The Human-Robot Interaction Laboratory at Tufts
Research Overview 2013

Suite 2300
200 Boston Avenue
Medford, MA 021555
http://hrilab.tufts.edu/

Matthias Scheutz, Director
matthias.scheutz@tufts.edu
• **AI/robotics algorithms and architectures:**
 • situated natural language dialogues (including speech recognition, syntactic and semantic parsing, computational pragmatics, dialogue moves and user mental modeling)
 • one-shot learning (of navigation and manipulation actions, plan operators and rules, percepts, activities, etc.)
 • introspection, fault detection and recovery, dynamic adaptation and configuration of architectural components
 • ongoing work on the DIARC architecture and ADE middleware

• **Human-robot interaction (HRI):**
 • human subject experiments with scripted/teleoperated and autonomous robots to determine human attitudes about robots
 • various architectural HRI evaluation studies (on dynamic robot autonomy, the utility of affect, gender effects, joint attention, politeness, empathy, superhuman robot capabilities, etc.)
THE DIARC ARCHITECTURE USED AS A TOOL IN HRI

- **Joint attention processes** (e.g., establishing and maintaining joint attention, or breaking joint attention through “abnormal attention”)
- **Human attitudes about robots** (e.g., social facilitation and social inhibition to probe agency, or investigations of the effects of robotic voices, social presence, etc.)
- **Human reactions to autonomous robots** in cooperative tasks (e.g., to robot affect, robot autonomy, to local/remote HRI)
- **Task-switching in human multi-tasking** (e.g., fNIRs-based adaption of robot autonomy, effects of real vs virtual robots on multi-tasking performance)
- **Philosophical and conceptual inquiry** (e.g., what it is like to be an agent/have a red experience, or the effects of “ethical robots” on human decision-making)
- Spoken natural language and dialogue interactions (e.g., instructing and tasking in natural language, dialogue-based mixed initiative, robust NL interactions under time pressure)
- Introspection and self-awareness (e.g., detecting faults and failures, detecting capabilities, automatic adaptation of architectural components for improved autonomy)
- Planning, reasoning, and problem solving in open worlds (e.g., planning and reasoning with incomplete knowledge, determining optimal policies in open worlds)
- Knowledge-based learning (e.g., one-shot learning of new actions, new plan operators, and new perceivable objects)
- Mental models, simulation, and counterfactual reasoning (e.g., adverbial cues for inferring false beliefs, automatic inference from mental models, simulations of actions)
Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions.

- Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task.
- Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments.
- Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy.
- Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions.
- Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions.
- Example 6: one-short robot-independent activity learning from NL dialogues and human demonstrations.
Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions.

Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task.

Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments.

Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy.

Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions.

Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions.

Example 6: one-short robot-independent activity learning from NL dialogues and human demonstrations.
Robot has been going down one corridor and has stopped outside of a doorway.

H: Is there a hallway?
R: I see a hallway.
H: Okay, go down there.
R: Okay.

The robot drives down the hallway. As it is driving down it notices a doorway, which it reports to the team leader, also acknowledging its position.

R: Okay, I'm now in the hallway. There is a doorway on the left.
H: Good, go through that doorway.
R: Okay.

The robot enters the room through the doorway and notices several yellow blocks. Since these are task-relevant, it reports them to the team leader.

R: I'm now inside the room. There are yellow blocks in boxes.
H: Get a yellow block from a blue box.
R: Okay.

The robot verifies that there is a yellow block in a blue box, approaches the blue box, and gets the yellow block.
Robot has been going down one corridor and has stopped outside of a doorway.

H: Is there a hallway?
R: I see a hallway.
H: Okay, go down there.
R: Okay.

The robot drives down the hallway. As it is driving down it notices a doorway, which it reports to the team leader, also acknowledging its position.

R: Okay, I'm now in the hallway. There is a doorway on the left.
H: Good, go through that doorway.
R: Okay.

The robot enters the room through the doorway and notices several yellow blocks. Since these are task-relevant, it reports them to the team leader.

R: I'm now inside the room. There are yellow blocks in boxes.
H: Get a yellow block from a blue box.
R: Okay.

The robot verifies that there is a yellow block in a blue box, approaches the blue box, and gets the yellow block.
Robot has been going down one corridor and has stopped outside of a doorway.

H: Is there a hallway?
R: I see a hallway.
H: Okay, go down there.
R: Okay.

The robot drives down the hallway. As it is driving down it notices a doorway, which it reports to the team leader, also acknowledging its position.

R: Okay, I'm now in the hallway. There is a doorway on the left.
H: Good, go through that doorway.
R: Okay.

The robot enters the room through the doorway and notices several yellow blocks. Since these are task-relevant, it reports them to the team leader.

R: I'm now inside the room. There are yellow blocks in boxes.
H: Get a yellow block from a blue box.
R: Okay.

The robot verifies that there is a yellow block in a blue box, approaches the blue box, and gets the yellow block.
Robot has been going down one corridor and has stopped outside of a doorway.

H: Is there a hallway?
R: I see a hallway.
H: Okay, go down there.
R: Okay.

The robot drives down the hallway. As it is driving down it notices a doorway, which it reports to the team leader, also acknowledging its position.

R: Okay, I'm now in the hallway. There is a doorway on the left.
H: Good, go through that doorway.
R: Okay.

The robot enters the room through the doorway and notices several yellow blocks. Since these are task-relevant, it reports them to the team leader.

R: I'm now inside the room. There are yellow blocks in boxes.
H: Get a yellow block from a blue box.
R: Okay.

The robot verifies that there is a yellow block in a blue box, approaches the blue box, and gets the yellow block.
Robot has been going down one corridor and has stopped outside of a doorway.

H: Is there a hallway?
R: I see a hallway.
H: Okay, go down there.
R: Okay.

The robot drives down the hallway. As it is driving down it notices a doorway, which it reports to the team leader, also acknowledging its position.

R: Okay, I'm now in the hallway. There is a doorway on the left.
H: Good, go through that doorway.
R: Okay.

The robot enters the room through the doorway and notices several yellow blocks. Since these are task-relevant, it reports them to the team leader.

R: I'm now inside the room. There are yellow blocks in boxes.
H: Get a yellow block from a blue box.
R: Okay.

The robot verifies that there is a yellow block in a blue box, approaches the blue box, and gets the yellow block.
Robot has been going down one corridor and has stopped outside of a doorway.

H: Is there a hallway?
R: I see a hallway.
H: Okay, go down there.
R: Okay.

The robot drives down the hallway. As it is driving down it notices a doorway, which it reports to the team leader, also acknowledging its position.

R: Okay, I'm now in the hallway. There is a doorway on the left.
H: Good, go through that doorway.
R: Okay.

The robot enters the room through the doorway and notices several yellow blocks. Since these are task-relevant, it reports them to the team leader.

R: I'm now inside the room. There are yellow blocks in boxes.
H: Get a yellow block from a blue box.
R: Okay.

The robot verifies that there is a yellow block in a blue box, approaches the blue box, and gets the yellow block.
DIARC AT WORK
EXAMPLE 2

- Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions.

- Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task.

- Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments.

- Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy.

- Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions.

- Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions.

- Example 6: one-shot robot-independent activity learning from NL dialogues and human demonstrations.
A human commander asks robot D about its goals and checks whether robot T has reached Nav point Alpha. Since T does not have that goal, it corrects the human's false belief and checks whether it should assume a new goal, which is then confirmed.

H: Drone, what are you doing?
D: Commander, I am not doing anything.
H: OK. Transport, are you at Alpha yet?
T: No, Commander. I do not have a goal to be at Alpha. Should I have one?
H: Yes, go to Alpha.
T: OK.
H: Drone, follow Transport.
D: OK.

Note that Robot D was listening in on H's conversation with T, hence it is able to infer where it is going given where T is going and can thus answer questions about its goals.

H: Drone, what are you doing?
D: Commander, I am following Transport.
H: OK. Drone, where are you going?
D: Commander, I am going to Alpha with Transport.
H: OK.

T informs H of its arrival at Alpha given that it believes that H intends to know that.

T: Commander, I am now at Alpha.
A human commander asks robot D about its goals and checks whether robot T has reached Nav point Alpha. Since T does not have that goal, it corrects the human's false belief and checks whether it should assume a new goal, which is then confirmed.

H: Drone, what are you doing?
D: Commander, I am not doing anything.
H: OK. Transport, are you at Alpha yet?
T: No, Commander. I do not have a goal to be at Alpha. Should I have one?
H: Yes, go to Alpha.
T: OK.
H: Drone, follow Transport.
D: OK.

Note that Robot D was listening in on H's conversation with T, hence it is able to infer where it is going given where T is going and can thus answer questions about its goals.

H: Drone, what are you doing?
D: Commander, I am following Transport.
H: OK. Drone, where are you going?
D: Commander, I am going to Alpha with Transport.
H: OK.

T informs H of its arrival at Alpha given that it believes that H intends to know that.

T: Commander, I am now at Alpha.
A human commander asks robot D about its goals and checks whether robot T has reached Nav point Alpha. Since T does not have that goal, it corrects the human's false belief and checks whether it should assume a new goal, which is then confirmed.

H: Drone, what are you doing?
D: Commander, I am not doing anything.
H: OK. Transport, are you at Alpha yet?
T: No, Commander. I do not have a goal to be at Alpha. Should I have one?
H: Yes, go to Alpha.
T: OK.
H: Drone, follow Transport.
D: OK.

Note that Robot D was listening in on H's conversation with T, hence it is able to infer where it is going given where T is going and can thus answer questions about its goals.

H: Drone, what are you doing?
D: Commander, I am following Transport.
H: OK. Drone, where are you going?
D: Commander, I am going to Alpha with Transport.
H: OK.

T informs H of its arrival at Alpha given that it believes that H intends to know that.

T: Commander, I am now at Alpha.
A human commander asks robot D about its goals and checks whether robot T has reached Nav point Alpha. Since T does not have that goal, it corrects the human's false belief and checks whether it should assume a new goal, which is then confirmed.

H: Drone, what are you doing?
D: Commander, I am not doing anything.

H: OK. Transport, are you at Alpha yet?

T: No, Commander. I do not have a goal to be at Alpha. Should I have one?

H: Yes, go to Alpha.

T: OK.

H: Drone, follow Transport.

D: OK.

Note that Robot D was listening in on H's conversation with T, hence it is able to infer where it is going given where T is going and can thus answer questions about its goals.

H: Drone, what are you doing?
D: Commander, I am following Transport.

H: OK. Drone, where are you going?
D: Commander, I am going to Alpha with Transport.

H: OK.

T informs **H** of its arrival at Alpha given that it believes that **H** intends to know that.

T: Commander, I am now at Alpha.
A human commander asks robot D about its goals and checks whether robot T has reached Nav point Alpha. Since T does not have that goal, it corrects the human's false belief and checks whether it should assume a new goal, which is then confirmed.

H: Drone, what are you doing?
D: Commander, I am not doing anything.
H: OK. Transport, are you at Alpha yet?
T: No, Commander. I do not have a goal to be at Alpha. Should I have one?
H: Yes, go to Alpha.
T: OK.
H: Drone, follow Transport.
D: OK.

Note that Robot D was listening in on H's conversation with T, hence it is able to infer where it is going given where T is going and can thus answer questions about its goals.

H: Drone, what are you doing?
D: Commander, I am following Transport.
H: OK. Drone, where are you going?
D: Commander, I am going to Alpha with Transport.
H: OK.

T informs H of its arrival at Alpha given that it believes that H intends to know that.

T: Commander, I am now at Alpha.
A human commander asks robot D about its goals and checks whether robot T has reached Nav point Alpha. Since T does not have that goal, it corrects the human's false belief and checks whether it should assume a new goal, which is then confirmed.

H: Drone, what are you doing?
D: Commander, I am not doing anything.
H: OK. Transport, are you at Alpha yet?
T: No, Commander. I do not have a goal to be at Alpha. Should I have one?
H: Yes, go to Alpha.
T: OK.
H: Drone, follow Transport.
D: OK.

Note that Robot D was listening in on H's conversation with T, hence it is able to infer where it is going given where T is going and can thus answer questions about its goals.

Robot initiated status updates based on belief of what commander intends to know.

T informs H of its arrival at Alpha given that it believes H intends to know that.

T: Commander, I am now at Alpha.
MULTI-ROBOT BELIEF MODELING AND AUTOMATIC INFERENCE IN DIALOGUES

- Microphones
 - Sound Localization
 - Speech Recognition
- Stereo Cameras
 - Saliency Maps
 - Visual Features
- Swiss Ranger
 - Motion/Optic Flow
 - Feature Detectors
- Laser Range Finder
 - Feature Tracking
- Actuator Sensors
 - Robot Base Odometry
 - Joint Positions
- Speaker Localization
 - Speaker Detection
- POS Tagger
 - Incremental Parser
- Semantic Dictionary
 - Semantic Parser
- Dialogue Manager
 - Pragmatics Processing
- Dialogue Knowledge
 - Factual Knowledge
- Speech Synthesis
 - Sentence Generation
 - Facial Expressions
- Facial Motors
 - Affect Expressions
- Mobile Base
 - Behavioral Primitives
 - Action Execution
 - Skill Learning
 - Fault Detection
 - Skill/Action Manager
 - Architecture Introspection
 - Navigation Planner
 - Motion Planner
 - Action Learning
 - Skill Learning
 - Task LT Memory
 - Belief Reasoning
 - Concept Learning
 - Concept LTM
 - Skill/Task Planner
 - ASU Task Planner
 - Map LT Memory
 - Topological Map
 - Map Making
 - Topological Localization
 - Landmark Detection
 - Person Tracking
 - Spatial Expert
 - Task LT Memory
 - Goal Manager
 - Reference Resolution
 - Discourse Processing
 - Object LT Memory
 - Object Learning
 - Face Detection
 - Face Tracking
 - Motion/Tracking
 - Motion/Tracking
 - Feature Detection
 - Feature Tracking
 - Robot Base States
 - Basic States
 - Basic Emotions
 - Motion Planner
 - Simulation Model
 - Fault Detection
MULTI-ROBOT BELIEF MODELING AND AUTOMATIC INFERENCE IN DIALOGUES
Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions.

Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task.

Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments.

Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy.

Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions.

Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions.

Example 6: one-shot robot-independent activity learning from NL dialogues and human demonstrations.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.
H: Okay, come back and I will get you a camera.
R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves goes to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.

H: Okay, come back and I will get you a camera.

R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves goes to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.

H: Okay, come back and I will get you a camera.

R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves goes to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.
H: Okay, come back and I will get you a camera.
R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves goes to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

 H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the "examine objects" perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

 R: I cannot achieve the goals because I do not have a way to examine objects.

 H: Okay, come back and I will get you a camera.

 R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

 R: I am now able to examine objects, resuming postponed goals.

The robot then moves to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

 R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.

H: Okay, come back and I will get you a camera.

R: Okay.

The robot postpones the goals from the order, installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.

H: Okay, come back and I will get you a camera.

R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator and starts inspection.

R: I found an unattended crate, moving to investigate.
A robot is performing mission, when it gets a new order:

H: I have a new order for you. Go to Nav Point 4 and inspect all suspicious objects.

The robot immediately attempts to simulate the goal and determines that it cannot complete it because the “examine objects” perception action fails (due to the fact that the robot does not have a camera and therefore no vision processing component instantiated). It reports the problem to the human operator:

R: I cannot achieve the goals because I do not have a way to examine objects.

H: Okay, come back and I will get you a camera.

R: Okay.

The robot postpones the goals from the order and returns to the base where human operator installs a camera. The camera causes a vision processing component to be started automatically, which, in turn, allows the robot to notice that it can now examine objects and continue the postponed task.

R: I am now able to examine objects, resuming postponed goals.

The robot then moves goes to Nav Point 4 and starts looking for suspicious objects. It detects a suspicious unattended object, reports it to the operator.

R: I found an unattended crate, moving to investigate.

Continuation of previously postponed goal, target detection and automatic notification of operator.
<table>
<thead>
<tr>
<th>Actuator Sensors</th>
<th>Laser Range Finder</th>
<th>Swiss Ranger</th>
<th>Mono/Stereo Cameras</th>
<th>Microphones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot Base Odometry</td>
<td>Feature Tracking</td>
<td>Feature Detectors</td>
<td>Visual Features</td>
<td>Sound Localization</td>
</tr>
<tr>
<td>Joint Positions</td>
<td>Basic Robot States</td>
<td>Landmark Detection</td>
<td>Saliency Maps</td>
<td>Speech Recognition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motion/ Optic Flow</td>
<td></td>
<td>Speaker Localization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Face Tracking</td>
<td>Object Detection</td>
<td>Speaker Detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Face Tracking</td>
<td>Face Detection</td>
<td>Incremental Parser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Person Tracking</td>
<td>Object Learning</td>
<td>POS Tagger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spatial Expert</td>
<td>Reference Resolution</td>
<td>Semantic Dictionary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task LT Memory</td>
<td>Goal Manager</td>
<td>Dialogue Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Map LT Memory</td>
<td>Concept LTM</td>
<td>Dialogue Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navigation Planner</td>
<td>ASU Task Planner</td>
<td>Sentence Generation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Architecture Introspection</td>
<td>Skill LT Memory</td>
<td>Speech Synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skill/Action Manager</td>
<td>Skill Learning</td>
<td>Facial Expressions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action Execution</td>
<td>Skill Learning</td>
<td>Affect Expressions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavioral Primitives</td>
<td>Mobile Base</td>
<td>Speakers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arms, Hands, Torso</td>
<td>Facial Motors</td>
<td>Speakers</td>
</tr>
</tbody>
</table>

USING INTROSPECTION TO DISCOVER NEW FUNCTIONS
USING INTROSPECTION TO DISCOVER NEW FUNCTIONS
DIARC AT WORK
EXAMPLE 4

- Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions.

 - Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task.

 - Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments.

 - Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy.

 - Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions.

 - Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions.

 - Example 6: one-shot robot-independent activity learning from NL dialogues and human demonstrations.
The robot is driving down the hallway as part of its task when a human operator asks it about its current goals.

H: What are your orders?

R: I have been ordered to listen for instructions, to go to the end of the hallway, and try to look for a red box.

The robot enters the next room with an open door, searches the room and exits without finding a red box. The robot then drives by a closed door. While it recognizes the door, it does not know what to do with it, hence it cannot search the room. At this point, the human operator provides a new knowledge item to the robot, from which the robot automatically extracts a rule/plan operator which it then can apply right away.

H: To go into a room when you are at a closed door, push it one meter.

R: Understood.

When the robot then encounters the next room with a closed door, it now quickly generates a new plan based on the new operator, which causes it to push the door open. It enters the room, starts to search it, and finds and reports a red box which it would have otherwise missed.

R: There is a red box in Room 1.
The robot is driving down the hallway as part of its task when a human operator asks it about its current goals.

H: What are your orders?

R: I have been ordered to listen for instructions, to go to the end of the hallway, and try to look for a red box.

The robot enters the next room with an open door, searches the room and exits without finding a red box. The robot then drives by a closed door. While it recognizes the door, it does not know what to do with it, hence it cannot search the room. At this point, the human operator provides a new knowledge item to the robot, from which the robot automatically extracts a rule/plan operator which it then can apply right away.

H: To go into a room when you are at a closed door, push it one meter.

R: Understood.

When the robot then encounters the next room with a closed door, it now quickly generates a new plan based on the new operator, which causes it to push the door open. It enters the room, starts to search it, and finds and report a red box which it would have otherwise missed.

R: There is a red box in Room 1.
The robot is driving down the hallway as part of its task when a human operator asks it about its current goals.

H: What are your orders?
R: I have been ordered to listen for instructions, to go to the end of the hallway, and try to look for a red box.

The robot enters the next room with an open door, searches the room and exits without finding a red box. The robot then drives by a closed door. While it recognizes the door, it does not know what to do with it, hence it cannot search the room. At this point, the human operator provides a new knowledge item to the robot, from which the robot automatically extracts a rule/plan operator which it then can apply right away.

H: To go into a room when you are at a closed door, push it one meter.
R: Understood.

When the robot then encounters the next room with a closed door, it now quickly generates a new plan based on the new operator, which causes it to push the door open. It enters the room, starts to search it, and finds and reports a red box which it would have otherwise missed.

R: There is a red box in Room 1.
The robot is driving down the hallway as part of its task when a human operator asks it about its current goals.

H: What are your orders?

R: I have been ordered to listen for instructions, to go to the end of the hallway, and try to look for a red box.

The robot enters the next room with an open door, searches the room and exits without finding a red box. The robot then drives by a closed door. While it recognizes the door, it does not know what to do with it, hence it cannot search the room. At this point, the human operator provides a new knowledge item to the robot, from which the robot automatically extracts a rule/plan operator which it then can apply right away.

H: To go into a room when you are at a closed door, push it one meter.

R: Understood.

When the robot then encounters the next room with a closed door, it now quickly generates a new plan based on the new operator, which causes it to push the door open. It enters the room, starts to search it, and finds and reports a red box which it would have otherwise missed.

R: There is a red box in Room 1.
The robot is driving down the hallway as part of its task when a human operator asks it about its current goals.

H: What are your orders?

R: I have been ordered to listen for instructions, to go to the end of the hallway, and try to look for a red box.

The robot enters the next room with an open door, searches the room and exits without finding a red box. The robot then drives by a closed door. While it recognizes the door, it does not know what to do with it, hence it cannot search the room. At this point, the human operator provides a new knowledge item to the robot, from which the robot automatically extracts a rule/plan operator which it then can apply right away.

H: To go into a room when you are at a closed door, push it one meter.

R: Understood.

When the robot then encounters the next room with a closed door, it now quickly generates a new plan based on the new operator, which causes it to push the door open. It enters the room, starts to search it, and finds and reports a red box which it would have otherwise missed.

R: There is a red box in Room 1.
The robot is driving down the hallway as part of its task when a human operator asks it about its current goals.

H: What are your orders?

R: I have been ordered to listen for instructions, to go to the end of the hallway, and try to look for a red box.

The robot enters the next room with an open door, searches the room and exits without finding a red box. The robot then drives by a closed door. While it recognizes the door, it does not know what to do with it, hence it cannot search the room. At this point, the human operator provides a new knowledge item to the robot, from which the robot automatically extracts a rule/plan operator which it then can apply right away.

H: To go into a room when you are at a closed door, push it one meter.

R: Understood.

When the robot then encounters the next room with a closed door, it now quickly generates a new plan based on the new operator, which causes it to push the door open. It enters the room, starts to search it, and finds and reports a red box which it would have otherwise missed.

R: There is a red box in Room 1.
LEARNING NEW ACTIONS AND PLAN OPERATORS FROM NL DIALOGUES
Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions

Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task

Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments

Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy

Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions

Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions

Example 6: one-short robot-independent activity learning from NL dialogues and human demonstrations
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed a implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed a implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.

Implicit goal specification leading to open-world quantified goal inferred from NL expression and request confirmation through content repetition.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed a implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed an implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed an implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed a request.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed a implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.
A robot is driving through a building when its human commander contacts it.

H: Cindy, Commander Z really needs a medical kit.
H: There should be one in the room you are in.
R: Okay.
R: Understood. Commander Z really needs a medical kit.

The robot repeats the gist of the information and infers that this information might be a hidden request, thus asking to confirm whether it was indeed a implicit order.

R: Should I get one for him?
H: Yes.
H: He is in the room with the green door.

The robot first acknowledges the information about the room and then confirms that it understood the order by repeating the gist of it.

R: Okay.
R: I'll get one for him.

As the robot is forming its plan, it notices that it does not know what a medical kit looks like, hence it asks (and based on the description it is able to proceed).

R: What does it look like?
R: It is a white box with a red cross on it.
R: Okay.

Perceptual learning based on natural language descriptions and action simulations.
PERCEPTUAL LEARNING AND DIALOGUE-BASED PRAGMATIC INFERENCE
ONE-SHOT ACTIVITY LEARNING AND MULTI-ROBOT TRANSFER

- Six examples of natural dialogue-based HRI with DIARC running on five different ground and aerial robots (Videre, AR Drone, Segway, MDS, Pioneer, PR2), in indoor and outdoor single and multirobot interactions

 - Example 1: human-like task-based dialogue interactions and task performance as they occur in the search task

 - Example 2: multi-robot belief modeling and inference with ground and aerial robots in indoor environments

 - Example 3: NL tasking in outdoor settings showing the robot's introspective reasoning and dynamic autonomy

 - Example 4: one-shot learning of new actions and plan operators during task execution from verbal instructions

 - Example 5: complex NL tasking and reasoning about intended meanings and learning from verbal descriptions

 - Example 6: one-shot robot-independent activity learning from NL dialogues and human demonstrations
The robot is asked to perform a task it does not know how to perform, which it notices.

H: Aandy, please pick up the medkit.
A: I do not know how I pick the medkit up.
H: Let me show you.
A: Okay.

The instruction begins using a simple dialogue paired with visual demonstrations that allow the robot to resolve indexicals like “this” as well as positions.

H: Put your hand above the medkit with your palm down like this.
A: Okay.
H: Close your hand.
A: Okay.
H: Lift your hand.
A: Okay.

During the instructions, the robot pays attention to each step and records it.

H: And that's how you pick it up.
A: Okay.

The robot has learned the activity and is immediately able to perform it when asked.

H: Now you try.
A: Okay.
ONE-SHOT ACTIVITY LEARNING
ONE-SHOT ACTIVITY LEARNING

click on image to play video
ACKNOWLEDGMENTS

- Faculty collaborators: Kathleen Eberhard (U of Notre Dame), Sandra Kuebler (IU), Chitta Baral and Subbarao Kambhampati (ASU), Michael Zillich and Markus Vincze (TU Wien)
- Former graduate students: Paul Schermerhorn (PhD), Jack Harris (PhD), Richard Veale (PhD), Rehj Cantrell (ABD), Matt Dunlap (MA), Jeremiah Via (MA)
- Former research staff: Paul Schermerhorn, Evan Krause
- Current grad students: Gordon Briggs (ABD), Tom Williams (MA)
- Additional grad students and staff involved in projects not reported on these slides
- Research funded in part by grants from the US National Science Foundation and the US Office of Naval Research
- Papers available online at http://hrilab.tufts.edu/publications/