-
cial interaction. We integrate two considerations – 1) work-
ing relationships developed over extended periods of time,
and the personal interest of the human agent that long-term
bonds may depend on recognizing and 2) the wider ethi-
cal lens of how human-robot teamwork contributes to so-
cial goods – into an overall framework of evaluating human-
robot teamwork, which we call Relational Enhancement.
That framework, we submit, has three interacting compo-
nents, which we designate efficiency, solidarity, and proso-
cial concern. We use a concrete scenario of a joint task to
consider two computational approaches for generating Re-
lational Enhancement: social norms and mental simulation.
Each approach, we demonstrate, has strengths and weak-
nesses in how it orchestrates efficiency, solidarity, and proso-
cial concern, suggesting a hybrid approach in design will ul-
timately be necessary.

Background and Motivation
Social working relationships between humans and robots
(or computers) is a multi-faceted research area. For some,
this topic involves the machine’s ability to engage a human
user through life-like means of representations – such as
face, voice, and affect – in order to accompany, encourage,
and plan for the human partner/client (Bickmore and Picard
2005; Salem et al. 2011). This research has empirically ex-
amined topics such as mood and overall stated willingness
to work or play with an artificial companion.

As for HRI studies of teamwork, a good deal of schol-
arship has moved toward recognizing different themes of
teamwork between humans and robots (Atkinson, Clancey,
and Clark 2014). Scholars have attempted to integrate crit-
ical notions like “trust” with detailed mapping of how hu-



man and robot agents should exchange information and exe-
cute plans (Bradshaw et al. 2009; 2012; Woods et al. 2004).
There have been several decision-making architectures pro-
posed that aim to provide anticipatory capability (increas-
ing “fluency” of collaboration), predictability (to help with
efficiency and trust), and a “common ground” of knowl-
edge (that facilitates more coordinated planning and exe-
cution) (Alami et al. 2005; Bradshaw et al. 2009; 2012;
Shah and Breazeal 2010; Shah et al. 2011). The idea that
not just tasks, but the human-robot relationships that sustain-
ably executes tasks, matter, has undergone some empirically
testing through various human-robot tasks (Alili et al. 2009;
Alili, Alami, and Montreuil 2009). It has been found that the
better the robot can communicate its own decision-making
process, the better “fluency” might result (Hoffman and
Breazeal 2004; Johnson et al. 2008). Advances of this work
have increasingly suggested that the human-robot working
relationship itself is more than a secondary function of the
primary purpose of their work– it can be understood as in-
creasing in usefulness and range in and of itself as it devel-
ops (Johnson et al. 2008; St Clair and Mataric 2015).

Our aim in this paper is to present a template for evalu-
ating the performance of human-robot teams while account-
ing for interests and effects of various social spheres (team,
organization, community). This framework, by illustrating
social interests distinct from a task’s explicit purpose, better
enables a human-robot working relationship to be assessed
as a long-term, dynamic process. Most computational theory
and testing thus far has helpfully acknowledged the practi-
cal necessity of exchanging information throughout a com-
plex task, but communication and trust in a human-robot
team could mature and bear full fruit over a range of tasks
and actions (Johnson et al. 2008). Human agents whose ac-
tions are not acknowledged, or are interrupted, or are dis-
regarded for no reason, could stop engaging in the envi-
ronment, quit learning important information and circulat-
ing it with robotic agents with whom they work. The work-
ing relationship between human and robot worker may form
a higher-level priority depending on how a task fits within
a larger mission of coordination. By emphasizing personal
considerations of the human agent and the importance of
prosocial behavior, however, we do not mean to neglect the
signal importance of the task itself being productive, effi-
cient, and effective. The success of the work in achieving a
goal is itself a means toward improving a working relation-
ship, and offers chances to serve the wider world besides.

Relational Enhancement Framework
To provide a more integrated framework for evaluating
human-robot teamwork, we want terms that bring together
the purpose and importance of the immediate task, the team
relationships that sustain the performance at that work, and
the larger societal sense of what that work accomplishes and
who benefits. The Relational Enhancement framework thus
carries three interacting components, which sometimes re-
inforce and sometimes are in conflict with each other. Effi-
ciency refers to maximizing production with the resources
(time, labor, materials, agents) that are available. Solidarity
is the shared sense within a team of what the work is, what

goals it aims for, and how team members can best consider
each other as it is executed. Prosocial concern involves at-
tention to and action toward a larger circles of agents (com-
munity, society) affected by the team’s work, including re-
spect for social norms and elements of well-being outside
the immediate task goals. Through these three components,
we are not claiming an exhaustive list of criteria for what
human-robot relationships should embody; to be sure, terms
like ”trust,” ”fluency,” ”complementary,” and many others
have great use. What these three components provide is a
basis for tracking and evaluating how relational considera-
tions may vary in scope, as it were spatially (narrower or
wider circles of people) and temporally (relationships as de-
veloped short-term and long-term). We propose that through
Relational Enhancement the performance of a human-robot
across a range of social environments can receive a more
nuanced and ethically robust form of evaluation.

Efficiency
Efficiency is a measure of how productively and econom-
ically a task is executed, achieving a specified goal with
balancing resource consumption. Efficiency generally max-
imizes reward and minimizes costs, broadly construed. In
the context of teamwork or socially collaborative effort, ef-
ficiency will naturally demand coordination and distribution
of labor (e.g., dividing up of sub-tasks, planned movements
within work-space, elements that require joint focus and ef-
fort, etc). While there can be different scales of efficiency,
its measure lies in the performance on a specific set of tasks.
The next two elements of Relational Enhancement build out
from efficiency, moving to the group or team attempting to
accomplish such a task, and then the overall social environ-
ment in which that team operates.

Solidarity
Solidarity is a measure of how a team works toward shared,
understood goals, with teammates accounting for the in-
terests and abilities of each other. It gauges the collective
strength of those working on a task, not just task outcomes.
Dynamics of solidarity may manifest themselves as a team
manages its task goals with difficulties or changes that its
members undergo in the course of work. Recognition that
an injured team member needs special attention or encour-
agement, for instance, could threaten productivity, but prove
much more valuable when that teammate recovers and com-
mits to the team with even more loyalty and drive. Solidarity
may temper judgments about immediate performance with
consideration of a member’s long-term development and po-
tential. Collectively, a team can gain solidarity over time, as
cumulative experience can yield familiarity, trust, and mu-
tual understanding. Losing solidarity, on the other hand, may
threaten longer-term efforts while not having immediate im-
pact on a task performance. As a whole, solidarity encom-
passes both trust and appropriate consideration of a team-
mate (Atkinson, Clancey, and Clark 2014).

Solidarity is especially worthwhile to consider when eval-
uating teams that need to tackle multiple tasks over time,
or act in real-time in ways that go outside the specific



task directives. It should encompass the considerations pre-
vious research has explored along lines of coordinating
joint action, such as fluency, trust, shared goals, and trans-
parency (Bradshaw et al. 2009; 2012; Johnson et al. 2008;
Salem and Dautenhahn 2015). Trust in particular will play
a large role, though accompanied by rapport muir1996trust.
To reiterate, the long-term aspects of solidarity, beyond the
metrics of a task iteration, are critical to keep in view (Bick-
more and Picard 2005). In these contexts, the team’s rela-
tionship emerges forcefully as a needed object of evaluation
and improvement.

Prosocial Concern
Prosocial concern refers to the awareness a team exhibits for
the social working environment. While solidarity is a team-
focused social priority, prosocial concern extends beyond
both the specific task and the team performing it. Teams
working in a socially-charged environment – whether a re-
pair team in a city neighborhood, or a rescue team search-
ing for people in wreckage – will face the rules, constraints,
customs, or expectations that inform and size up interac-
tions within that larger environment. Achieving or violat-
ing social norms while interacting with people beyond the
team may open up or close opportunities for the team to
carry out its work in that setting, as larger societal circles
react to the team’s work and weigh its worth. Empathy is
one form of prosocial concern that can radiate from the
team to the overall social context and affords a brief illus-
tration of how prosocial concern supplements the evaluation
of human-robot work.

Consider a robot and a human working together to pro-
vide medical assistance to an injured person. The primary
objective of the medical assistance pair is to stabilize the
person and move her into a transport vehicle for the hospi-
tal. Upon being prepared to be moved, the person yelps in
pain and tears begin to pour down her face, and family and
neighbors insist that the team stop. The team will have to
think about their task and their own teamwork, to be sure.
But their work can succeed best, both in the instance and
for future instances in this neighborhood, if the team’s per-
formance can include socially appropriate interaction with
patients and those that care about them.

To get a better idea of how efficiency, solidarity, and
prosocial concern, we will introduce a scenario whose so-
cial elements are useful benchmarks for computational treat-
ments.

Simple Demonstrative Scenario
We present a simple collaborative task to demonstrate the
challenges in evaluating the ethical behavior in human-robot
relationships and provide a couple of computational ap-
proaches that may be employed. The task to be performed
by two agents is to clear the balls from a given zone. At the
outset of the task, each agent is assigned a subset of the balls
such that every ball is assigned to exactly one agent. The task
is successfully completed once all balls have been cleared.
An additional constraint is that the task must be completed
by a specified time.

This is a simple task that can be achieved by two artifi-
cial agents, two human agents, or some combination thereof.
There is no requirement for optimality, but we take speedy
completion of the task to be preferable. Suppose that the task
is performed by two humans and the zone is a football field.
There are white balls and orange balls scattered around the
field. All of the white ones need to go into one bin, and the
orange balls need to go into another bin. The first agent, Wal-
ter, is assigned to the white balls, and the second agent, Os-
car, is assigned to the orange balls. They must complete the
task of clearing all the balls before a certain time (e.g., be-
cause another team is scheduled to use the field at that time).

Figure 1: Orange and white balls are scattered across the
football field. Walter (W) is to move all the white balls to
the white bin, and Oscar (O) is to clear all the orange balls
into the other bin.

Walter is quicker to collect his assigned balls. When he
is done, he notices that there is an orange ball nearby, but
Oscar is at the other end of the field. Should Walter pro-
vide assistance by clearing the ball? Assuming a large field
with many balls, it may require a significant amount of time
to complete the task. If Walter completes his task far be-
fore Oscar and does not have another pending task, then one
would normally expect Walter to offer assistance (especially
since there are not explicit rules prohibiting Walter to help
out). In fact, some may even consider it rude for Walter to
just watch Oscar clear the rest of the balls. Effectively, there
seems to be an implied social contract that assistance should
be provided in this context.

Now suppose that everything is the same as before ex-
cept that Walter is a fast and efficient ball scooping robot.
Should Walter assist Oscar in the same way as we would ex-
pect the human Walter to assist? I.e., does the same social
contract apply if one agent is a robot? Before we quickly an-
swer in the affirmative, consider some of the implications on
efficiency, solidarity, and prosocial concern. In terms of ef-
ficiency, it is important that the task be completed correctly.
Does Walter have the knowledge that the orange balls go
in the orange bin? It has so far only put balls in the white
bin. The solidarity of the team could be enhanced by Wal-
ter demonstrating it can be trusted. Would Walter correctly
moving the orange balls to the orange bin improve trust? Or
perhaps trust is better served by Oscar knowing that Wal-
ter will not perform any action that it has not been explicitly
told to do. How does Oscar’s personal dignity affect Walter’s
decision? Walter’s assistance could devalue Oscar’s contri-
bution and cause him to feel incompetent. As for prosocial



concern, the team needs to respect those outside of the team.
Should Walter assist if that is the only way to complete the
task before the next team arrives? Or would Walter’s assis-
tance be construed by observers as a violation of how the
community expects a robot to assist a human? We will dis-
cuss these questions and others as we review some of the
computational approaches that can be used to decide which
action the robot is to take.

Computational approaches
Many approaches found in cognitive architectures for robots
select an action based on the utility of the action. Also, sys-
tems often are able to reason about various constraints (e.g.
locations to be avoided). A significant amount of research
and development has focused on creating systems that are
fast and efficient. We briefly review here some approaches
and discuss the potential gaps between them and the Rela-
tional Enhancement framework.

Utilitarian approaches
A utilitarian approach would naturally involve the robot
making some autonomous decisions based on the expected
utility of the action, weighing the expected utility against the
expected cost. The optimal action to take would be the one
with the maximum net utility. A common approach is to use
a planning system to find the best sequence of actions

A utilitarian approach seems ideal for maximizing task
efficiency as it would select the action that maximizes util-
ity which, in turn, should be correlated with the task perfor-
mance measure. In our ball clearing scenario, once the robot
has been assigned its set of balls to clear and locates that set,
it can invoke a planner to find the most efficient manner for
it to complete its task. It is also reasonable for it predict the
best or most likely execution time for the human partner in
the task. Toward the end of achieving maximal efficiency, it
could arrange the assignment of balls such that the collective
task is successfully completed in the least amount of time.

Thus, the utilitarian approach seems suited to accom-
modate the efficiency component of our framework. It is
less clear how solidarity or prosocial concern would find
adequate accounting in this approach. Ostensibly, utilities
would need to be assigned to the features and goals of
solidarity and prosocial concern. One could offer a util-
ity for an act that builds solidarity by taking the action
the team most likely expects. An act of prosocial con-
cern, which might strengthen ties with the team’s neigh-
bors, might also invite some attempt at a utility value. How-
ever, the complications of this approach can already be
seen in explorations of trolley problem judgments. Varia-
tions of the trolley problem show that most people prefer
a non-utilitarian answer to its dilemma, finding it impermis-
sible to push one man off a footbridge to save five people
about to be run over by a runaway trolley (Mikhail 2007;
Thomson 1985) – a utilitarian solution focussing only on
saved lives would have been to sacrifice the one man on the
footbridge.

Moreover, there is evidence that people’s judgements vary
in the “by-stander problem” depending on whether the per-

son to be sacrificed is a child or a family member (Bleske-
rechek et al. 2010). While it is often possible to find some
way to assign costs and utilities to make the utility-theoretic
decision accord with human decisions (e.g., as has has been
demonstrated in (Wilson and Scheutz 2015) where a utilitar-
ian approach was used to simulate such judgments by mod-
ulating utilities based on emotional empathy and prosocial
concern), those assignments are often fairly arbitrary (e.g.,
Wilson & Scheutz did not assign systematic values for acting
with emotional empathy or for helping an agent feel compe-
tent and not inadequate).

Moreover, it is not clear how social values could receive
utilities relative to one another. Returning to our scenario,
Walter, the robot, may decide, if it is done and Oscar is still
clearing, that it is most efficient to clear any remaining balls
assigned to Oscar. Oscar, though, may end up feeling slow,
incompetent, or even useless as a result of this “help.” A
prosocial concern for the community enters consideration
through the fact that all the balls must be cleared before
the next teams arrive at the field for a game. We have inter-
related concerns, but it is difficult to pin down how they set-
tle in quantitative terms. Just some of the competing priori-
ties are the following:

• Complete the ball-clearing task in the most efficient fash-
ion

• Avoid impinging upon the other teams, or those who have
come to watch them

• Maintain personal dignity of one’s own team members

• Maintain a positive mood amongst one’s own team mem-
bers

For the most part, these options are independent, and it is
unlikely that utilities can be defined for these options such
that the utilities are valid and appropriate across all scenar-
ios. In many cases, it may be of greatest utility to complete
the task quickly. However, in other cases the personal dignity
of the human team members may be more important than
the most efficient clearing. Alternatively the relations with
those outside the team may demand promptness of clearing,
not face-saving patience for the sake of the team’s rapport.

One wrinkle in the utilitarian approach could be encoding
some rules or constraints to handle some of these complica-
tions in expectation and performance. For example, it may
maximize a measure of utility for a robot to push a person
in front of a runaway trolley to save five people who other-
wise would be be killed, but a constraint against physically
pushing or moving a human could forbid such an action.
One could encode information about solidarity and proso-
cial concern as constraints that the robot must check before
completing its action selection. A similar approach has been
used to generate ethical behavior in a robotic architecture
(Arkin, Ulam, and Wagner 2012). The robot checks the eth-
ical rules that it was given before selecting an action, and if
all actions violate some rule then the action with the great-
est utility, and the one that violates the fewest constraints,
is preferred. While this approach does improve upon a strict
utilitarian decision, it fails to capture the long-term effects of
actions, whereby solidarity and prosocial concern may rep-



resent more important aspects of the actions. Additionally,
such approaches, in order to resolve conflicts – how to act
if two actions violate a constraint or an ethical code – still
ultimately must rely on a utility value being assigned to each
alternative (see (Scheutz 2014)).

We next consider two other computational approaches to
reasoning about tasks in a way that addresses Relational En-
hancement – social norms and mental modeling. From the
outset these approaches are considered as complements of
one another and the utilitarian approach, not as mutually ex-
clusive alternatives. We have not yet implemented the fol-
lowing approaches, but explore them here to further the dis-
cussion on the development of ethical robots.

Social norms
A social norm is a common pattern of behavior identified
within a social environment. It provides guidance for how
one should act and allows other to predict how others are
likely to act. Humans participate in a variety of social norms
on a constant basis, from greeting one another to respect-
ing elders. Many of these norms have simple benefits, like
the courtesy of holding a door open for another person.
There may be no benefit to oneself, and the beneficiary
of the action may be a complete stranger and may never
be seen again. In regards to our framework, social norms
may not necessarily include an element of efficiency – at
least in the short term. On a longer-term view, one might
well view social norms as implicitly encapsulating a vari-
ety of long-term benefits around cooperative, coordinated
action. When one considers even nonverbal behaviors that
may serve as a greeting, a show of encouragement, or an
expression of empathy, it is not surprising that many artifi-
cial agents are designed to express empathy (often through
mimicry) to improve the relationship between the human
and the agent (Bickmore and Picard 2005; McQuiggan and
Lester 2007; Boukricha and Wachsmuth 2011). Task plan-
ners have also broached these kinds of social rules that
a robot agent might honor, which suggests the possibility
of social norms as means of guidance (Alili et al. 2009;
Alili, Alami, and Montreuil 2009; Shah and Breazeal 2010;
Shah et al. 2011)

In our ball clearing scenario, it may be desirable and have
an immediate benefit for the robot to provide assistance, but
future tasks may be affected. For example, perhaps the robot
can be assigned to a zone where all the red balls are to be
cleared but none of the yellow balls. This robot that has
developed trust in choosing not to clear balls it is not as-
signed (at least not without permission) can be assigned to
this more complex task. Extending this task into more re-
alistic domains, a trusted robot, one that has demonstrated
through repeated trials that it will consistently and reliably
perform as desired, can be assigned to a dangerous task that
requires collecting the red balls (food) but avoiding at all
costs all of the yellow balls (which turn into a poisonous gas
upon touch).

We propose an approach of incorporating social norms as
guidance for which action is most appropriate for an agent
to take. When multiple actions may be applicable in a given
scenario, if one action corresponds with a social norm then

this action may be preferred. We present three social norms
that may be considered in our ball clearing scenario, how the
reasoning could be used in a computational system, and how
using these norms relate to Relational Enhancement.

Requesting permission The first social norm suggests
that if an agent is available to help, it should first request
permission to help. Consider the case where the robot has
completed its task (clearing its assigned balls) and identifies
that another ball is nearby and can easily be cleared. The
robot asks if it should clear the ball, and upon receiving per-
mission it clears the ball.

A cognitive architecture using norms to select an action
could choose to apply a social norm and the corresponding
action if the current situation matches a set of conditions.
This approach would be a form of case-based reasoning, in
which an action or script is selected based on some match-
ing conditions or trigger conditions being met (Riesbeck and
Schank 1989; Ros et al. 2009). Some possible conditions,
expressed in prose and logically, for this norm are in Table
1.

Table 1: The set of conditions for the social norm of request-
ing permission. QR is the queue of pending actions for the
robot R. Req(α) is the set of requirements to do action α,
and Cap(R) is the set of capabilities of R. O is the modal
operator indicating that the proposition is obligatory, and D
indicates that the proposition is desired.

Description Condition
Robot has no other immedi-
ate task

QR = ∅

Robot is capable of doing
other task

Req(α)− Cap(R) 6= ∅

No other agent is doing the
task

∀x¬doing(x, α)

There is no expectation for
robot to assist (not neces-
sarily obligated)

¬Odo(R,α)

Increasing trust human has
in robot is desirable

Dincrease(trust(H,R))

Asking for permission to do a task that is readily available
to be done and would only be delayed by taking a moment
to request permission does not have much immediate bene-
fit. This would diminish the efficiency by which the task at
hand is being accomplished. However, the request – regard-
less of whether it is granted or not – has potential long-term
benefits, such as the following:

• build trust and respect
• express concern for the interests and desires of the other

agent
• allow the agents to arrive at a common understanding

We categorize these benefits in the Relational Enhance-
ment framework under solidarity because they are focused
on developing shared perspective and build stronger rela-
tionships within the team. We next describe each of these



benefits further and how they enhance human-robot interac-
tion in the long term.

Not acting out of impulse or as an automatic reaction to
the available ball and instead showing some constraint could
install in the human a sense of confidence that the robot is
likely to show constraint and ask for permission in other
cases as well. This may directly lead to the human trust-
ing the robot to not act in cases where it should not (such as
when it does not have permission). We could imagine a sce-
nario in which it is critical that the robot does not perform
some task even though it may be convenient for it to do so.
A trusted robot can be positioned near this task to do another
task and the human can have confidence that the robot will
not stray from its task without permission.

By requesting permission, the robot allows the human to
respond and express the interests or desires that she may
have. An obvious benefit of this is that the robot gains this
knowledge. A less tangible benefit is that the human is likely
to increasingly feel that her desires matter in the team and
that her interests are taken into account in decisions. The
benefits of this range from the human being more accepting
of a robot that considers her interests to the human being
more engaged in a team that respects her own desires.

Requesting permission allows the human to not only re-
spond with the permission (or the denial) but also additional
information. Perhaps Oscar wants to get some extra exer-
cise, or maybe he is not sure that the robot understands the
careful handling necessary for the orange balls. By choosing
to communicate before acting, the robot creates an opportu-
nity for further communication and brings the human and
the robot closer to a common understanding.

As a result of these, there may be long-term benefits to
efficiency. Improvements in efficiency may also occur as the
result of the robot requesting permission to assist. It is also
an opportunity to establish an evolving protocol that may
incorporate work history or a scope of rules. If Oscar does
wish to grant permission to Walter to assist and wants it to
regularly assist with clearing all the balls, he may reply with
a statement like, “Yes, please help anytime. Use the same
procedure as clearing the white balls, but put the orange ones
in the other bin.” Or perhaps Oscar needs to provide some
constraints: “Yes, but pick up the orange balls more slowly
so as to not mark or scuff them.”

Subordinate assistance The second social norm we
present applies when one agent is a subordinate to the other
agent, and the task presents little safety risk for the subordi-
nate agent who might provide assistance. In this case, it is as-
sumed that the subordinate agent will automatically provide
assistance and that first requesting permission is not neces-
sary.

Some of the conditions for this norm are similar to the
first norm, but we also have conditions specifying the roles
of the agents and the risk associated with the subordinate
agent performing an action. Table 2 describes the conditions
associated with this norm.

The application of this norm supports the efficiency of
completing the task, but there are also considerations for sol-
idarity. There is a recognition on the part of the robot that it

Table 2: The set of conditions for the social norm of subor-
dinate automatically assisting. QR is the queue of pending
actions for the robot R. Req(α) is the set of requirements
to do action α, and Cap(R) is the set of capabilities of R.
E[X] is the expected value of X, and θ is a threshold for the
maximum acceptable cost of failure.

Description Condition
Robot has no other immediate
task

QR = ∅

Robot is capable of doing
other task

Req(α)− Cap(R) 6= ∅

No other agent is doing the
task

∀x¬doing(x, α)

Task is trivial and non-risky
for robot

E[failed(x)] < θ

Robot is subordinate to the
human

subordinate(R,H)

is a subordinate and that being a subordinate has certain im-
plied responsibilities. The agents share a common goal of
accomplishing the ball clearing task, but the robot providing
automatic assistance allows the task to be completed faster,
whereby freeing up the human partner to pursue other goals.
Additionally, it may be beneficial for the human to gain an
expectation that the robot can and will assist in tasks even
without explicitly being told to do so under the appropri-
ate conditions. If robot continues to do so and does the task
correctly, the human-robot team may improve task perfor-
mance and take on other tasks where subordinate assistance
is ideal. Though subordinate assistance directly applies to
the team, prosocial concern can also feature in this norm. If
the pair are observed by those around the field, Oscar and
Walter’s work could have broader effects. Any appearance
of demeaning or abusive behavior by Oscar, even as a joke,
may be troubling to see in combination with subordinate as-
sistance. Following a norm of subordinate assistance there-
fore is not just a means toward task completion or team-
building – it should also be compatible with good relation-
ships between the team and its community.

Respect for others The final social norm we consider fo-
cuses on a team being scheduled to use the field at a specified
time, with their game being impossible if all the balls are not
cleared before that time. The norm in this case would be a
group-oriented one, where the work of the human-robot pair
should respect another team’s ability to use the field. One
might argue that being on time is a simple rule that is fol-
lowed (e.g., end by 7pm). But one could easily imagine a
looseness around times, with groups finishing over the time
if the next team was late. The norm of respecting a team’s
use of the field would govern that fluidity – the key would
be not holding a team up from their rightful use of the field.

The conditions for this norm are similar to the first norm
in that the robot is available to assist in the task. The con-
ditions specific to this norm describe the social context that
another agent (or team) has reserved a resource and that the



robot is currently using that resource. Finally, the normative
behavior is to take action if the action is likely to make the
resource available in time. Table 3 describes the conditions
associated with this norm.

Table 3: The set of conditions for the social norm to respect
the reserved resources of another agent. QR is the queue
of pending actions for the robot R. Req(x) is the set of re-
quirements to do action α or task t or to complete the reser-
vation ρ. The resource σ is required by the task t and the
reservation ρ. The action α is an action towards complet-
ing the task t. The time at which the task t will complete
is completionT ime(t), and start time of reservation ρ is
startT ime(ρ).

Description Condition
Robot has no other immediate
action

QR = ∅

Robot is capable of doing
other action

Req(α)− Cap(R) 6= ∅

No other agent is doing the ac-
tion

∀x¬doing(x, α)

Current task uses a resource σ ∈ Req(t)
Current task will not complete completionT ime(t)
in time > startT ime(ρ)
Next agent has reservation has(other, ρ)
Reservation requires the re-
source

σ ∈ Req(ρ)

Other action will complete in completionT ime(α)
time > startT ime(ρ)

This norm is intended to demonstrate how constraints
from and consequences upon the social environment can in-
fluence the decision as to which action the robot should take
in tandem with its human partner. If the ball clearing task
is not completed in time and some balls still remain on the
field, then the agents (and their team) are impinging upon
the ability of the other team to use the reserved resource.
The other team has the right to be upset, as there has been a
norm violation in respecting the other team and the reserva-
tions that have made. In order to avoid any conflicts with the
other team, the robot is to take an action that will complete
the task in time.

As mentioned, there is some flexibility to this norm. Per-
haps the task does not need to be completed before the reser-
vation time but before the other time arrives if they arrive af-
ter the reservation time. In that case the normative behavior
might be for the robot to do nothing (provide no assistance)
until the next team begins to arrive, and then the robot as-
sists so that the task can be completed quickly and the field
is made available for the next team.

Mental simulation with counterfactual reasoning
We now discuss an approach that allows for in-depth rea-
soning about a wide range of possible outcomes. Mental
simulation with counterfactual reasoning is well suited for

explicitly reasoning about specific effects or particular vari-
ables. An advantage of this feature is that effects of actions
relevant to each of the categories of Relational Enhancement
may be directly considered and evaluated.

Mental simulation has been applied to many domains,
including qualitative simulations of physical systems (For-
bus 1984), simulations of teammates decision-making
(Kennedy et al. 2008), and making moral decisions (Wal-
lach, Franklin, and Allen 2010). Looking at human-robot
teamwork through theory of mind and mental modeling has
already yielded some helpful proposals (Nikolaidis and Shah
2012; Hiatt, Harrison, and Trafton 2011). A recent appli-
cation of mental simulations to moral decisions simulated
the effects of prosocial concern (Wilson and Scheutz 2015).
Simulations of physical systems, teammates decisions, and
moral decisions can be viewed as examples of how mental
simulation can be used to represent and reason about details
relevant to efficiency, solidarity, and prosocial concern, re-
spectively. In this section we will discuss further how mental
simulation can address each of these categories.

An important application of mental simulation is reason-
ing about the long-term implications of actions by simulat-
ing a series of actions. In particular, the long-term effects
of a single action that is performed numerous times can be
determined by repeatedly simulating the action. Each itera-
tion of the simulation uses information from the end state of
the previous simulation for the initial state of the subsequent
simulation. For example, consider the scenario where the
robot, Walter, has completed clearing its balls and the chosen
action is to do nothing – not assist Oscar in clearing the rest
of the balls. At the end of a single simulation of this action,
Oscar has an increased expectation that Walter will respect
the division of labor that has been assigned, not assist Oscar,
and thus not attempt to clear Oscar’s balls. Repeating this
simulation, and now starting with this increased expectation
to not assist, the result is similar – further increase of ex-
pectation. Since repeatedly performing as expected is likely
to result in trust (Corritore, Kracher, and Wiedenbeck 2003;
Muir and Moray 1996), we reason that after some number
of repeated events of the robot not assisting, the human ac-
quires trust that the robot will not do more than it has been
instructed. With this trust, Oscar knows it may leave Walter
unattended to complete its portion of the task and not over-
step its bounds (though overall solidarity may include what
effects not assisting will have on Oscar’s overall attitude to-
ward Walter as co-worker, how respected as a worker Oscar
feels, etc.) As an analogy, think of a dog so well-trained and
the trainer so confident, that it may leave a freshly cooked
steak on the table, within reach of the dog, without any fear
that the dog will attempt to eat the steak.

Multi-trajectory simulation To discuss more deeply the
mechanics of the mental simulation, we consider the sce-
nario in which Walter has completed its portion of the task
and it is now deliberating upon three possible actions: 1) do
nothing, 2) automatically assist, and 3) request permission
to assist. If permission is granted, Walter will assist. If per-
mission is denied, it will do nothing. And if no response to
the request is given, then Walter will repeat the request. The



complete set of possibilities is depicted in the graph in Fig-
ure 2. Note that branches in the graph are the result of the
robot having a choice in action to take and multiple possi-
ble results of one of the robot’s actions. This multi-trajectory
simulation allows us to explore a wide range of possibilities.

Figure 2: Multi-trajectory simulation of completing the task
when Walter has finished its portion first. The simulation
represents that Walter may automatically provide assistance,
request permission to assist, or do nothing. When requesting
permission, it may be granted, denied, or no response pro-
vided.

The simulation of this scenario has six possible end states,
each describing the short-term effects of the actions taken.
As discussed above, one short-term effect is the increased
expectation Oscar has that the robot will take that particular
action. We can also analyze end state A to determine that it
is optimal because it completes the task in the least amount
of time. Repeated simulations of this scenario will present
benefits to efficiency and solidarity.

Efficiency The optimal outcome is in end state A, but
states B and C are also relatively optimal. The differences in
optimality between end state A and end state F may be mini-
mal in a single simulation, but repeated simulations produce
a wider gap between these outcomes. In terms of efficiency,
it can be concluded that always taking the action that results
in end state A is the best option.

Solidarity While always performing the action that results
in end state A is the most efficient, we discuss here how
it is not necessarily the best option for solidarity. In intro-
ducing mental simulation, we describe a scenario in which
the robot repeatedly does not assist – resulting in end state
F each time. Predictable behavior, such as always not as-
sisting, enables the human to build trust in what the robot
will do. That being said, any consistent behavior will lead
to predictable behavior and the resulting trust. Contrast this
with sometimes helping after being granted permission (end
state B) and sometimes automatically assisting (end state A).
Consider a sequence of simulations with end states A, B,
A, B, etc. Compare this with a sequence of simulations that
always results in end state A. The differences in efficiency

between these simulations is minimal, but the difference in
trust, and the type of trust involved, is more significant.

Another sequence of simulation that results in trust is
when the robot asks for permission and then assists upon
being granted permission. The implied result is that the hu-
man can trust that the robot will always ask for permission
in the future. Asking for permission has an additional bene-
fit in terms of solidarity. By inquiring what the human wants
the robot to do, there is an opportunity for the human to
express information beyond the granting or denying of per-
mission. Perhaps the robot is not to help because some of
the balls need to be specially handled or maybe the human
simply wants the extra exercise. This additional information
gives the human-robot team an increased shared perspective.
There is then the potential for the robot to make a more in-
formed decision in the future, a decision that is more repre-
sentative of the shared perspective and common goals of the
team.

Multi-agent simulation The team of Walter and Oscar is
working in some social environment, and that environment
may have other agents with which team will interact or may
influence the behavior and choices of the team. The envi-
ronment includes the local government that provides cer-
tain laws and ordinances that must be obeyed. The social
environment includes other agents, such as other teams, lo-
cal residents, or league officials. The team may have rela-
tionships with many of these agents, and these relationships
need to be fostered or maintained. For example, it is prudent
to not disturb the local residents with excessive noise, es-
pecially during normal sleeping hours. Failing to do so can
cause neighbors to be upset, damaging the relationship with
them, and hurting chances or future cooperation with them.

In our ball clearing scenario, we consider the case where
another team is scheduled to use the field soon. We describe
here how a multi-trajectory, multi-agent simulation can be
used to identify a wide range of possible outcomes. One ap-
proach is to conduct a multi-trajectory simulation of each
agent, identify the interaction points, and then simulate the
effects of the interactions (Hinrichs et al. 2011). We describe
here a slightly different approach in which we simulate the
team as we did in the previous example, but we interject
exogenous events into the simulation at relevant points and
simulate the effects of these events in combination with the
actions of the team.

Consider the case in which the robot, Walter, is deciding
whether it should help Oscar in completing the task. The
interaction with the next team scheduled to use the team de-
pends on whether the team arrives on time or late. (We make
the assumption that arriving early is equivalent to on-time
but recognize this is not always equivalent.) Walter has two
possible actions and corresponding outcomes:

1. Walter helps⇒ teams finishes on time

2. Walter does nothing⇒ team finishes late

We have two possible events introduced by the other team:

A. Other team arrives on-time

B. Other team arrives late



Combination of these event results in the interactions de-
scribed in Table 4.

Table 4: The effects of the combinations of events. Label
is the combination of events. Effects is a description of the
impacts on Team A (Walter and Oscar) and Team B (the next
team that has reserved the field).

Label Event Sequence Effects

1A

Walter helps
Team A completes
task on-time

Team B arrives
on-time

Team B appreciates field is
ready for them. Oscar is glad
the team was able to get the
task done in time. Oscar is a lit-
tle saddened by the fact that he
could not complete his portion
of the task on his own.

1B

Walter helps
Team A completes
task on-time

Team B arrives
late

Team B is ether appreciative
or has no reaction towards the
team. Oscar thinks the help
was unnecessarry and regrets
receiving help.

2A

Walter does nothing
Team B arrives
on-time

Team A completes
task

Team B is annoyed the field is
not ready. Oscar is embarrassed
and feels guilty.

2Bi

Walter does nothing
Team A completes
task late

Team B arrives
late

Team B has not reaction to-
wards team A. Oscar has pride
in being able to complete his
portion of the task. Oscar ap-
preciates Walter letting him fin-
ish.

2Bii

Walter does nothing
Team B arrives
late

Team A completes
task late

Team B is greatly annoyed that
field is not ready even with it
being late. Oscar regrets not
getting helps and feels guilty
for imposing upon the other
team.

We see here that external influences from the other team
affect the outcomes, affect team dynamics, affect relation-
ships with the social environment, and ultimately can afffect
the action choices of the robot. In scenario 1A, the relation-
ship between Walter and Oscar can improve because they
had to work together to not only complete the task but also
to avoid negative interactions with the other team. Other out-
comes resulted in pride, guilt, or regret – all impacting the
team dynamics. In addition to effects on the team, we see
that the other team may have a positive or negative reaction
to the Walter and Oscar. Negative responses could have a va-
riety of consequences, including complaints to those manag-
ing the field to direct conflict between the teams.

There are numerous possibilities for how these agents
could interact, and the multi-trajectory mental simulation is
a means of fully describing the wide range of actions and
effects that may occur. In some cases, this elaborate descrip-
tion can make an action choice obvious. For example, if

all actions but one result in a negative outcome, then the
one positive action is probably the best choice. In cases like
we have presented here, where each action in combination
with exogenous events results in some combination of pos-
itive and negative outcomes, some additional mechanism is
needed to make the final decision. The goal of the mental
simulation is to provide a sufficient level of information for
the decision mechanism to make the best possible choice.
This is an example where the social norms can be applied
after having done the mental simulation. If the robot under-
stands that it is an appropriate normative response to avoid
irritating the other team, then the action available to the robot
that does not result in this negative outcome is for the robot
to act. However, if the situation dictates that the appropri-
ate norm is to ensure that the human teammates morale and
mood stay positive, then allowing the human to complete the
task has the chance for greatest reward.

In summary, the combinations of events and event se-
quences can be quite vast, and mental simulation attempts
to sort through many of the possibilities to reach a more in-
formed decision. The simulation provides a mechanism by
which we can explore information relevant to all aspects of
Relational Enhancement by explicitly modeling and simu-
lating the effects on efficiency, solidarity, and prosocial con-
cern. We have given some examples where the action re-
sulting in the greatest efficiency does not necessarily benefit
solidarity or prosocial concern. By repeating the simulations
we can attempt to explore the long-term effects of these ac-
tions, hopefully leading to the decision that is best short and
long-term and does not neglect any of the categories of Re-
lational Enhancement.

While mental simulation theoretically has the capacity to
do an exhaustive search of the actions, subsequent actions,
and all those actions’ associated effects, it is computation-
ally infeasible due to (1) the large state space and (2) the
lack of absolute end conditions (i.e. It is not like chess with
well-defined end states). As a result, combining the mental
simulation with other approaches, like social norms and util-
itarian approaches, will be necessary.

Discussion
Though the scenario we present here is relatively simple
and theoretical compared to others in the literature, it yields
some nuanced projections of how social norms and mental
modeling may best perform. Its basic structure can apply to
many socially involved cleaning tasks, from a dinner party
to a playground to a hazardous material cleanup, where the
completion of the task may be complicated by attending to
matters of dignity, propriety, trust, and long-term collabora-
tion with the people involved. A social norm approach seems
better geared toward work relationships where a violation of
respect or dignity is particularly damaging, as well as where
etiquette and protocol are closely tied to the nature of the
work practice (e.g. traditions of a vocation). One disadvan-
tage of that approach, however, might be that it condenses
and obscures implicit assumptions about relational virtues
and longer-term goods. If the demands of relational mainte-
nance impede critical achievements of safety or health, for



example in a time-critical cleanup of a toxic spill, a context-
based reexamination seems important for the team to em-
ploy. A mental modeling approach might be more nimble
on that score, with more dynamic apprehension of short and
long term relationship implications. The downside of that
analytic power may be the cost to processing efficiency, with
both time and energy of the system being taxed in real time
scenarios.

There are counter-examples that could be generated, ad-
mittedly, where a social norm approach might handle social
roles and violations less ably than mental modeling. Like-
wise, mental modeling’s mapping of intention and future ac-
tions may be less adaptive and conducive to trust than basic
adherence to norms. What does seem evident at this initial
stage of exploration, however, is that both approaches are
worth keeping in mind for design and management theory
around human-robot teams. Given that social robots are en-
tering work environments of many types, it will only become
more and more difficult to dissociate ethics from the design
and policy around human-robot relationships. In this sense
a hybrid approach might link up with work that links ethi-
cal, collectively-oriented principles to safety constraints for
autonomous systems (Rossi 2015). There are many analo-
gies to our demonstrative scenario to be found across many
real-life, not to mention riskier, contexts. The need to con-
sider people’s interests, from basic dignity to their purposes
in life and work, will become increasingly evident and cru-
cial, just as will the place of human-robot teamwork within
society’s views of its betterment into the future. How will a
robot repair worker with a human colleague deal with a tod-
dler coming into the road? Should it go off task? Should it
let the person decide if that life is worth saving? How will
robot healthcare assistants work with medical providers to
bring the best therapy to a patient? How will intersecting
notions of patient dignity and medical vocation factor into
that action? How will search and rescue robots collaborate
to find evidence that human colleagues may find especially
fraught, from weapon pieces to human remains?

For these and many other tasks, it will not be enough to
separate personal or societal considerations as ethical ad-
denda to the “real work” or task. What we have designated
solidarity and prosocial concern will need to find operational
expression, just as they will need to sit within an overall rea-
soning process that can facilitate morally acceptable reasons
and morally competent action. Relational Enhancement as a
term represents the ethically peremptory integration of effi-
ciency, solidarity, and prosocial concern – none of the three
can be alienated from evaluation, and each of the three can
inform and affect the other two.

Conclusion
Robots will soon take on an even broader range of roles and
functions than they do already within society. The various
kinds of work they will perform will include socially robust
collaboration with human beings, both as partners and as a
surrounding social environment.

We have shown in this paper that evaluating socially in-
teractive robotic performance with human partners requires
not just short-term measures of efficiency but also long-term

measures of the team’s relationship and the interaction of
its work within a larger social milieu. Interactions within
and outside the team bear on more than the efficiency with
which a present task is performed, so we proposed solidar-
ity and prosocial concern as two critical supports for a so-
cially effective and collaborative human-robot partnership .
Through a basic task scenario, we outlined the advantages
for a human-robot team of the robot anticipating, address-
ing, and accommodating the needs and interests of its human
teammate. We then showed how the long-term work of a
human-robot team could hinge on how well it is understood,
received, and possibly assisted by those physically near to
the work, or by those whose lives the work affects. We tack-
led the necessary means for moral reasoning that a compu-
tational approach to efficiency, solidarity, and prosocial con-
cern would involve, and we concluded that a hybrid of utility
and social norms is the most promising means for includ-
ing all three elements of relational enhancement. Computa-
tional architectures that furnish this more socially adaptive
approach to human-robot teamwork will render robots more
successful and accountable partners in the many social envi-
ronments they are beginning to occupy.
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